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injury mechanisms. Together, our results show that human 
nephrotoxicity can be predicted with high efficiency and 
accuracy by combining cell-based and computational meth-
ods that are suitable for automation.
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Introduction

The kidney plays an important role in the filtration and 
active elimination of xenobiotics from the plasma (Tiong 
et  al. 2014). Foreign compounds originating from medi-
cine, food, or the environment are actively transported and 
metabolized by the renal proximal tubular cells (PTCs; 
Commandeur and Vermeulen 1990). After uptake, xeno-
biotics and their metabolites/intermediates may damage 
the PTCs (Townsend et  al. 2003; Stiborová et  al. 2003) 
and lead to acute kidney injury or chronic kidney disease 
(Choudhury and Ahmed 2006; Tiong et  al. 2014). There-
fore, accurate methods for predicting nephrotoxicity are 
critical for the safety assessment of xenobiotics, and the 
management of the health and environmental hazards 
posed by these compounds.

There are several existing approaches for predicting 
xenobiotic toxicity in human. Animal testing is a standard 
approach, but suffers from the problems of long turna-
round time, low throughput, and sometimes poor prediction 
of human toxicity (Krewski et al. 2010). This approach is 
especially unsuitable for evaluating the large numbers of 
existing and ever-increasing numbers of novel synthetic 
compounds, such as chemicals and nanoparticles. In fact, 
the current interest in alternatives to animal testing is 
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driven by the requirement for efficient testing of large num-
bers of compounds with diverse chemical structures and 
injury mechanisms. This is, for instance, reflected by cur-
rent legislations, such as the regulation on “Registration, 
Evaluation, Authorization and restriction of CHemicals” 
(REACH) in the European Union (Lilienblum et al. 2008). 
Computational modeling of quantitative structure–activity 
relationships (QSAR) is a rapid approach and works well 
for compounds with specific or well-understood chemical 
structures or mechanisms (Cherkasov et  al. 2014). How-
ever, most QSAR models do not consider the biological 
contexts of compound exposure and therefore have lim-
ited applications in predicting the complex biological 
responses, such as organ-specific toxicity, of compounds 
with diverse chemical structures. Finally, in  vitro assays 
based on immortalized, primary, or stem-cell-derived 
renal cells may provide a balance between throughput and 
physiological relevance. However, most of the current cell-
based assays were either tested with very small numbers of 
nephrotoxicants (usually <5; Jang et al. 2013; Tiong et al. 
2014), or poorly predictive of organ-specific toxicity in 
large-scale studies (Lin and Will 2012). Therefore, accu-
rate prediction of nephrotoxicity remains challenging, and 
there is currently no regulatory approved in  vitro test for 
nephrotoxicity.

Recently, we have developed nephrotoxicity models 
based on compound-induced interleukin (IL)-6/8 expres-
sion levels in immortalized and primary human PTCs 
(Li et  al. 2013; Su et  al. 2014), human embryonic stem 
cell- (Li et  al. 2014), and induced pluripotent stem cell-
derived PTC-like cells (Kandasamy et  al. 2015). We rig-
orously evaluated the performance of these models using 
a large set (~30–40) of structurally diverse compounds, 
which included non-PTC-toxic nephrotoxicants and non-
nephrotoxic compounds as negative reference compounds. 
Due to the relatively high test accuracies of these mod-
els (~75.3 %), we hypothesize that there may be PTC-spe-
cific injuries that are commonly induced by PTC toxicants 
with diverse structures and targets. Furthermore, the RNA 
isolation and qPCR steps of the IL-6/8 measurements are 
difficult and costly to be automated for high-throughput 
applications. Therefore, there is still a need to develop 
an alternative high-throughput, cost-effective, and accu-
rate nephrotoxicity prediction approach, which may also 
provide new insights into the cell injuries and responses 
induced by these compounds.

Xenobiotic-induced injuries impair cellular functions 
and lead to changes in cellular phenotypes, such as reor-
ganizations and changes of cellular and subcellular struc-
tures. One of the main advantages of predicting toxicity 
based on cellular phenotypes is that the cell injury mecha-
nisms do not need to be defined a priori. This is especially 
useful for building models for a diverse set of xenobiotic 

compounds that may induce the same types of injury and 
responses, but through different biochemical mechanisms. 
Models based on specific mechanisms may only cover spe-
cific classes of compounds, and not be generally applicable 
to other compounds (Tiong et al. 2014). Quantitative image-
based profiling of cellular phenotypes under large numbers 
of compounds has become feasible due to the advances 
in automated microscopy and image processing methods 
(Feng et  al. 2009). Loo and colleagues have previously 
developed computational methods to automatically con-
struct phenotypic profiles from large numbers of unbiased 
and quantitative descriptors (or features) of cellular pheno-
types based on microscopy images of cells (Loo et al. 2007; 
Laksameethanasan et al. 2013). These profiles were used to 
distinguish large numbers of compounds with different tar-
gets/mechanisms (Loo et  al. 2007) or proteins involved in 
different biological processes (Loo et  al. 2014). Here, we 
present a study that uses similar phenotypic profiling meth-
ods to screen for a compact set of phenotypic features that 
are predictive of in  vivo PTC toxicity of xenobiotic com-
pounds. Our approach for phenotypic profiling is conceptu-
ally similar to the approach of using gene expression profil-
ing to identify differentially expressed genes, except that we 
screen for phenotypic changes, which are more likely to be 
commonly induced by toxicants with different mechanisms; 
and we can test much larger numbers of compounds than 
RNA sequencing or microarray assays (Feng et al. 2009).

Results

Reference compound list

To make our computational models more comprehensive, 
we increased the number of reference xenobiotic com-
pounds to 44 (Supplementary Material 1—Table S1), 
among which 38 compounds were previously used in our 
IL-6/8-based models (Li et al. 2013, 2014; Su et al. 2014; 
Kandasamy et  al. 2015). These reference compounds 
included commonly used industrial chemicals, antibiot-
ics, antivirals, chemotherapy drugs, mycotoxins, agricul-
tural chemicals and other compounds (Fig. 1a). They were 
divided into two groups based on their known in vivo toxic-
ity from published clinical and/or animal studies [detailed 
information for most of the compounds can be found in our 
previous reports (Li et al. 2014; Kandasamy et al. 2015)]. 
The “PTC-toxic” group had 24 nephrotoxicants known 
to damage PTCs, and the “non-PTC-toxic” group had 14 
nephrotoxicants not known to damage PTCs in humans 
and 8 compounds not known to damage the human kidney. 
Furthermore, ten and eight compounds in the PTC-toxic 
and non-PTC-toxic groups, respectively, were known to be 
hepatotoxic (Supplementary Material 1—Table S1). This 
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design of reference compound list ensured that we would 
not favor phenotypic features for general or non-PTC-spe-
cific toxicity. Our binary categorization of the compounds 
simplified the prediction problem and allowed us to use 
well-established prediction performance criteria to evaluate 
different phenotypic features and cell types. Our reference 
compounds had diverse chemical structures, and we found 
no obvious structural difference between the PTC-toxic 
and non-PTC-toxic compounds (Fig.  1b). For example, 
all of the industrial chemicals and a few other compounds 
were clustered together in the chemical space irrespec-
tive of their known PTC toxicity (dashed line in Fig. 1b). 

Most of the compounds within the cluster were metal-
lic compounds, such as cisplatin (PTC-toxic) and lithium 
chloride (non-PTC-toxic), which have very simple and thus 
hard-to-differentiate molecular structures. We treated pri-
mary human PTCs from three different donors with these 
compounds in seven different doses (1.6–1000 μg/mL) for 
16 h.

Automated cellular phenotypic profiling

Our phenotypic profiling strategy (Supplementary Material 
1—Fig. S1) was to automatically measure a large number 
of quantitative phenotypic features of primary human PTCs 
under in  vitro conditions, and then systematically screen 
for a subset of phenotypic features that were the most pre-
dictive of in vivo PTC toxicity. Our features were based on 
four fluorescent markers (Fig. 2a). We used 4′,6-diamidino-
2-phenylindole (DAPI) and rhodamine phalloidin to label 
the DNA and actin cytoskeleton, respectively. Nuclear and 
chromatin structure alterations are involved in many fun-
damental cellular processes, such as transcription, mito-
sis, and cell death. Actin filaments play an important role 
in maintaining the cellular function of PTCs (Kellerman 
et al. 1990). We also labeled the cells with an antibody spe-
cific for a subunit of the nuclear factor (NF)-κB complex, 
RelA. This was motivated by our previous models based 
on IL-6/8 (Li et al. 2013, 2014; Su et al. 2014; Kandasamy 
et  al. 2015), which are regulated by the NF-κB complex 
(Matsusaka et al. 1993). The final marker was a whole-cell 
stain (WCS) used to facilitate automated cell segmentation 
and measurements of cellular morphology features.

After compound treatment, we stained PTCs with these 
four fluorescent markers and imaged them using a high-
throughput imaging system. We automatically identified 
~500–1000  cells from 36 microscopy images captured 
for each compound and treatment dosage (Supplementary 
Material 1—Fig. S2). Then, for each cell, we extracted 129 
quantitative phenotypic features (Fig.  2b and Supplemen-
tary Material 2), which include 78 Haralick’s texture fea-
tures (Haralick et al. 1973; measuring the statistics of the 
spatial co-occurrence patterns of the markers), 29 intensity 
features (measuring the staining levels of the markers at dif-
ferent subcellular regions), 9 intensity ratio features (meas-
uring the ratios between intensity features), 6 correlation 
features (measuring the spatial correlations between two 
markers at the single-cell level), and 6 morphology features 
(measuring the shape properties of the nuclear and cellular 
regions). We also included cell count as a feature. Similar 
phenotypic features and profiling methods were previously 
used to classify large numbers of small molecules accord-
ing to their targets/mechanisms (Loo et  al. 2007). There-
fore, we hypothesized that a subset of these features might 
also be discriminative enough to predict PTC toxicity.

Fig. 1   Reference xenobiotic compounds in our study have diverse 
chemical structures. a Categorization of the reference xenobiotic 
compounds used in our study according to their sources or applica-
tions. b Multi-dimensional scaling plot showing the chemical struc-
ture dissimilarity based on Tanimoto coefficients between all the 
reference compounds (MDS1/2 = the first and second coordinates of 
the multi-dimensional scaling, dashed line = a cluster of compounds 
with simple and similar chemical structures. All industrial chemicals 
are grouped into this cluster together with other compounds irrespec-
tive of their known PTC toxicity. Many compounds within the cluster 
are on top of each other.)
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For each phenotypic feature, we first computed the 
log2-ratios (“∆”) of its values at all the tested dosages 
with respect to the vehicle controls. Then, we estimated 
the feature’s dose response curve using a standard log-
logistic model, and its maximum response value (“∆max
”) from the curve (Fig. 2c). Finally, the median ∆max val-
ues across three biological replicates were computed. The 
final dataset (“HPTC-A”) was a matrix of ∆max values for 
129 phenotypic features (Fall = {f1, f2, . . . , f129}, rows) 

and 44 xenobiotic compounds (columns; Fig. 2d and Sup-
plementary Material 3). For brevity, all features that we 
mention in this article are referring to the ∆max values of 
the respective features and not the raw measured feature 
values, unless otherwise indicated. Hierarchical clustering 
of the compounds based on the phenotypic feature values 
revealed two major clusters (Fig. 2d). One of them was sig-
nificantly enriched with the PTC-toxic compounds (83 % of 
the cluster were PTC-toxic compounds; P = 1.59 × 10−3, 

Fig. 2   Quantitative image-based phenotypic profiles of primary 
human proximal tubule cells treated with the reference compounds. 
a Immunofluorescence images showing the four fluorescence mark-
ers used in the HPTC-A dataset for primary PTCs treated with the 
DMSO control or 500 µg/mL cisplatin (scale bar 20 µm). b Single-
cell probability distribution functions for the raw coefficient of vari-
ation (CV) of actin intensity values measured from primary PTCs 
treated with different concentrations of citrinin (light red lines) or 
DMSO (gray line). Exemplary fluorescent images for the actin stains 
are shown above the distribution function plots (scale bar 20 µm). c 

Concentration response curves for changes in the CV of actin inten-
sity induced by three of the reference compounds (light red = PTC-
toxic compounds, light blue = non-PTC-toxic compound). The maxi-
mum response value (∆max) for each compound was determined 
from its response curve at 5  mM. d Heatmap showing the ∆max 
values for all the 129 phenotypic features (rows) measured from pri-
mary human PTCs treated with 44 reference compounds (columns). 
(Dendrograms = hierarchical clustering of the compounds or features 
based on the ∆max values, dash line =  separation between the two 
major clusters identified from the clustering of compounds)
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hypergeometric test), and the other one was significantly 
enriched with the non-PTC-toxic compounds (65 % of the 
cluster were non-PTC-toxic compounds; P = 1.59 × 10−3, 
hypergeometric test). Most of the phenotypic features 
showed larger changes under the first cluster than the sec-
ond cluster, suggesting that non-PTC-toxic compounds 
only induced small or no change in the primary human 
PTCs. We also performed similar clustering analysis on 
the phenotypic features and found two major clusters cor-
responding to either increased or decreased feature values 
after treatments with PTC-toxic compounds (Fig. 2d). Fea-
tures from all markers were represented in both clusters. 
Therefore, most of our phenotypic features are diverse and 
capture both increasing and decreasing properties of the 
markers.

Nuclear and cytoskeletal features are highly predictive

To test each individual feature, we constructed a binary 
classifier based on the feature using a random forest algo-
rithm (Breiman 2001; Su et al. 2014) and estimated the pre-
diction accuracy using a tenfold cross-validation procedure 
(Fig.  3a, Methods, and Supplementary Material 1—Text 
S1). In theory, the balanced accuracy (average of sensitiv-
ity and specificity) of a binary classifier ranges from 50 % 
(performance of a trivial random classifier) to 100 % (max-
imum); but in practice, it may go slightly below 50 %. The 
training accuracy is the accuracy in classifying the training 
data used to build the classifier, and the test accuracy is the 
accuracy in classifying independent test data unused dur-
ing the training process. We used all the compounds during 
cross-validation, but our evaluation procedure ensured that 
the training and test samples were coming from different 
compounds and statistically independent. We repeated the 
cross-validation procedure 10 times with different random 
fold divisions, and all the mean accuracy values presented 
in this report were obtained by averaging the accuracy val-
ues from every fold and trial.

For the HPTC-A dataset, we found that all single fea-
tures had ~97  % and above training accuracy and ~43–
76 % test accuracy (Supplementary Material 2). The high 
training-accuracy values do not imply all the features had 
similar or indistinguishable training performance, because 
the training accuracies of the features was still strongly 
correlated with their test accuracies (r  =  0.842, Supple-
mentary Material 1—Fig. S3). In our unbiased approach 
for phenotypic profiling, we started with a large number 
of general phenotypic features, but only expected a small 
number of features to be discriminative. We aimed to find 
out which of the four fluorescent markers and which of the 
five feature types produced the most discriminative fea-
tures. Therefore, we grouped all the features according to 
their fluorescent markers or feature types and compared the 

maximum achievable accuracies of these feature groups. 
The feature marker group with the highest maximum test 
accuracy was DNA (75.8 %), followed by actin (73.7 %) 
and RelA (72.6  %; Fig.  3b). Surprisingly, RelA features 
were not highly predictive of PTC toxicity. For example, 
the RelA nuclear-to-whole-cell intensity ratio, which is 
an indicator of NF-κB nuclear translocation and tran-
scriptional activation of its downstream effectors (Deptala 
et  al. 1998), only had 61.0  % test accuracy. The feature 
type groups with the highest maximum test accuracy was 
Haralick’s texture (Haralick et al. 1973; 75.8 %), followed 
by intensity (73.7 %) and intensity ratio (69.9 %; Fig. 3c). 
In fact, six of the ten best-performing single features were 
all Haralick’s texture features, which are based on the gray-
level co-occurrence matrices (GLCM; Haralick et al. 1973) 
of the fluorescent markers. The GLCM of a marker sum-
marizes the distribution of spatial transitions between dif-
ferent intensity levels of the marker in a cell image (Haral-
ick et al. 1973). Haralick’s features, which describe various 
statistical properties of a GLCM, can be used to repre-
sent the textural patterns found in the image (Methods). 
The best single feature, fbest, among all the 129 features 
was the “mean entropy” of the DNA GLCM (75.8 % test 
accuracy). The feature is a measure of the homogeneity of 
the DNA GLCM. Cell images with more “random” DNA 
staining patterns, where the transitions between all inten-
sity levels are more equally probable, have more homog-
enous GLCMs and thus higher values of GLCM entropy 
(Supplementary Material 1—Fig. S4). Overall, changes in 
the texture of the DNA and actin cytoskeleton localization 
patterns were highly predictive of the in  vivo PTC toxic-
ity of xenobiotics with diverse chemical structures. The 
high accuracy underscores the importance and advantage of 
using image-based phenotypic features as in vitro toxicity 
endpoints.

Multiple features are more predictive than single 
features

Xenobiotic compounds may induce different types of PTC 
injuries and responses. Therefore, classifiers based on mul-
tiple different phenotypic endpoints are more likely to give 
higher overall prediction accuracy. To preserve the depend-
ency between features, we trained multi-dimensional clas-
sifiers based on multiple features simultaneously (Fig. 3d). 
Then, a recursive feature elimination algorithm (Loo et al. 
2007) was used to automatically remove irrelevant and/or 
redundant features (Fig.  3e, Methods, and Supplementary 
Material 1—Text S1). The number of retained features was 
automatically determined based on the training data only. 
Therefore, the process was repeated for every cross-vali-
dation fold, which had different training data. The features 
were ranked according to their importance values, which 
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were estimated by the random forest algorithm (Breiman 
2001) and averaged across all the cross-validation folds. 
For the HPTC-A dataset, we found a set of four features 

(Fs) that had the highest average importance values (Sup-
plementary Material 1—Fig. S5). These features were the 
“coefficient of variation (CV)” of DNA intensity at the 

Fig. 3   Human in  vivo nephrotoxicity can be accurately predicted 
based on in  vitro DNA and cytoskeleton features of PTCs. a Sche-
matic showing the procedure for identifying the best single feature 
(fbest) from all the 129 phenotypic features. The test balanced accura-
cies of the classifiers based on the best single features from differ-
ent b feature marker groups or c feature type groups in the HPTC-
A dataset. d Schematic showing the procedure for identifying the 
best feature subset (Fs) from all the 129 phenotypic features. e An 
example of the output of automated feature elimination from one of 
the 10 cross-validation folds. The performance of the feature subset 
selected during each iteration of our recursive feature elimination 
algorithm is shown, starting from all features to the last retained fea-
ture (gray dots = test balance accuracy of the feature subset retained 
during each iteration, black line = spline interpolation of all the test 
balance accuracy values, black dot = local maximum with the small-

est number of features, green lines = upper and lower 5-percentiles 
or limits of the Gaussian distribution centered around the last local 
maximum, red dot = the test balanced accuracy of the final selected 
feature subset, which is the subset with the smallest number of fea-
tures and accuracy value between the upper and lower limits). In this 
example, the final selected number of features was four. Any further 
elimination of features would reduce the performance of the classi-
fier. f Comparison of the test balanced accuracies among different 
single- and multi-feature classifiers for the HPTC-A dataset. The 
accuracy values were estimated using 10 × 10-fold cross-validations 
(error bars  =  standard errors of the means). g Multi-dimensional 
scaling plot showing the phenotypic dissimilarity between all the ref-
erence compounds in the HPTC-A dataset based on their Euclidean 
distances in Fs (MDS1/2 =  the first and second coordinates of the 
multi-dimensional scaling)
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nuclear region, “mean angular second moment (ASM)” 
of the DNA GLCM, “mean sum of entropy” and “mean 
entropy” of the actin GLCM (Fig.  3f and Supplementary 
Material 1—Table S2). Similar to the single-feature clas-
sification results, these top features were all based on the 
DNA and cytoskeleton markers, and three of them were 
texture features. We trained multi-feature classifiers using 
these four features and obtained 78.3  % test accuracy, 
which were higher than the performances of all single-fea-
ture classifiers (Fig.  3f). The individual test accuracies of 
these four features only ranged between 65.5 and 74.4 %. 
Therefore, combining the features together increased the 
prediction performance. We also found that the inclusion of 
fbest into Fs did not further increase the prediction accuracy 
of our models (Fig.  3f), indicating our recursive feature 
elimination algorithm was highly effective.

In the feature space of Fs, we found that most of the non-
toxic compounds formed a tight cluster, where they were 
closer to each other than to the toxic compounds (Fig. 3g). 
Six of the eight toxic industrial chemicals with simple 
chemical structures could now be clearly separated from 
the non-toxic compounds (Fig. 3g). This separation was not 
evident in the original chemical structure space (Fig. 1b). 
Among all the tested compounds, 22 compounds were con-
sistently being correctly classified by both the single- and 
multi-feature classifiers (Supplementary Material 1—Table 
S3). Only three compounds, namely ciprofloxacin (antibi-
otic), levodopa (psychoactive drug), and copper(II) chloride 
(industrial chemical), had consistently <50 % test accuracy 
in both types of classifiers. These results show that our 
computational models were general and did not favor spe-
cific classes of compounds.

The most important feature indicates induction of a 
DNA damage response

To further investigate the type of cell injury and dam-
age response represented by our phenotypic features, we 
focused on the two DNA features in Fs, namely 1) the mean 
ASM of the DNA GLCM, which had the highest single-
feature test accuracy among the four selected features, and 
2) the CV of DNA intensity at the nuclear region (Fig. 3f). 
ASM is a measure of the heterogeneity of a DNA GLCM 
(Methods and Fig. 4a). The feature gives high values when 
the transitions between certain intensity levels are domi-
nant (for example, when the intensity values form certain 
regular shapes), or low values when all transitions are 
equally probable (for example, when the intensity values 
are diffused and randomly distributed). CV, which is equal 
to standard deviation divided by mean, is a standardized 
measure of the dispersion of a set of values, which in our 
case were the DNA staining intensity levels within the 
nuclear region. By examining the fluorescence microscopy 

images of the cells, we found that cells with high values of 
these two features had disconnected, highly irregular, and 
punctate DNA staining levels (Fig. 4a), indicating profound 
changes in chromatin structure and the formation of dis-
tinct chromatin domains. However, the overall nuclear and 
cellular morphologies of these cells remained largely intact 
and not fragmented, as in typical apoptotic cells. There-
fore, we hypothesized that the features may indicate a DNA 
damage response, which is known to be associated with the 
formation of distinct chromatin domains in the megabase 
size range and large-scale chromatin reorganization (Roga-
kou et al. 1998; Jakob et al. 2011).

To test our hypothesis, we repeated the treatment experi-
ments for 42 reference compounds, but replacing the 
RelA marker with an antibody specific for histone H2AX 
phosphorylated on serine 139 (γH2AX), which is a DNA 
damage response marker (Rogakou et  al. 1998; Fig.  4b). 
Under endogenous or exogenous DNA damage conditions, 
γH2AX is induced and recruits repair factors to the sites of 
double-strand breaks (Paull et  al. 2000). We repeated the 
experiments in both primary human PTCs (the “HPTC-B” 
dataset) and an immortalized human PT cell line, human 
kidney 2 (the “HK-2” dataset, Supplementary Material 1—
Fig. S6). At the single-cell level, we found that cells with 
higher raw DNA CV levels induced by xenobiotic com-
pounds tended to have higher raw mean γH2AX nuclear 
levels, but the responses might be highly heterogeneous 
(Fig. 4b). For example, 500 μg/mL cyclosporin A caused 
~40-fold increases in the raw mean γH2AX nuclear levels, 
but only in ~13 % of the cells (Fig. 4c). Nevertheless, due 
to the large increases in magnitude, the effects could still be 
detected at the population-averaged level. Similar increases 
in γH2AX nuclear levels were also observed in cells treated 
with other PTC-toxic compounds (Supplementary Material 
1—Fig. S6). Across all the tested compounds, the maxi-
mum increases (i.e., ∆max) in DNA CV and mean nuclear 
γH2AX levels were strongly and positively correlated with 
each other in both primary and HK-2 cells (r = 0.639 and 
0.667, respectively; Fig. 4d, e). Furthermore, both features 
were significantly higher in cells treated with the PTC-toxic 
compounds than those with the non-PTC-toxic compounds 
(all P  <  0.01, one-tailed t test; Fig.  4d, e). These results 
suggest that most of the PTC-toxic compounds induce a 
DNA damage response, even though many of them are not 
known to bind to DNA directly.

Improved computational models based on γH2AX

To what extent can the γH2AX marker improve the pre-
diction performance of our computational models? We 
repeated the same phenotypic profiling procedure but 
using 129 phenotypic features based on the DNA, γH2AX 
and actin markers (Fig.  4f, g). For the HPTC-B dataset, 
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we found that the best single feature fbest was the ratio of 
total γH2AX levels at the nuclear to the whole-cell regions 
(77.6  % test accuracy), which indicates the generation 
of γH2AX at the nuclear region (Supplementary Mate-
rial 1—Fig. S4). The best multi-feature set Fs were four 

nuclear and actin cytoskeletal features (81.6  % test accu-
racy, see Supplementary Material 1—Fig. S5 and Table S2 
for the complete listing of features). For the HK-2 dataset, 
we found that its fbest was the mean correlation of DNA 
GLCM (83.9 % test accuracy), which is a measure of the 
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classify some compounds that induced actin remodeling. 
Together, these results show that our predictive models are 
highly reproducible, and a xenobiotic-induced DNA dam-
age response is a general phenomenon that occurs in both 
human primary and immortalized PTCs.

Cell death responses are variable

Is the DNA damage response associated with cell death 
under in  vitro conditions? Based on the HPTC-B results, 
we selected three PTC-toxic compounds (cisplatin, cyclo-
sporin A, and ochratoxin A) that induced increasing levels 
of γH2AX, and three non-PTC-toxic compounds (ribavi-
rin, lithium chloride, and lincomycin) that caused small or 
no change in γH2AX levels (Fig. 4d). We treated primary 
PTCs with 1000  µg/mL of these compounds and labeled 
the cells with three different cell death markers: annexin-
V [a marker for the externalization of phosphatidylserine, 
which occurs in both apoptotic and necrotic cells (Sawai 
and Domae 2011)], cleaved caspase-3 (a marker for the 
activation of caspase-3, which occurs only in apoptotic 
cells), and ethidium homodimer III (a DNA marker that 
is only permeant to late apoptotic or necrotic cells due to 
membrane disintegration; Fig.  5a). For each marker, we 
determined the percentages of positive cells under the 
treatments of these six compounds and solvent controls 
(Fig.  5b). Based on the HPTC-B dataset, we also deter-
mined the mean γH2AX nuclear levels of primary PTCs 
treated with 1000  µg/mL of these compounds. In agree-
ment with our previous ∆max measurements, the three 
PTC-toxic compounds induced significantly higher mean 
γH2AX intensity levels than the three non-PTC-toxic com-
pounds at the tested dosage (P = 0.044, Fig. 5c). However, 
only the increase in the percentage of annexin-V positive 
cells was significant (P =  0.047) between the PTC-toxic 
and non-PTC compounds. The increases in the percent-
ages of ethidium homodimer III and caspase-3 positive 
cells were less significant (both P  >  0.10, all one-sided t 
tests; Fig. 5c). This was mostly due to the lower cell death 
responses to cyclosporine A and ochratoxin A. Even for 
annexin-V, the responses were highly heterogeneous. For 
example, cyclosporine A and ochratoxin A only increased 
annexin-V levels in ~50 and ~25  % of the cells, respec-
tively. These results corroborated with our earlier results on 
the heterogeneity in cyclosporine A responses (Fig. 4b, c). 
Surprisingly, the three PTC-toxic compounds only induced 
low percentages of caspase-3 positive cells (<20  %). 
Similar lack of apoptotic responses was also previously 
observed for some PTC-toxic compounds, such as 5-fluo-
rouracil and gentamicin, in HK-2 cells (Wu et  al. 2009). 
Across all the six compounds, we found that there is no 

Fig. 4   Most PTC toxicants induce a DNA damage response under 
in  vitro conditions. Exemplary immunofluorescence images from 
the HPTC-B dataset showing the a DNA and b γH2AX staining 
levels of primary human PTCs treated with cyclosporine A (yel-
low lines =  automatically determined nuclear boundaries, scale bar 
20  µm). The quantified values for the CV of DNA, ASM of DNA 
GLCM, and mean nuclear γH2AX level are shown in the parenthe-
ses below the cells. c Scatter plots showing the raw CV of DNA and 
mean nuclear γH2AX level of primary PTCs treated with different 
dosages of cyclosporine A or DMSO (dots =  single-cell measure-
ments quantified from the images). Scatter plots showing the maxi-
mum responses (∆max) in the CV of DNA and mean nuclear γH2AX 
level for the d HPTC-B or e HK-2 datasets (circles =  compounds, 
∆µ =  difference between the mean values of PTC-toxic and non-
PTC-toxic compounds, dashed lines = optimum linear-regression fits 
of the data, r = Pearson’s correlation coefficient; all P values shown 
were obtained from one-sided t tests). The six compounds selected 
for studying the relationships between the DNA damage response 
and cell death are highlighted. The f distribution of markers, g test 
balanced accuracy, h test sensitivity, and i test specificity of the best 
single and multiple features for all three datasets (all P values were 
obtained using a one-sided Wilcoxon signed-rank test)

◂

linear dependency of intensity levels of neighboring pixels 
(Supplementary Material 1—Fig. S4). The best multi-fea-
ture set Fs were five chromatin and cytoskeleton features 
(88.9  % test accuracy, Supplementary Material 1—Fig. 
S5 and Table S2). For both datasets (HPTC-B and HK-2), 
we found a consistent trend that multi-feature classifiers 
had significantly higher test accuracies than single-feature 
classifiers (Fig. 4f, g, P = 0.075 and 0.024, one-sided Wil-
coxon signed-rank test). However, single-feature classifiers 
had higher test specificities, while multi-feature classifiers 
had higher sensitivities (Fig. 4h, i). Furthermore, the num-
ber of compounds that could be predicted with 100 % aver-
age test accuracy in both single- and multi-feature classifi-
ers had increased from 22 (HPTC-A) to 25 (HPTC-B) or 28 
(HK-2) (Supplementary Material 1—Table S3). Together, 
these results show that the inclusion of the γH2AX marker 
allowed us to obtain higher prediction accuracies.

We also compared the optimum phenotypic features 
selected for all three datasets (Supplementary Material 
1—Table S2) and found several interesting and consistent 
trends. First, the mean ASM of DNA GLCM was automati-
cally selected in the Fs’s for both HPTC-A and HPTC-B 
datasets. Second, the fbest for the HPTC-B dataset (i.e., 
ratio of total γH2AX levels at the nuclear to the whole-cell 
regions) and one of the features in the Fs for the HK-2 data-
set (i.e., ratio of total γH2AX and DNA intensity levels at 
the whole-cell region) are two closely related features that 
indicate nuclear increase in γH2AX levels (Supplementary 
Material 1—Fig. S4). Third, although the best single fea-
tures were based on DNA or γH2AX markers, actin fea-
tures were still retained by the multi-feature classifiers, 
suggesting that the actin marker was needed to correctly 
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significant positive correlation between γH2AX level and 
these three cell death markers (all P > 0.20, one-sided t test; 
Fig. 5c). Together, all of these results show that PTC toxi-
cants induce variable cell death responses (both apoptosis 
and necrosis) under the tested in vitro conditions. Some of 
them (such as ochratoxin A, which induced a large increase 
in γH2AX levels) may even cause very small or no increase 
in cell death rates within the measured period. These results 
also imply that in vitro cell death endpoints may have diffi-
culty in accurately predicting in vivo PTC toxicity and can-
not be used to replace DNA damage features for nephro-
toxicity prediction.

Discussion

The current study shows that cell death of in vitro cultivated 
PTCs is induced to a variable degree by different PTC-toxic 
compounds (Fig. 5). This finding is in agreement with our 
and other previous results on predicting nephrotoxicity 
in humans (Wu et  al. 2009; Li et  al. 2013). The difficul-
ties in using cell death as in  vitro endpoint for predicting 
in vivo organ-specific toxicity may be related to the fact that 
in vivo compound-induced cell damage is not always asso-
ciated with immediate cell death. For example, compound-
induced PTC damage is often sublethal and associated with 

Fig. 5   PTC toxicants induce variable cell death responses. a Immu-
nofluorescence images showing the γH2AX, ethidium homodimer 
III, annexin-V, and cleaved caspase-3 staining levels of primary 
human PTCs treated with DMSO, cisplatin, and ochratoxin A (red 
lines = automatically detected nuclear boundaries, scale bar 20 µm). 
b Probability density function plots showing how the thresholds (ver-
tical dashed lines) for ethidium-III-, annexin-V-, and caspase-3-posi-
tive cells were determined. c Scatter plots showing the changes in the 

percentages of ethidium-III-, annexin-V-, or caspase-3-positive cells 
versus the changes in the mean nuclear γH2AX level (circles = com-
pounds, light red  =  PTC-toxic compounds, light blue  =  non-
PTC-toxic compounds, error bars =  standard errors of the means, 
∆µ =  difference between the mean values of PTC-toxic and non-
PTC-toxic compounds, dashed lines = optimum linear-regression fits 
of the data, r = Pearson’s correlation coefficient; all P values shown 
were obtained from one-sided t tests)
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tubular dysfunction and chronic kidney disease instead of 
acute tubular necrosis (Kroshian et  al. 1994; Choudhury 
and Ahmed 2006). The differences in the expression levels 
of xenobiotics-metabolizing enzymes and transporters may 
also play a role (Van der Hauwaert et al. 2014). Generally, it 
remains a challenge to identify highly predictive endpoints 
for in  vitro organ-specific toxicity models (Lin and Will 
2012). Specifically for kidney models, it has been consist-
ently found that the use of general damage markers, such 
as ATP depletion; or potentially novel kidney-specific injury 
markers, such as kidney injury molecule-1 and neutrophil 
gelatinase-associated lipocalin, is of limited predictivity 
(Lin and Will 2012; Li et al. 2013; Tiong et al. 2014). The 
value of these current markers for predicting acute kidney 
injury remains to be controversially discussed (Bonventre 
et al. 2010; Vanmassenhove et al. 2013).

A commonly used strategy to address such difficulties 
is to achieve an improved understanding of organ-specific 
injury mechanisms and then select endpoints related to 
such mechanisms (Jennings et  al. 2014). However, this 
requires a priori knowledge of injury mechanisms, which 
may not be known for novel or not well-characterized com-
pounds. In the current study, we took a more pragmatic 
approach for nephrotoxicity prediction without requiring a 
priori characterization of injury mechanisms, and directly 
searched for in  vitro phenotypic features that could best 
predict in vivo toxicity. The results were six sets of nuclear 
and actin cytoskeletal features that could achieve ~76–89 % 
test accuracies (Supplementary Material 1—Table S2). Our 
results show that, under in  vitro conditions, most of the 
PTC-toxic compounds induce similar phenotypic changes 
in the nucleus and actin cytoskeleton, even though these 
compounds may have dissimilar chemical structures.

The identification of features associated with specific 
cellular changes provides a mechanistic interpretation for 
our computational models. One of the most surprising 
findings of our study is that γH2AX, which is a known 
marker for genotoxicity and carcinogenesis (Mah et  al. 
2010; Nikolova et  al. 2014), was also induced by many 
compounds with diverse chemical structures. Some of our 
reference compounds, such as cisplatin, 5-fluorouracil and 
aristolochic acid, are known to directly interfere with DNA 
replication and cause double-strand breaks (Heidelberger 
et  al. 1957; Lieberthal et  al. 1996; Arlt 2002). However, 
most of our other reference PTC-toxic compounds are not 
known to interact with nucleic acids directly. Our obser-
vations are in agreement with other recent studies, which 
found that DNA damage responses were induced after 
renal ischemia–reperfusion injury in  vivo and ATP deple-
tion injury in  vitro (Ma et  al. 2014) and also after treat-
ments of angiotensin II, which is not known to interact with 
DNA, in isolated perfused mouse kidneys and PTC cultures 
in vitro (Schmid et al. 2008). These observed DNA damage 

responses may be due to oxidative stress and/or oxida-
tive DNA damage (Schmid et  al. 2008; Ma et  al. 2014). 
Some of our reference compounds, such as gentamicin, 
are known to induce oxidative stress and generate reactive-
oxygen-species (ROS)-induced DNA damage (Quiros et al. 
2011). Irrespective of the underlying molecular mecha-
nisms, our study shows that in both primary PTCs and 
an immortalized PT cell line, γH2AX and DNA features 
were highly predictive of xenobiotics-induced PTC toxic-
ity. Importantly, this also demonstrates how unexpected but 
common compound-induced cellular response and injury 
may be uncovered in an unbiased approach that does not 
focus on particular mechanisms.

Interestingly, the retainment of cytoskeleton features in 
our final feature sets suggests that the DNA/γH2AX and 
actin markers provide complimentary and non-redundant 
information about cellular responses to PTC-toxic com-
pounds. Remodeling of the actin cytoskeleton induced by 
various types of toxic compounds has been reported in 
PTCs (Elliget et  al. 1991; Kroshian et  al. 1994). In addi-
tion to the cytoplasm, actin filaments are also localized in 
the nucleus, and actin-related proteins (Arps) are parts of 
chromatin remodeling complexes (Shen et al. 2003). There-
fore, the possible role of actin filaments in DNA damage 
responses will be an important question for future research.

There were two main factors that contributed to the 
high accuracy of our computational models. The first fac-
tor was the use of image-based phenotypic features, which 
allowed us to quantitatively measure changes in the spa-
tial organizations of cells, subcellular organelles, and bio-
molecules (such as DNA, histone modifications and actin 
cytoskeleton). We found that Haralick’s texture features of 
the chromatin and cytoskeleton contained highly discrimi-
native information, which would be lost under population-
averaged or non-image-based measurements. Our results 
also show that the initial set of 129 general phenotypic 
features was a good starting point for screening predictive 
toxicity endpoints. The second factor that contributed to the 
high accuracy was the design of our reference compounds 
and performance evaluation methodology (Methods). The 
inclusion of diverse compounds and non-PTC-toxic toxi-
cants in the negative reference groups allowed us to search 
for more specific phenotypic features. We also ensured that 
training and test data were statistically independent from 
each other. For example, the feature normalization and 
elimination parameters were always determined using the 
training data only, but applied to both the training and test 
data in every single fold in our cross-validation procedure.

Our nephrotoxicity models may be further improved by 
the following ways. First, bioactivations of many xenobiot-
ics are required for their in  vivo toxicity effects (Van der 
Hauwaert et  al. 2014). Better culturing methods or con-
ditions may improve the ability of PTCs to transport and 
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metabolize these compounds under in  vitro conditions 
(Leite et al. 2012). Second, the test accuracies of our mod-
els were often lower than their training accuracies, suggest-
ing our models may be slightly overfitted and the estimated 
performances of our models may be conservative. Increas-
ing the number of reference compounds or using more con-
servative feature selection criteria (Fig. 3e) may reduce the 
overfitting. Lastly, we used recursive feature elimination, 
which is a heuristic algorithm, for feature selection. More 
complex algorithms, such as genetic algorithms (Siedlecki 
and Sklansky 1989) or floating search methods (Pudil et al. 
1994) may identify more predictive feature subsets, but at 
the expense of much higher computational cost. In conclu-
sion, our study demonstrates the feasibility of predicting 
the human nephrotoxicity of xenobiotic compounds with 
diverse chemical structures using high-throughput imaging, 
phenotypic profiling, and machine learning methods.

Materials and methods

Reference compounds

For the HPTC-A dataset (DNA/RelA/actin/WCS), we used 
44 xenobiotic compounds. The “PTC-toxic” group had 24 
nephrotoxicants known to damage human proximal tubular 
cells (PTCs)  in vivo, and the “non-PTC-toxic” group had 
12 nephrotoxicants not known to damage PTCs and 8 non-
nephrotoxicants [detailed information on the PTC toxic-
ity of most of the compounds can be found in our reports 
(Li et al. 2014; Kandasamy et al. 2015)]. For the HPTC-B 
and HK-2 datasets (DNA/γH2AX/actin/WCS), 42 of the 
compounds were used (excluding lead acetate and hydro-
cortisone). The compounds were dissolved in either DMSO 
at a stock concentration of 50 mg/mL, or water at a stock 
concentration of 10 mg/mL. The full list of reference com-
pounds and their sources, solvents, and known human kid-
ney and liver toxicity are provided in Supplementary Mate-
rial 1—Table S1.

Cell culture and compound treatment

For both the HPTC-A and HPTC-B datasets, we used three 
different batches of primary human PTCs from three different 
donors. Two of them (HPTC1 and HPTC10; Lot #58488852 
and #61247356, respectively) were bought from the Ameri-
can Type Culture Collection (ATCC, Manassas, VA, USA). 
The third batch of cells (HPTC6) was isolated from a human 
nephrectomy sample (National University Health System, 
Singapore). Only normal tissues without aberrant pathologi-
cal changes, as determined by a pathologist, were used. Ethics 
approvals for the work with primary human kidney samples 

(DSRB-E/11/143) and cells (NUS-IRB Ref. Code: 09-148E) 
were obtained. All three batches of primary PTCs were cul-
tured in renal epithelial cell basal medium (ATCC) supple-
mented with renal epithelial cell growth kit (ATCC) and 1 % 
penicillin/streptomycin (Gibco, Carlsbad, CA, USA). Only 
passages (P) 4 and P5 of primary PTCs were used in this 
study. For the HK-2 dataset, the HK-2 cell line (ATCC) was 
maintained in Dulbecco’s modified eagle medium (DMEM) 
supplemented with 10  % fetal bovine serum (FBS; Gibco) 
and 1 % penicillin/streptomycin.

Cells were seeded into 384-well black plates with trans-
parent bottom (Greiner, Kremsmünster, Austria). All cells 
were cultured for 3 days to achieve the formation of a dif-
ferentiated renal epithelium before overnight drug treat-
ment (16  h; Li et  al. 2013). The dosages of the tested 
compounds were 1.6, 16, 63, 125, 250, 500, 1000 μg/mL. 
Positive, negative, and vehicle controls (DMSO or water, 
depending on the solvent of the tested compounds) and 
untreated cells were included on each plate. Four technical 
replicates were performed for each compound and dosage.

Immunostaining

After compound treatment for 16 h, cells were fixed using 
3.7  % formaldehyde in phosphate-buffered saline (PBS). 
The cells were blocked for 1 h with PBS containing 5 % 
bovine serum albumin (BSA) and 0.2 % Triton X-100. The 
samples were incubated with a mouse monoclonal anti-
body to γH2AX (phospho S139) (Abcam, Cambridge, MA, 
USA) at 2 µg/mL, or a rabbit polyclonal antibody to RelA 
(Abcam) at 1 µg/mL for 1 h at room temperature. Subse-
quently, the cells were incubated with a goat anti-mouse 
secondary antibody conjugated to Alexa 488 (Abcam) 
or a goat anti-rabbit secondary antibody conjugated to 
Alexa488 (Life Technologies, Carlsbad, CA, USA) at 5 µg/
mL. Finally, the cells were stained with DAPI (Merck Mil-
lipore, Darmstadt, Germany) at 4 µg/mL, rhodamine phal-
loidin (Life Technologies) and whole-cell stain red (Life 
Technologies).

Apoptosis and necrosis assays

Cells were seeded into 96-well black plates with transpar-
ent bottom (Falcon, Corning, NY, USA) and cultured for 
3 days before overnight drug treatment (16 h). They were 
treated with cisplatin, cyclosporin A, ochratoxin A, lin-
comycin, lithium chloride and ribavirin at 1000  μg/mL. 
Untreated cells and vehicle controls (DMSO and water) 
were included on each plate as well as positive (25 μg/mL 
arsenic(III) oxide) and negative (100  μg/mL dexametha-
sone) controls. Three technical replicates were performed 
for each treatment condition.
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Cleaved caspase-3 (Abcam) and apoptotic/necrotic/
healthy cells detection kits (PromoKine, Heidelberg, Ger-
many) were used to identify apoptotic and necrotic cells. 
For cleaved caspase-3, the same immunostaining protocol 
as outlined above was used. The rabbit polyclonal anti-
cleaved-caspase-3 antibody was diluted in blocking buffer 
and incubated with fixed cells for 1  h in room tempera-
ture. The cells were then incubated with a goat anti-rabbit 
secondary antibody conjugated to Alexa 488 at 5  µg/mL. 
Finally, the cells were counterstained with DAPI at 4  µg/
mL and whole-cell stain red. For the apoptotic/necrotic/
healthy cells detection kit, the protocols provided by manu-
facturer were used.

Image acquisition

Imaging was performed with a 20 ×  objective using the 
ImageXpress Micro XLS system (Molecular Devices, Sun-
nyvale, CA, USA). Four different channels were used to 
image DAPI, Alexa 488, Texas Red, and Cy5 fluorescence. 
Nine sites per well were imaged. The images were saved in 
16-bit TIFF format.

Image segmentation and feature extraction

To reduce non-uniform background illuminations, we 
corrected the images using the “rolling ball” algorithm 
implemented in ImageJ (NIH, v1.48; Sternberg 1983). 
Cell segmentations and feature measurements were per-
formed using the cellXpress software platform (Bioinfor-
matics Institute, v1.2; Laksameethanasan et  al. 2013). We 
extracted 129 features, which include 78 Haralick texture 
features, 29 intensity features, 9 intensity ratio features, 6 
correlation features, 6 morphology features and cell count 
from the images. The detail list of features and their mark-
ers is shown in Supplementary Material 2.

Haralick’s texture features

The mathematical definitions of all Haralick’s texture fea-
tures were described in Haralick’s original paper (Haralick 
et al. 1973). Here, we only provide mathematical definitions 
for the Haralick’s features included in our final feature sets. 
A gray-level co-occurrence matrix (GLCM) is a matrix that 
describes the distribution of co-occurring gray-level values 
at a given offset (∆x,∆y) in an Nx × Ny image, I(x, y), with 
Ng gray levels. In our notations, x and y are the row and col-
umn indices, respectively. The GLCM matrix is defined by

GLCM∆x,∆y(i, j)

=

Nx∑

x=1

Ny∑

y=1

{
1 , if I(x, y) = i and I(x +∆x, y +∆y) = j

0 , otherwise
,

where i and j are the gray-level or intensity values of the 
image. The normalized GLCM matrix is

Then, we have the marginal and sum probability matri-
ces to be px(j,∆x,∆y) =

∑Ng

i=1 p(i, j, ∆x, ∆y) , 
py(i,∆x,∆y) =

∑Ng

j=1 p(i, j, ∆x, ∆y), and 
px+y(k,∆x,∆y) =

∑Ng

i=1

∑Ng

j=1 i+j=k
p(i, j,∆x,∆y), where 

k = 2, 3, . . . , 2Ng.

The Haralick’s features are

(a)	 Angular second moment: f
ASM

(∆x,∆y) =
∑

i

∑
j

{p(i, j,∆x,∆y)}2

(b)	 Correlation: f
COR

(∆x,∆y) = 1

σxσy

∑
i

∑
j (i j)p(i, j,  

∆x,∆y)− µxµy , where µx, µy, σx and σy are the 
means and standard deviations of px(j,∆x,∆y) and 
py(i, ∆x,∆y), respectively.

(c)	 Sum average: fSA(∆x,∆y) =
∑2Ng

k=2 k px+y(k,∆x,∆y)

(d)	 Sum variance: f
SV

(∆x,∆y) =
∑

2Ng

k=2

(k − f
SA

(∆x,∆y))2 px+y(k,∆x,∆y)

(e)	 Sum entropy: f
SE
(∆x,∆y) = −

∑Ng

k=2

px+y(k,∆x,∆y)

log
[
px+y(k,∆x,∆y)

]

(f)	 Entropy: fE(∆x,∆y) = −
∑

i

∑
j p(i, j,∆x,∆y)

log[p(i, j,∆x,∆y)]

(g)	 Information measure of correlation 2: f
IMC2

(∆x, 
 ∆y) =

√∣
∣1− exp

[
−2(HXY2− fE(∆x,∆y))

]∣
∣ , where 

HXY2 = −
∑

i

∑
j
px(j,∆x,∆y)py(i,∆x,∆y) log[

px(j,∆x,∆y)py(i,∆x,∆y)
]

In our study, the images were the bounding boxes 
around the segmented cells with all the background pix-
els set to zero. We quantized the images into Ng = 256 
gray levels, and computed all the Haralick’s features 
for 0° (∆x = 0,∆y = 1), 45° (∆x = 1,∆y = 1), 90° 
(∆x = 1,∆y = 0), and 135° (∆x = 1,∆y = −1) offsets. 
For each feature, the mean and standard deviation of the 
feature across all the offset values were used. We have 
implemented the extraction procedures for all the features 
using C++ in the cellXpress software platform (Bioinfor-
matics Institute, v1.2; Laksameethanasan et al. 2013).

Concentration response curve and Δmax estimations

After feature extraction, we divided the values of a fea-
ture at all the tested compound concentrations by the val-
ues of the feature under the corresponding vehicle control 
conditions. Then, the ratios were log  2-transformed (Δ). 
All further data analyses, including building concentra-
tion response curves and toxicity classifiers, were per-
formed using customized scripts under the R statistical 

p(i, j,∆x,∆y) =
GLCM∆x,∆y(i, j)

∑Ng

i=1

∑Ng

j=1GLCM∆x,∆y(i, j)
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environment (the R foundation, v3.0.2) and the Windows 7 
operating system (Microsoft, USA).

For each feature, we estimated its concentration 
response curve using a standard log-logistic model:

where x is the xenobiotics compound concentration, e is 
the response half-way between the lower limit c and upper 
limit d, and b is the relative slope around e. We used the 
“drc” library (v 2.3-96) under the R environment to fit the 
values of b, c, d, and e. After that, the maximum response 
values (∆max) were determined using the estimated 
response curves. In theory, ∆max should be equal to the 
upper limit d. However, in practice, the responses of some 
compounds may not plateau even at the highest tested dos-
ages, and therefore the estimated d value may not be accu-
rate. Instead, we fixed ∆max to be the response value at 
5 mM, which was around the highest tested concentrations 
for most of the our compounds. Finally, the median values 
of ∆max across the three biological replicates were com-
puted. The final result was a 129 ×  44 (or 42) matrix of 
∆max values, which were used for training and testing the 
classifiers. Each column of the matrix was a feature vector, 
fi, where i = 1, 2, . . . , 129.

Feature normalization

Before data classification, each feature vector fi was nor-
malized to the same range [−1, 1]:

where fmin and fmax are the minimum and maximum val-
ues of the feature. To ensure the training and test datasets 
were independent to each other, these two normalization 
coefficients were estimated only using the training data, but 
applied to both training and test datasets.

Random forest classification

We used the random-forest algorithm (Breiman 2001) to 
predict xenobiotic-induced nephrotoxicity, because we 
have previously shown that the algorithm outperforms 
other commonly used classifiers, including support vec-
tor machine, k-nearest neighbors and naïve Bayes (Su 
et  al. 2014). A random forest has two main parameters: 
Ntree and Ntrial. The first parameter specifies the number 
of decision trees built, and the second parameter speci-
fies the number of random features used at each level of 
the decision trees. During cross-validation, we automati-
cally determine the optimum classifier parameters using 

∆(x, (b, c, d, e)) =
d − c

1+ exp{b(log(x)− log(e))}
,

fi ← 2
(fi − fmin)

fmax − fmin
− 1,

a grid search for Ntree = {10, 50, 150, 250, 400, 500} and 
Ntrial = {1, 2, 3, 4, 5}. A series of temporary random forests 
were trained using all the possible combinations of param-
eters based on a training dataset X̄′

training, and the test accu-
racies of these combinations were estimated based on an 
independent test dataset X̄′

FStest. The combination of Ntree 
and Ntrial with the highest test accuracy value were selected 
to train a final classifier, whose performance would then 
be estimated using a third independent test dataset X̄′

RFtest . 
We used the “randomForest” library (v4.6-10) under the R 
environment.

Automated feature selection

We used a greedy search algorithm, namely recursive 
feature elimination (RFE; Loo et  al. 2007), to select 
a subset of features from all the extracted features 
Fall = {f1, f2, . . . , fmall

}. The pseudocode for the algorithm 
is listed in Algorithm S2 (Supplementary Material 1—
Text S1). The main idea is to start with all the features, 
iteratively rank the current feature set, remove the least 
important feature subset, evaluate the accuracy accj of the 
retained feature subset Fj and finally select the feature sub-
set with the highest accuracy. To reduce data overfitting, 
the ranking and evaluation of feature subsets were per-
formed in two independent datasets, 

{
X̄
′
training, X̄

′
FStest

}
 

and X̄′
RFtest , respectively (Algorithm S2). We ranked fea-

tures based on their importance values estimated by the 
random forest algorithm by permuting the out-of-bag data 
and features (Breiman 2001).

In datasets with small sample sizes, the accj curve (as 
a function of Fj) may not be smooth. Thus, the global 
maxima of accj may not be a robust criterion for select-
ing the final feature subset. Instead, we designed an auto-
mated procedure to select a feature subset using Gauss-
ian mixture modeling (GMM; Trevor Hastie et  al. 2009). 
We clustered all the accj values into 2–4 groups. Each of 
them was modeled as a Gaussian distribution. Then, we 
selected the smallest feature subset in the group with the 
highest average prediction accuracy (Algorithm S2). The 
optimum number of groups was also automatically deter-
mined based on the Bayesian information criterion (BIC), 
BIC = −2Lm + Nd log (Ns), where Ns is the sample size, 
Lm is the maximum log-likelihood computed by the GMM 
algorithm, and Nd is the number of the parameters.

Classification performance estimation

We used a stratified tenfold cross-validation procedure 
(Trevor Hastie et  al. 2009) to estimate the PTC toxicity 
prediction performance of our phenotypic features. The 
pseudocode for the procedure is listed in Algorithm S1 
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(Supplementary Material 1—Text S1). The procedure has 
two main cross-validation loops. The first cross-validation 
loop aims to identify an optimum feature subset Ffinal,  
while the second cross-validation loop aims to estimate 
the generalized prediction performance of Ffinal. To keep 
the training and test data independent from each other, we 
divided all the treatment conditions into four non-over-
lapping sets, Xtraining(Fall), XFStest(Fall), XRFtest(Fall), and 
Xtest(Fall). Furthermore, the normalization coefficients and 
classifier parameters were always estimated based on the 
training datasets only, but applied to both training and test 
datasets.

We used the following performance measurements

 where TP is the number of true positives, TN is the number 
of true negatives, FP is the number of false positives and 
FN is the number of false negatives. The same performance 
estimation procedure was used for HPTC-A, HPTC-B and 
HK-2 datasets.

Multi‑dimensional scaling plots

To compare the compounds in the chemical structure space, 
we used the ChemmieR library to compute the pairwise 
Tanimoto coefficients between the structures of all the 
reference compounds. To compare the compounds in the 
phenotypic feature space, we first scaled all the phenotypic 
features to the same range [0, 1] and then computed the 
pairwise Euclidean distances between the feature values of 
all the reference compounds. Finally, we used the cmdscale 
function (Torgerson 1952) in the R environment to generate 
the multi-dimensional scaling plots.
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