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Abstract

Successful social interaction requires humans to predict others’ behavior. To do so, internal models of others are gener-
ated based on previous observations. When predicting others’ preferences for objects, for example, observations are made
at an individual level (5-year-old Rosie often chooses a pencil) or at a group level (kids often choose pencils). But previous
research has focused either on already established group knowledge, i.e. stereotypes, or on the neural correlates of predict-
ing traits and preferences of individuals. We identified the neural mechanisms underlying predicting individual behavior
based on learned group knowledge using fMRI. We show that applying learned group knowledge hinges on both a network
of regions commonly referred to as the mentalizing network, and a network of regions implicated in representing social
knowledge. Additionally, we provide evidence for the presence of a gradient in the posterior temporal cortex and the medial
frontal cortex, catering to different functions while applying learned group knowledge. This process is characterized by an
increased connectivity between medial prefrontal cortex and other mentalizing network regions and increased connectivity
between anterior temporal lobe and other social knowledge regions. Our study provides insights into the neural mechanisms
underlying the application of learned group knowledge.
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Introduction

Humans live in a complex social world in which we interact
with a vast number of individuals. Successful social interaction
requires humans not only to passively respond to the behavior
of others, but also to predict their behavior. To do so, internal
models of others need to be generated based on previous experi-
ences (Clark, 2013; Koster-Hale and Saxe, 2013; Diaconescu et al.,

2014). These models should capture the beliefs, mental states

and traits causing the behavior of others (Gallagher and Frith,

2003; Saxe and Kanwisher, 2003; Frith and Frith, 2006; Koster-

Hale and Saxe, 2013). However, these causes are highly variable

across themany individuals that we interact with, making it dif-

ficult to produce accurate predictions tailored to each individual

(Waytz et al., 2010; Rhodes, 2013). One way to reduce this uncer-

Received: 15 March 2019; Revised: 26 August 2020; Accepted: 28 September 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1006

https://academic.oup.com/
mailto:vijayakumar.suhas@gmail.com
https://creativecommons.org/licenses/by/4.0/


S. Vijayakumar et al. | 1007

tainty is by using knowledge based on the group membership
of an individual (hereafter referred to as group knowledge) that
captures the shared features of its members (Lieberman, 2007;
Mitchell et al., 2009; Amodio, 2014).

The tendency to cluster our social environment into dis-
crete categories is a process that is developed as early
as infancy (Kinzler et al., 2010; Rhodes, 2013). To date,
research into the neural basis of social information process-
ing has mainly focused on either the mechanisms underly-
ing the inferences of beliefs and mental states of another
individual (Gallagher and Frith, 2003; Saxe and Kanwisher,
2003; Saxe et al., 2004a; Frith and Frith, 2006) or on how
already established knowledge about groups (e.g. stereotypes)
bias our judgment of individuals (Greenwald et al., 2002;
Lieberman, 2007; Mitchell et al., 2009; Contreras et al., 2012;
Amodio, 2014). Inferring the mental states of others has been
shown to involve the frontal–temporal network that include
the medial prefrontal cortex (mPFC), superior temporal sul-
cus (STS) and temporal parietal junction (TPJ) (Saxe and
Kanwisher, 2003; Frith and Frith, 2006; Koster-Hale and Saxe,
2013). Of these regions, the mPFC is not only relevant for iden-
tifying self within a group (Morrison et al., 2012), but also for
situating oneself in a newly formed group (Molenberghs and
Morrison, 2014). It is considered essential for the application
of group knowledge, that is, when one needs to make judg-
ments about individual traits based on the group membership
of a particular individual (Zahn et al., 2007; Amodio, 2014),
and has been found to play a vital role when predicting oth-
ers’ behavior (Amodio and Frith, 2006; Frith and Frith, 2006;
Amodio, 2014). Besides this core ‘social network’, the retrieval of
long-term semantic social knowledge particularly recruits the
anterior temporal lobe (aTL) (Skipper et al., 2011), which has
been implicated in representing and retrieving social knowledge
(Olson et al., 2013), stereotype representation (Contreras et al.,
2012) and in the retrieval of attributes that describe people, but
not objects (Zahn et al., 2007; Amodio, 2014). Furthermore, aTL
has been associated with the acquisition of prejudice regarding
newly formed social groups (Spiers et al., 2017).

Based on previous research discussed above, we hypothe-
sized that forming internal models of an individual’s behavior
based on group knowledge relies both on the mPFC and aTL.
More specifically, we hypothesize that the mPFC is particularly
involved in the formation of internal models capturing others’
behavior, while the aTL is essential for acquiring and repre-
senting group knowledge, in line with its role in representing
semantic social knowledge. To identify the neural mechanisms
underlying acquisition of group knowledge and predicting other
individuals’ behavior based on learned group knowledge, we
devised a novel social learning functional magnetic resonance
imaging (fMRI) paradigm. In this task, participants had to infer
object preferences of virtual agents. However, these object pref-
erences needed to be learned over the course of the exper-
iment and were related to the specific social group that the
virtual agents belonged to. Crucially, in order to be success-
ful in this task, participants had to form internal models of
these agent-specific preferences based on group knowledge that
was learned over the course of the experiment. Furthermore,
to test whether the aTL is especially involved in representing
already learned group knowledge, half of the object-preference
contingencieswere trained prior to the fMRI session.Wehypoth-
esized that during these trials aTL involvement would be the
highest.

Methods

Participants

Twenty-seven right-handed individuals (15 female, M age=

24.52 years, s.d.=3.79) were recruited to take part in the study
through a university-wide online registration system—Radboud
Research Participation System (SONA). Participants reported
to be healthy and had no history of neurological disorders.
They had normal or corrected-to-normal vision at the time of
the experiment. All participants gave their written informed
consent according to the institutional guidelines of the local
ethics committee (CMO region Arnhem-Nijmegen, The Nether-
lands) and received financial compensation of €25.50 for their
participation.

Data from three participants were excluded because they
were unable to complete the experiment. Data from two more
participants were excluded due to high error scores (65.91% and
62.24%), determined as not significantly different from chance-
level performance by binomial test, which was an a priori
set criteria for exclusion (see Supplementary text; ‘participant
exclusion criteria’). The final dataset consisted of 22 participants
(12 female, M age=24.68 years, s.d.=3.52) whose data were
included in further analyses.

Task

Each condition of the experiment consisted of three agent cate-
gories and three object categories. On each trial, a virtual agent
was presented along with images of three objects below them.
The task was to predict which of the three objects the agent
would choose (see Figure 1A, for task overview). The virtual
agents could be grouped into agent categories based on the
subculture of their clothing style (artistic black, summer dress,
casual, etc.). Similarly, the objects could be grouped into spe-
cific object categories (keys, tupperware, cups, etc.). Each agent
category had a specific preference for an object category that
was manipulated in a probabilistic fashion. Agents from each
agent categorymade an appearance in a total of 72 trials. Within
those trials, agents chose an object from the most preferred cat-
egory 45 times (62.5%), an object from less preferred category
18 times (25%) and an object from the least preferred category 9
times (12.5%). It is important to note that there was no relation
in terms of preference between any specific individual agent and
any specific object. No agent chose the same object twice. The
association and hierarchy of preferences thus existed at the level
of agent categories and not at the level of individuals.

Half of the object-preference contingencies were trained
prior to the experimental session. Consequently, the neu-
roimaging task consisted of agent categories whose preferences
were already learned and needed to be retrieved and novel agent
categories whose preferences needed to be learned over the
course of the experimental session (see below for more details).

Stimulus material

Stimulus material consisted of 108 virtual agents that could be
grouped into 9 agent categories based on subculture of their
clothing style, with 12 agents in each social group. The virtual
agents were designed using SIMS 4 (Electronic Arts Inc., 2014),
and their group consistency was verified by means of a separate
pilot experiment (for more details, see Supplementary mate-
rial, section ‘stimulus validation’). All virtual agents were white
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Fig. 1. A. Task overview. Each trial started with a fixation cross after which the decision phase was presented. This phase consisted of the presentation of an agent

with three objects placed underneath the agent. A blue box appeared around the object chosen by the participant marking the end of the decision phase. Next the

blue box disappeared and the agent along with the three objects remained visible on the screen. Thereafter the outcome phase was presented depicting the choice

of the agent via the presentation of a yellow square around the chosen object. Note: The agent depicted in this figure closely resembles one of the agents used in the

experiment and is not from the actual stimulus set. B. Schematic overview of trial distribution over blocks and conditions for the training session (day 1: Behavioral)

and fMRI session (day 2: fMRI). Blue blocks represent trials used in both sessions (OLD condition) and yellow blocks represent trials only used during the fMRI session

(NEW condition).

females and were portrayed in the same posture, to avoid possi-
ble confounds arising from such differences. An equal number
of object categorieswere createdwith 12 objects in each category
by means of photos of 108 objects (see supplementary material,
section “stimulus material”. Supplementary Figure S2 contains
all of the object images used in the experiment), so that each
social group could bematched to have a preference for an object
category (see Table 1 for an overview of the agent categories and
object categories used in the experiment and Supplementary
Table S3 for agent categories and their respective object cate-
gory preferences used in the experiment for each participant).
The objects used were neutral and care was taken to avoid obvi-
ous natural preference with the agent categories that they were
presented with. For example, trials with agents belonging to
sportswear groupwere never presentedwith towels as one of the
object categories to avoid any preconceived notion of real-world
preferences.

Design and procedure

The experiment was programmed using Presentation software
version 17 (Neurobehavioral Systems, Inc.) and was conducted
on two consecutive days. On day 1, participants took part in a
behavioral training phase involving a 24 trials practice block, fol-
lowed by an experimental session of 3 blocks, each containing
72 trials. Stimuli were presented on an LCDmonitor and partici-
pant responses were recorded using a keyboard. Day 2 consisted
of the fMRI session with a 24 trials practice block to accustom
participants to the scanner environment; neuroimaging data
were not recorded during this period. The practice block was fol-
lowed by two experimental sessions. One session consisted of
the already learned agent category—object category preference

Table 1. List of agent categories and object categories

Agent categories Object categories

Office-wear Towels
Artistic black Keys
Sporty Cups
Casual Plates
Summer dress Marker pens
Long dresses Scissors
Short pants Bowls
Tattooed Cleaning brushes
Punk Tupperware

Agents from artistic black category and tattoo category were not presented in
the same block due to similarity in the color of their clothes.

contingencies from day 1 training phase (hereafter referred to as
OLD condition) and the other consisted of novel agent categories
and their preferences for object categories that had to be learned
over the course of the session (NEW condition). So, each partic-
ipant encountered 3 agent-object category pairs on 2 days (OLD
condition), 3 category pairs were encountered only once, dur-
ing fMRI session (NEW condition), and the remaining 3 category
pairswere used for practice on both days. The presentation order
of the NEW and OLD condition was counterbalanced across par-
ticipants to account for differences caused by the presentation
order. Each condition consisted of 3 blocks containing 72 trials
each. After each block, participants could take a break before
proceeding to the next block. With 3 blocks in each condition,
the experiment followed a 2×3 factorial design, with condition
(NEW, OLD) × block (BLOCK1, BLOCK2, BLOCK3) as factors (see
Figure 1B for a schematic overview of experimental setup).
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Stimuli were rear-projected onto a screen with grey back-
ground (Eiki LCD projector, 60 Hz refresh rate, 1024×768 display
resolution), which was visible to the participants through a mir-
ror attached to the head coil. Participants gave their responses
via a button box, using their index, middle and ring finger repre-
senting each of the three objects on screen. On both the days,
agent-object categories used during the practice block were
not used during experiment blocks. Behavioral training ses-
sion lasted for ~50 minutes and fMRI session took ~90 minutes,
including providing instructions and the practice block.

Trial structure

Each trial began with a fixation cross (Figure 1A) that lasted for a
time determined by a pseudo-logarithmic distribution (M=2475
ms, range=200–6150 ms; see Vergauwe et al. (2015) or De Baene
et al. (2012) for a similar procedure). Using steps of 350ms, 50% of
the trials used a jitter ranging from 200 to 1950ms, 33.33% of the
trials used a jitter ranging from 2300 to 4050 ms and 16.67% of
the trails used a jitter time ranging from 4400 to 6150ms Follow-
ing this, an agent was presented along with three objects (note
that the agent shown in Figure 1A closely resembles one of the
agents used in the experiment). This was followed by the ‘Deci-
sion phase’, where participants had to make a decision about
the preferred object of the agent, based on the preference of
the social group that this agent belonged to. Participants were
allowed to take their time and respond in the form of a but-
ton press. Participants’ response was confirmed to them by the
presentation of a blue square around their object of choice. The
blue square disappeared after 500 ms and a screen depicting the
agent and the three objects was presented for a variable jitter
time that followed earlier mentioned pseudo-logarithmic distri-
bution. After this jittered delay, the object chosen by the agent
was revealed to the participant by means of a yellow square
around the object for 1 s, this constituted the ‘Outcome phase’.
The next trial started immediately thereafter.

Distribution of trials

Both the NEW and OLD conditions consisted of three blocks,
with a set of three agent-object categories in each condition. The
62.5% of first preference, 25% of second preference and 12.5%
of third preference object selection was maintained through-
out. Among a total of 216 trials, first preference object was
chosen 135 times, second preference object 54 times and third
preference object 27 times. This distribution was also main-
tained at a block level of 72 trials (first preference=45 trials,
second preference=18 trials, third preference=9 trials), as well
as in sub-blocks of 24 trials within each trial-block (first prefer-
ence=15 trials, second preference= 6 trials, third preference=3
trials). Agents from all three agent categories were presented
equal number of times within each of these sub-blocks. An
additional constraint on the sequence of stimuli presentation
was that first preference object was chosen no >4 times in a
row. Also, the number of times an agent picks a preferred or
non-preferred object was restricted. Every agent chose an object
from the most preferred category at least 3 times, and up to
4 times (see Supplementary Table S1 for an example). Lastly,
associations between social group and object categories were
pseudo-randomly assigned for each participant avoiding any
obvious real-world association between them.

Behavioral analysis

Participant responses during fMRI session were excluded from
the dataset if their reaction times (RTs) were <300 ms, or if

RTs were >3 s.d. away from the mean. Participants were judged
based on the number of trials in which they correctly predicted
the first preference object of the social group. Although the task
was to predict what the agent would choose on each trial, partic-
ipants could only succeed by consistently predicting the object
of first preference since that had the highest chance of selec-
tion. So, participant response on any given trial was considered
‘correct’ as long as they selected the most preferred object cate-
gory of the social group irrespective of what the agent chose on
that particular trial. To verify that a participant’s performance
was significantly above chance level during NEW trials of day
2, we used one-directional binomial test. If a participant’s per-
formance was above chance level, their data were included in
further analyses.

In order to gauge the efficiency of the participant predictions
we computed the efficiency index of participants for each block
as (Woltz and Was, 2006; Machizawa and Driver, 2011),

Efficiency index=
probability of a correct response

mean RT

Efficiency index scores were computed separately for each
block and condition. We used a 2×3 repeated-measure analy-
sis of variance (ANOVA) to determine the effects of condition
(NEW, OLD) and block (BLOCK1, BLOCK2, BLOCK3) on efficiency
index scores. Bonferroni corrected post hoc tests were further
conducted upon finding significant main effects or effects of
interaction.

While the binomial test was performed using a MATLAB
script- (Binomial test: http://www.mathworks.com/matlabcen
tral/fileexchange/24813-mybinomtest-s-n-p-sided-), all other
behavioral analyses were carried out using version 22 of the Sta-
tistical Package for the Social Science (SPSS 22; IBM Corporation,
Armonk, NY, USA).

fMRI methods

Participants were scanned in a Siemens 1.5 T magnetic reso-
nance imaging (MRI) scanner as they lay in head-first supine
position with their head movement restricted using foam cush-
ions and a tape running along their forehead. Following a
localizer sequence, 176 high-resolution anatomical images were
acquired using T1-weighted MPRAGE sequence (TR=2250 ms,
TE=2.95 ms, image matrix=256×256, FOV=256 mm, flip
angle=150, slice thickness=1 mm, voxel size=1.0 × 1.0 × 1.0
mm). A T2*-weighted multi-echo echo-planar imaging (EPI)
sequence was used to acquire BOLD-sensitive functional
images during task performance (TR=2470 ms, TE1= 7.0 ms,
TE2=26.3 ms, TE3= 36 ms, TE4=45 ms, TE5=54 ms, image
matrix=64×64, FOV=224 mm, flip angle=800, slice thick-
ness=3.0 mm, distance factor=17%, voxel size=3.5 × 3.5 × 3.0
mm, 31 axial slices). Number of images acquired in each run
was unequal as participants took varying time to complete each
block of the experiment.

The functional images were preprocessed and analyzed
using SPM8 (Statistical Parametric Mapping version 8 http://
www.fil.ion.ucl.ac.uk/spm/software/spm8/, from the Wellcome
Department of Neurology, London, UK), implemented in MAT-
LAB 2012 (Mathworks Inc., Sherborn, MA, USA). To allow for
magnetization to reach its equilibrium, the first five scans of
each EPI series were excluded from the analysis. During pre-
processing, all functional images were first spatially realigned
using rigid body transformation and a mean image of all func-
tional scans of each participant was created. Functional scans

http://www.mathworks.com/matlabcentral/fileexchange/24813-mybinomtest-s-n-p-sided
http://www.mathworks.com/matlabcentral/fileexchange/24813-mybinomtest-s-n-p-sided
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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were corrected for differences in slice time using first slice
as the reference. Structural image of each participant was
co-registered with their mean functional image and all func-
tional images were normalized to the Montreal Neurological
Institute (Montreal, Quebec, Canada) T1 template. The images
were then spatially smoothed using a 9 mm full width at half
maximum Gaussian filter and further statistical analyses were
performed on each participant’s data using the general linear
model (GLM) in SPM8.

fMRI analyses

To identify brain regions underlying the learning of group knowl-
edge when predicting other individuals’ behavior, a GLM was
fitted to the fMRI data for each participant. The main aim of
the current study was to investigate which neural mechanisms
underlie learning to predict the behavior of others based on
group knowledge. To this end, we focused our analyses on
the ‘decision phase’, that is, on the moment that participants
needed to predict which object the agent was most likely to
choose. Therefore, the GLM included six regressors of interest
that used the onset time of the decision phase with a duration
that was equal to participant’s RT for that particular trial. These
regressors followed the 2×3 design of the experiment and as
such distinguished between the NEW and OLD condition as well
as their corresponding blocks (e.g. BLOCK1, BLOCK2, BLOCK3) for
a total of six regressors. We also modeled the ‘outcome phase’
using two regressors that corresponded to a prediction match
(participant’s predictionwas the same as the object choice of the
virtual agent) or prediction error (therewas amismatch between
the participant’s prediction and the choice of the virtual agent),
using the onset of the feedback presentation as onset times,
having a duration of 1 s. Separate regressors were included for
each condition and blocks. So, 2 prediction outcomes (MATCH,
ERROR) x 2 condition (OLD, NEW) x 3 blocks (BLOCK1, BLOCK2,
BLOCK3) resulting in 12 regressors for the outcome phase. In
total, this resulted in 18 task regressors. For these 18 task regres-
sors, both a canonical hemodynamic response function (HRF)
and the first derivative were modeled. Following Friston et al.
(1996), head-movement effects were accounted for by includ-
ing a Volterra expansion of the six rigid-bodymotion parameters
as nuisance covariates, which consisted of linear and quadratic
effects of the six realignment parameters belonging to each vol-
ume. It also included spin-history effects as linear and quadratic
effects of motion parameters in the previous volume, giving
a total of 36 motion regressors (Lund et al., 2005). To remove
low-frequency signal drifts, a 128 s high-pass filter was applied.

Contrast images were computed for the six decision phase
regressors containing the canonical HRF for each participant.
Thereafter, individual contrast images were submitted to a 2×3
full factorial second level group analyses, with condition (NEW,
OLD) and block (BLOCK1, BLOCK2, BLOCK3) as factors, treat-
ing participants as random effects. At the second level whole-
brain one-sample t-tests contrasts were computed. The result-
ing activation maps were tested for significance at a voxel level
threshold of P<0.001 (uncorrected) while correcting for multiple
comparisons using a family-wise error (FWE) cluster-corrected
probability of p<0.05.

Functional connectivity analysis

To further understand the nature of interactions between
brain regions involved in learning to predict others’ behavior

based on group knowledge, a generalized psychophysiological
interaction (gPPI; http://www.nitrc.org/projects/gppi) analysis
was performed. gPPI when compared with the standard PPI has
been shown to be more sensitive toward true positive results
(McLaren et al., 2012). In addition, it is more flexible in terms
of the statistical models one can use as it can cover the whole
experimental design without the restriction that each condi-
tion has to occur in all scan runs (McLaren et al., 2012). This
makes it suitable for the current design as learning occurs over
blocks. Considering our hypotheses that bothmPFC and aTL play
a crucial role in predicting other individual’s behavior based on
learned group knowledge, we used these areas as seed regions.
Both seed regions were defined as spheres (radius, Ø=10 mm)
and were centered around peak voxels of activation found in
the whole-brain contrasts. While mPFC showed increased acti-
vation in both contrasts, we were interested in studying its
functional connectivity while predicting individual preferences
based on group membership. So, for mPFC seed, the sphere
was centered around MNI coordinates (−6, 50, 7), reflecting the
voxel of peak activation found in the ‘BLOCK3 > BLOCK1’ whole-
brain contrast. As we expected mPFC to be involved in utilizing
group knowledge that is represented elsewhere, the aTL (−42 14–
29) MNI coordinates were taken from the CONDITION×BLOCK
whole-brain interaction contrast.

After defining the seed regions, their time courses were
extracted, and a connectivity analysis was conducted using gPPI
toolbox with its default configuration of parameters. A first-
level analysis was conducted for the two seed regions separately,
adding a PPI regressor to the previously described GLM. Our
main interest was to capture changes in functional connectiv-
ity linked to increased learning of predictions based on group
knowledge, which should be reflected in changes in connec-
tivity during BLOCK3 trials as compared to BLOCK1 trials. As
such t-contrast images we created contrasting the gPPI BLOCK3
regressor with the gPPI BLOCK1 regressor. A group-level analysis
was then performed by entering participant-specific t-contrast
images into a one-sample t-test. Resulting activationmaps were
tested for significance at a voxel level threshold of P<0.005
(uncorrected) while correcting for multiple comparisons using
an FWE cluster-corrected probability of P<0.05.

Results

Behavioral results

To measure participants’ improvement in learning to predict
others’ behavior based on group knowledge we computed the
efficiency index for each condition (NEW, OLD) and block
(BLOCK1, BLOCK2, BLOCK3) separately. Behavioral results in
terms of mean RTs and accuracy are reported in Supplemen-
tary material for additional insight (Supplementary Figure S3).
We observed both an increase in accuracy and a decrease in RTs.
The latter could indicate that participants become more certain
about their predictions as the task progressed. Efficiency index
was defined based on previous literature (Woltz and Was, 2006;
Machizawa and Driver, 2011) as,

Efficiency index=
probability of a correct response

mean RT

All behavioral analyses were performed on the fMRI session
data.

The repeated-measure ANOVA with factors CONDITION
(NEW, OLD) ×BLOCK (BLOCK1, BLOCK2, BLOCK3) performed
on efficiency index scores revealed both a main effect of

http://www.nitrc.org/projects/gppi
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CONDITION, F(1, 21)=6.92, P< 0.05, η2 =0.25 and BLOCK,
F(2, 42)=37.10, P< 0.001, η2 =0.64. Efficiency scores were higher
during OLD trials (M=0.55, s.d.=0.04) as compared to NEW tri-
als (M=0.49, s.d.= 0.035). Furthermore, pairwise comparisons
revealed that efficiency scores increased as learning progressed;
the differences between all three blocks were significant (all
P’s<0.05; BLOCK1: M=0.46, s.d.=0.034, BLOCK2: M=0.53,
s.d.=0.037 and BLOCK3: M=0.57, s.d.=0.037). The interac-
tion effect of CONDITION×BLOCK was also significant, F(2,
42)=3.71, P<0.05, η2 =0.15. To further characterize this inter-
action effect, two follow-up repeated-measure ANOVAs were
conducted with BLOCK (BLOCK1, BLOCK2, BLOCK3) as a factor
(see Figure 2).

For the NEW trials there was amain effect of BLOCK, F(2,42)=
30.30, P< 0.001, η2 =0.59. Pairwise comparisons revealed that
the efficiency scores during BLOCK1 (M=0.41 s.d.=0.033) were
significantly lower than during BLOCK2 (M=0.51 s.d.=0.038)
and BLOCK3 (M=0.54 s.d.=0.039), all P’s < 0.001. The differ-
ence between BLOCK2 and BLOCK3 failed to reach significance,
P>0.1. For OLD trials this analysis resulted in a main effect
of BLOCK, F(2,42)=8.57, P=0.001, η2 =0.29. Pairwise compar-
isons revealed that efficiency scores were only significantly
lower in BLOCK1 (M=0.52 s.d.= 0.039) than in BLOCK3 (M=0.59
s.d.=0.043), P<0.001. BLOCK2 scores (M=0.56 s.d.=0.043) were
not significantly different from BLOCK1, P>0.1, or BLOCK3
scores, P>0.2.

In sum, the behavioral results show that irrespective of
whether one was making predictions when acquiring group
knowledge (NEW condition) or making predictions based on
already learned group knowledge (OLD condition), there was
an increase in prediction performance as learning progressed,
particularly when tested for difference in performance between
BLOCK1 and BLOCK3.

fMRI results

Learning to predict others’ behavior based on group knowledge.
All fMRI analyses focus on the ‘decision phase’, that is, at the
moment that participants needed to predict which object the
agent was most likely to choose based on group membership.

In order to investigate whether there were regions that
showed a general increase when predictions were based on
already learned group knowledge, OLD trials were contrasted
with NEW trials. It was during OLD trials that already learned
group knowledge could be retrieved. The reversed contrast was
also conducted to investigate whether any region showed spe-
cific sensitivity to NEW trials. Both contrasts did not reveal any
significant clusters of activation, showing that there was no
general increase in activation for OLD or NEW trials.

As demonstrated by the behavioral data, predictions made
during both OLD and NEW conditions showed increased
improvement as the task progressed, especially between
BLOCK1 and BLOCK3 trials. To investigate whether there were
brain regions that showed increased involvement as learning
progressed over time, we contrasted BLOCK3 trials with BLOCK1
trials (‘overall time effect contrast’). This contrast showed an
increase in activation in several regions including the ventral
part of mPFC including the medial frontal pole area FPm and
area 32pl (Neubert et al., 2015), right TPJ extending into STS,
left superior temporal gyrus, precuneus, dorsal mid-cingulate
and posterior cingulate cortex (Beckmann et al., 2009), primary
somatosensory cortex and ventral parietal occipital sulcus (see
Figure 3A and Table 2 for an overview of the anatomical labels
and their MNI coordinates, and see Supplementary Figure S4
for beta estimates extracted from spherical region of interest of
10 mm radius, drawn at activation peaks of these regions). To
investigate whether there were regions that showed a decline

Fig. 2. Bar plot of performance during the fMRI session represented in the efficiency scores (proportion of correct responses divided bymean response time in seconds,

plotted on the y-axis) for each block (x-axis) and condition (NEW condition: grey bars, OLD condition: white bars) separately. Error bars represent standard error of the

means.
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Fig. 3. A. Whole-brain activation map stemming from the overall time effect contrast (BLOCK3>BLOCK1). B. Whole-brain activation map stemming from the inter-

action contrast [OLD BLOCK3—OLD BLOCK1] > [NEW BLOCK3—NEW BLOCK1]. Bar graphs represent beta-estimates (y-axis) for each block (x-axis) and condition (NEW

condition grey bars, OLD condition white bars) are shown separately for the anterior mPFC (red box), left aTL (blue box) and left MTG (yellow box).

Table 2. Overview results ‘overall time effect contrast’ (BLOCK3>BLOCK1)

Anatomical location Voxels z value MNI coordinates (x, y, z) Laterality

Paracingulate gyrus 936 5.54 −6 50 7 Left
Anterior cingulate gyrus 5.18 0 41 7 Middle
Rostral gyrus 4.79 −12 44 −5 Left
Superior temporal gyrus 409 5.04 −42 −10 −8 Left
Insula 4.59 −36 8 −11 Left
Superior temporal gyrus 4.44 −51 −19 4 Left
Para-central lobule 686 4.50 15 −34 49 Right
Precuneus 4.31 6 −37 52 Right
Cingulate gyrus 4.10 9 −31 43 Right
Post-central gyrus 130 4.35 −42 −22 52 Left
Pre-central gyrus 4.18 −36 −25 58 Left
Pre-central gyrus 3.31 −21 −25 58 Left
Superior temporal gyrus 167 3.91 66 −46 22 Right
Superior temporal gyrus 3.79 63 −37 16 Right
Superior temporal gyrus 3.77 66 −19 10 Right
Ventral parietal–occipital sulcus 114 3.86 −18 −49 7 Left
Ventral parietal–occipital sulcus 3.83 −24 −64 13 Left
Ventral parietal–occipital sulcus 3.65 −12 −55 13 Left
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in activation over the course of learning the reversed contrast
(BLOCK1>BLOCK3) was computed, which did not yield any
significant clusters of activation.

Behaviorally, predictions during OLD trials showed higher
efficiency scores as compared to predictions made during NEW
trials. During the OLD trials, predictions still improved as
time progressed. This suggests that learning group knowledge
reaches its peak during OLD BLOCK3 trials. In order to test
if there were brain regions that specifically showed a peak
in activation over time in the OLD condition as compared
to the NEW condition we computed the ‘interaction contrast’
of [OLD BLOCK3—OLD BLOCK1]-[NEW BLOCK3—NEW BLOCK1].
This revealed anterior parts of mPFC, at a location more dorsal
than in the BLOCK3>BLOCK1 main effect overlapping with the
medial frontal pole but also extending into area 9 m (Neubert
et al., 2015), the left aTL, and bilateral middle temporal gyrus
(MTG) (Figure 3B; Table 3). In order to verify that this interac-
tion effect was caused by the increased involvement of these
areas specifically during OLD BLOCK3 trials, we extracted the
beta-estimates for these regions by drawing a sphere (radius=10
mm) around their peak activation. This confirmed that all the
areas identified by the interaction contrast especially showed
increased involvement during OLD BLOCK3 trials (Figure 3B bar
graphs). These results demonstrated the involvement of regions
of the mentalizing network and aTL in predicting individual
preferences based on groupmembership and differ from regions
involved in the trial-by-trial performance of the task that are
discussed in the Supplementary material (under section “para-
metric modulation results”).

Changes in functional connectivity underlying retrieving learned group
knowledge. Since we were especially interested in the role of
mPFC and aTL in predicting others’ behavior based on group
knowledge, we performed gPPI analysis using these two regions
as seeds. More specifically, we wanted to gauge changes in func-
tional connectivity that are linked to changes in connectivity
during BLOCK3 trials as compared to BLOCK1 trials, irrespec-
tive of OLD or NEW conditions, as it was during BLOCK3 trials
that predictions could be based on learned group knowledge.
The mPFC showed increased functional connectivity with the
left temporo-parietal cortex in an area overlappingwith the pos-
terior TPJ (Mars et al., 2012b) and left STS, while the aTL showed
increased functional connectivity with the para-central lobule
and parts of the precuneus (Figure 4, Tables 4 and 5).

Discussion

We constantly predict others’ behavior and try to deduce their
intentions during social interactions. Given the wide variability
in traits and beliefs, it is difficult tomodel each individual’smen-
tal state separately. One of the ways in which we simplify this
process is by generalizing an individual’s behavior to their social
group, and grounding our future predictions in these group pref-
erences when predicting another individual’s behavior. While
the brain regions associated with mentalizing an individual’s
traits and desires have been identified and studied in great
detail, the crucial question of how we learn to generalize these
preferences, and then utilize this information when predicting
individual information has remained elusive.

Table 3. Overview results whole-brain ‘interaction contrast’ (OLD BLOCK3>OLD BLOCK1) > (NEW BLOCK3>NEW BLOCK1)

Anatomical location Voxels z value MNI coordinates (x, y, z) Laterality

Middle temporal gyrus 169 4.61 −57 −13 −14 Left
Middle temporal gyrus 3.93 −57 −7 −26 Left
Middle temporal gyrus 3.70 −48 −13 −11 Left
Temporal pole 75 4.54 −42 14 −29 Left
Temporal pole 3.42 −51 14 −17 Left
Superior temporal sulcus 109 4.53 48 −16 −14 Right
Superior temporal sulcus 3.75 60 −10 −11 Right
Medial frontal pole 247 4.20 −9 65 7 Left
Paracingulate sulcus 3.83 6 53 25 Right
Anterior Medial superior frontal gyrus 3.79 9 62 28 Right

Fig. 4. Whole-brain activation map showing increased functional connectivity during BLOCK3 trials as compared to BLOCK1 trials. Regions in red showed increased

connectivity with the mPFC seed region. Regions in blue showed increased connectivity with the aTL seed region.
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Table 4. Overview results mPFC functional connectivity analysis

Anatomical location Voxels z value MNI coordinates (x, y, z) Laterality

Superior temporal sulcus 125 4.29 −54 −34 −2 Left
Inferior temporal sulcus 3.32 −54 −22 −20 Left
Superior temporal sulcus 3.19 −63 −25 −8 Left
Supramarginal gyrus 251 4.13 −45 −52 28 Left
Inferior parietal lobule 4.04 −48 −64 28 Left
Angular gyrus 3.54 −54 −58 28 Left

Table 5. Overview results aTL functional connectivity analysis

Anatomical location Voxels z value MNI coordinates
(x, y, z)

Laterality

Para-central lobule 149 3.99 12 −34 52 Right
Precuneus 3.13 12 −55 46 Right
Cingulate gyrus 3.11 12 −19 40 Right

Our study employed a dynamic design in which we probed
brain activity when predicting individual behavior based on
learned group knowledge. This group knowledge was learned
over the course of the experiment. Participants learned both a
new stimulus set and rehearsed a previously learned stimulus
set over the course of the functional MRI session. This type of
design is generally better at dissociating the contributions of dif-
ferent parts of brain networks than pure comparison between
static conditions. It has been successfully used in studies inves-
tigating learning of stimulus-response and reward associations
(Toni et al., 2001; Noonan et al., 2011). In motor learning studies,
it has been shown that retrieving overlearned associations relies
on different brain networks that are active during learning itself
(Toni et al., 2002; Grol et al., 2006). Even though performance at
the end of the first day had gotten significantly better over trial
blocks, we did not find a main effect of OLD vs NEW. Given the
high number of trials used in the contrast (216 trials in each con-
dition), it is unlikely that the results suffer from lack of power
issue. It is more likely that participants were relatively fast in
learning contingencies in the NEW condition. This is shown
by the behavioral results of accuracy, where the main effect of
CONDITION showed a very small effect size and no difference
between NEW and OLD trials. However, we did find different
dynamics of activation in different parts of the cortex.

The regions showing differential activation during the appli-
cation of group knowledge generally broadly belonged to what
has been termed the ‘social brain’, including the posterior part of
the STS, TPJ and parts of medial frontal cortex (Saxe, 2006; Rush-
worth et al., 2013; Schurz et al., 2014; Molenberghs et al., 2016).
In general, these areas tended to show greater activation when
applying group knowledge at the later stages of learning. Upon
close inspection though, different parts of this larger network
show subtle differences in the time course. Both in the poste-
rior temporal and the medial frontal cortex, there is evidence of
a gradient in learning dynamics, with different regions prefer-
entially identified in the interaction contrast and in the overall
time effect contrast.

Over the course of the scanning session, there was an
increase in activation in both the OLD and NEW stimuli in
the posterior cingulate and ventromedial frontal cortex. Both
these activations were quite extensive and overlapped with

the components of the default mode network (Raichle et al.,
2001) that is thought to often show activation in social cog-
nition paradigms (Mars et al., 2012a). In contrast, a more dor-
sal area of the medial frontal cortex overlapping with area
9 showed most activation only when applying group knowl-
edge at the late stage of learning. A dorsal–ventral gradient of
activation in the medial frontal cortex has been noted before.
Although some studies ascribe a specific ‘social’ function to
one or another of these areas, other studies argue for a dif-
ference based on the use rather than the type of informa-
tion (Nicolle et al., 2012). Such a dissociation could explain the
different dynamics of learning the same type of information
observed in the present study. Learning of knowledge of social
groups based on observing individuals is consistent with some
of the observations made of medial frontal regions in interac-
tive settings. For instance, Stolk et al. (2015) used lesion data to
demonstrate an essential role for ventromedial prefrontal cor-
tex (vmPFC) in adjusting communication to the characteristics
of the receiver. Dorsomedial PFC, on the other hand, has been
shown to be involved in distinctions between self and other,
maintaining representations of both (Wittmann et al., 2016). One
hypothesis arising from the current study is that this role could
extend to maintaining or implementing dissociations between
groups of different individuals in the same way as between self
and others.

Areas along the STS, ranging from the anterior temporal cor-
tex to the posterior STS and the so-called TPJ, are often identified
in social tasks. TPJ especially has been associated with theory of
mind (ToM) or mentalizing, i.e. the ability to represent the belief
state of others (Saxe et al., 2004b). These different parts of the
temporal cortex are now known to differ both in their struc-
tural and functional connectivity (Mars et al., 2012b; Xu et al.,
2016) and their functional profile (Schurz et al., 2017). Consistent
with this notion, they show slightly different dynamics here. The
most posterior part of STS extending into TPJ was identified in
the general late vs early contrast, while most anterior tempo-
ral areas were identified by the interaction contrast and most
active when applying group knowledge during the last stage of
OLD learning. TPJ is often thought to codemore explicit, effortful
social information, whereas the anteriorly located posterior STS
might represent more automatic aspects of social information.
Schurz and colleagues (2014) performed a meta-analysis of neu-
roimaging studies examining ToM tasks and observed that while
the posterior TPJ was involved in most ToM tasks, anterior TPJ
was activated in relatively simpler tasks like inferring the men-
tal state of an individual based on a picture of their eyes. So, it is
conceivable that as the stimuli become more overlearned they
are processed more automatically and hence are preferentially
coded here.

We also observed an increase in functional coupling between
the temporal and medial cortex when applying group knowl-
edge over the course of learning, over and above the changes
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in activation. In general, the regions increasing their coupling,
vmPFC and TPJ on the one hand and aTL and posterior medial
cortex on the other hand, are all regions that tend to belong to
the same functional networks. For instance, in resting state fMRI
one often identifies the default mode network discussed above
that often is thought to include parts of TPJ (Schilbach et al., 2008;
Mars et al., 2012a). Although aTL is not always included in this
network, its functional connectivity profile with medial areas is
similar to that of TPJ (Mars et al., 2013), and there is evidence
that the aTL plays a significant role in the processing of the ToM
content (Ross and Olson, 2010).

While being part of the samementalizing network, themPFC
and the TPJ are said to fulfill different roles. The mPFC is argued
to be especially involved in processes related to the inferences
of others’ traits and preferences that are stable over longer
periods of time (Amodio and Frith, 2006; Kang et al., 2013; Koster-
Hale and Saxe, 2013), while the TPJ is implicated in processing
the intentions of others and whether their behavior is consis-
tent with these inferred intentions (Koster-Hale and Saxe, 2013;
Koster-Hale et al., 2013). Therefore, it is unlikely that the mPFC
represents group knowledge itself, but more likely to make use
of this knowledge when forming prediction of others’ prefer-
ences. Increased functional connectivity between mPFC and TPJ
shows that forming predictions of others’ behavior based on
group knowledge is, in part, facilitated by the mPFC–TPJ tan-
dem. Although functional connectivity does not take causality
into account, these results are in line with the MEG study that
showed an increase in top-down influence of the mPFC on the
TPJ when observing action kinematics and associated outcomes
(van Pelt et al., 2016). Here we suggest that the mPFC may use
the stable trait of object-preferences given by group knowledge
to form predictions of the preferences of an individual, based on
which, the TPJ then generates predictions on the actual behavior
of an individual.

One can raise the question whether our manipulation truly
measures social predictions. Should we really care about other’s
preferences in terms of clothing? While it is true that threat
(‘kill my group’) or emotion (‘hate my group’) could likely result
in bigger effect sizes, our aim was to answer questions inde-
pendent of one’s own membership in the groups, thus avoiding
in-group out-group confounds. More importantly, we wanted to
first study how we acquire preferences at group-level and how
this group-level knowledge is used to infer individual prefer-
ences in a way that reflects how we acquire this knowledge in
daily lives. So, as a first step, we wanted to characterize the net-
work of brain regions involved in this process. As a next step, it
would certainly be interesting to study the effect of emotion on
this process in a future study.

In this functional imaging study on learning and applying
preferences of social groups to individuals, we established that
the core regions identified in many aspects of social interac-
tions with one individual extend their role to this generalizing
function. This is not a trivial conclusion. Given that humans
engage in larger social groups (Dunbar, 1992), it is likely that
the skill to socially categorize people and learn their prefer-
ences at a group level, rather than at the individual level,
is essential for us. Many of the regions identified here are
present in some form in other primates (Rushworth et al., 2012;
Chang et al., 2013). Our approach identifies some of the first
differences in activation profiles of the various areas associ-
ated with learning social cognition at the level of groups, but
the details remain to be teased apart. We present a number of
hypotheses arising from these data that we hope can inspire
future studies.

Supplementary data

Supplementary data are available at SCAN online.
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