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Engineering two-dimensional superconductivity
and Rashba spin–orbit coupling in LaAlO3/SrTiO3

quantum wells by selective orbital occupancy
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The discovery of two-dimensional electron gases (2DEGs) at oxide interfaces—involving

electrons in narrow d-bands—has broken new ground, enabling the access to correlated

states that are unreachable in conventional semiconductors based on s- and p- electrons.

There is a growing consensus that emerging properties at these novel quantum wells—such

as 2D superconductivity and magnetism—are intimately connected to specific orbital

symmetries in the 2DEG sub-band structure. Here we show that crystal orientation allows

selective orbital occupancy, disclosing unprecedented ways to tailor the 2DEG properties. By

carrying out electrostatic gating experiments in LaAlO3/SrTiO3 wells of different crystal

orientations, we show that the spatial extension and anisotropy of the 2D superconductivity

and the Rashba spin–orbit field can be largely modulated by controlling the 2DEG sub-band

filling. Such an orientational tuning expands the possibilities for electronic engineering of

2DEGs at LaAlO3/SrTiO3 interfaces.
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T
he confinement of electron orbitals over small scales
provides a pathway to tailor the electronic properties of a
quantum system. Restricting the motion of electrons within

planes of different crystal orientation affords additional routes to
reorganize the electronic band structure. Such strategies have been
used to engineer the electronic and optical properties of II–VI and
III–V semiconductor quantum wells, where s- and p- orbitals are
involved1–3. Yet, two-dimensional (2D) electron gases (2DEGs),
comprising d-electrons instead of s or p, have come into the
limelight over about the last 10 years4–11, opening novel
perspectives that are inaccessible for more traditional materials.
In particular, the narrow bandwidth of d-states in transition
metal oxide quantum wells promote correlated states—
for example, magnetism and superconductivity—that are unseen
in conventional semiconductors. Interestingly, the extreme
confinement, over just a few unit cells, enables full electrostatic
control of correlated 2DEG states, allowing access to new physics
and paving the way to new device concepts. Particularly, these 2D
electron systems have been found to be superconductive7,12–14,
with 2D superconductivity largely modulated by electric gates15,16.
The 2D character of the superconductivity has led to phenomena
not observed in the 3D regime, such as magnetic enhancement
of superconductivity17, violation of the paramagnetic Pauli limit
for the upper critical fields18, quantum phase transitions19 or
multiple quantum criticality20. The intricacy of all these complex
phases and the evidence of the role of electron correlations have
often prompted the use of the concept of electron liquids to
designate these electron systems21.

The interface between LaAlO3 and SrTiO3 is the oxide
quantum well par excellence. Initially, the research on LaAlO3/
SrTiO3 quantum wells was restricted to the (001)-plane of the
perovskite unit cell4,14,15. Remarkably, recent investigations have
uncovered that interface conductivity also appears along other
directions, such as (110) (refs. 22,23) and (111) (ref. 22). The
selective confinement of electrons within planes of different
crystal orientation expands vigorously the possibility of fine-
tuning the 2DEG sub-band hierarchy and, thereof, the physical
properties. Along this line, we have recently demonstrated that
crystal symmetry is an extra degree of freedom to realize different
2DEG band reconstructions at the LaAlO3/SrTiO3 interface, by
imposing distinctive orbital hierarchies on (001)- and (110)-
oriented quantum wells and enabling the selective occupancy of
states of different symmetry24. More specifically, we have
uncovered that the degeneracy within the t2g sub-band—which
forms the backbone of the 2DEG structure in LaAlO3/SrTiO3

wells—is broken in reversed ways depending on the crystal
orientation: for (001)-oriented 2DEGs the dxy orbitals have the
lowest energy, while along (110) the bottommost levels have
instead a dxz/dyz character24. Recent experiments on uncapped
(110) SrTiO3 surfaces also found the same hierarchy25. This
orbital reconfiguration provides an excellent playground to test
the link between orbital symmetry and complex correlated states,
provided that we understand exactly the implications that such
2DEG band engineering has for the physical properties of the
quantum wells.

In this work, we present evidence that the selection of the
orbital symmetries in the 2DEG sub-band structure triggers some
nontrivial and extensive modifications of the electronic properties
of quantum wells at the LaAlO3/SrTiO3 interface. First, we
demonstrate that the orbital reconfiguration implies a modulation
of 2DEG spatial extension and, as a result, the anisotropy of the
2D superconductivity is largely affected by crystal orientation.
Second, we show that the effects of sub-band engineering are
influential on the spin–orbit coupling and the concomitant Rashba
effect, opening new pathways to tune the spin–dependent
transport in LaAlO3/SrTiO3 quantum wells. These findings open

fresh perspectives to understand the fundamental connection
between orbital symmetry and the electronic phases at LaAlO3/
SrTiO3 interfaces.

Results
Structural characterization. The samples analysed here were
obtained by pulsed laser deposition of LaAlO3 thin films on TiO2-
terminated (001)-SrTiO3 substrates (LaAlO3 thickness t¼ 10
monolayers (MLs), corresponding to tB3.8 nm) as well as on
thermally treated (110)-oriented SrTiO3 substrates (t¼ 7–14
MLs, tB1.9–3.8 nm), see details in Methods and (refs 22,26,27).
We carried out cross-sectional scanning transmission electron
microscopy (STEM) in the high-angle annular dark field
(HAADF) imaging mode, in which, to a good approximation,
the intensity of an atomic column is proportional to the square of
the atomic number (Z), so elements can be deduced by tracking
column intensities28. Brighter atomic columns correspond to the
heavier elements, La and Sr, whereas fainter columns correspond
to Ti and Al. Atomic-scale structural characterization shows a
coherent and epitaxial growth of both heterostructures and
atomically flat interfaces—Fig. 1a,b for (001) and (110),
respectively— Besides, regarding the (110)-oriented sample,
along the [001] zone axis the (110) ionic stacking across the
interface can be readily appreciated, see Fig. 1b. Therefore, in
spite of the higher surface energies of (110)-planes with respect to
(001), the STEM-HAADF study rules out altogether the
formation of (100) microfacets at the (110)-interface23,29,30.

Spatial extension and anisotropy of 2D superconductivity.
We discuss first the implications of band reconstruction on the
2DEG superconductivity. In line with previous reports on (001)
(refs 14,15,19), we show that the (110)-interface is also
superconductive and has a 2D character. Yet, we uncover that
the anisotropy of the 2D superconductive state is considerably
larger for (001) than for (110). Such a conclusion is readily
apparent from the sheet resistance curves measured under the
magnetic fields applied in-plane (Fig. 2a,b). It is known that as the
2D limit is approached, increasingly higher in-plane fields are
required to suppress the superconductivity, since vortex entry is
impeded by the low dimensionality13. Therefore, higher in-plane
critical fields imply stronger anisotropy. Inspection of Fig. 2a,b
shows that the (001) interface requires much higher in-plane
fields (m0Hc2,8E2,200 mT) than the (110) interface
(m0Hc2,8E1,000 mT) to induce the transition to the normal
state. We conclude, thus, that the 2D anisotropy is larger for (001)
than for (110), anticipating a smaller spatial extension of the
quantum well along (001).

For a quantitative estimation of both the superconductive layer
thickness d and the in-plane superconductive coherence length x,
we carried out an analysis based on the Landau–Ginzburg
formalism31. For that purpose, the out-of-plane m0Hc2,> and in-
plane m0Hc2,8 critical fields were determined by defining
quantitative criteria for the field-induced transitions. Thus, a
drop resistance of 90% from the normal resistance state at
T¼ 400 mK was established to ascertain the evolution of the
transition temperature TC. We consider first the (110) sample
with LaAlO3 thickness t¼ 14 MLs. The out-of-plane critical field,
extrapolated to T¼ 0 K, was m0Hc2,>E160 mT (Supplementary

Fig. 1), leading to an in-plane coherence length x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F0
2pm0Hc2;?

q
�

44 nm (F0 is the flux quantum)31. In addition, from the in-plane
critical field m0Hc2,8E1,000 mT we could estimate the

superconductive thickness d ¼ F0
ffiffi
3
p

pm0Hc2;kx
� 24 nm. Since the

coherence length is well above the superconductive thickness
(dox), the superconductivity is shown to be 2D. Applying the
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Figure 2 | Anisotropy of the 2D superconductivity at the (001) and (110) interfaces. Sheet resistance of (a) the (110)-interface with t¼ 14 MLs and

(b) the (001)-interface with t¼ 10 MLs, under magnetic fields applied parallel to the interface. The field values are indicated in the panels. Panel (c) shows

the temperature dependence of out-of-plane m0Hc2,> and in-plane m0Hc2,8 critical fields of (001)—red circles—and (110)—blue triangles—interfaces,

corroborating the 2D character of the superconductivity for both orientations. (d) The upper critical fields are displayed as a function of the temperature

for both the orientations (field in-plane). The dotted and dashed straight lines indicate the Pauli-limited critical fields m0HP
c . The observation of

higher critical fields for the (001) interface is consistent with the larger anisotropy of the 2DEG superconductivity and stronger spatial confinement

for (001).
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Figure 1 | Atomic-resolution STEM characterization. (a) HAADF-STEM images of the LaAlO3/SrTiO3 (001) interface. The left and right panels are

magnified views of the interface observed from [100] and [1–10] zone axes, respectively. (b) HAADF-STEM images of the LaAlO3/SrTiO3 (110) interface.

Left and right panels are magnified views of the interface observed from [001] and [1–10] directions, respectively. Both LaAlO3 layers are continuous within

the analysed region (of the order of 1 mm). The images in the central panels a and b have been Fourier filtered to reduce background noise. The positions of

La and Sr are indicated by green and orange circles, whereas Al and Ti are shown in red and light green. Note that for both orientations the interfaces are

atomically flat and that the (110) interface does not show any local (100) microfacet.
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same protocol analysis to the other (110)-interfaces in this study,
with thickness in the range t¼ 7–10 MLs (Supplementary Fig. 2),
we find that always the in-plane coherence length (xE40–75 nm)
is significantly larger than the superconductive thickness
(dE24–30 nm), thus confirming the 2D character of the super-
conductivity at the (110) interface. This is also corroborated by
the analysis of the temperature dependence of the resistance,
showing that the transition to the superconductivity at (110)
interfaces belongs to the Berezinskii–Kosterlitz–Thouless (BKT)
universality class32–34 (Supplementary Fig. 3). In addition, the
out-of-plane and in-plane critical fields follow the temperature
dependence expected for 2D superconductors (Fig. 2c), that

is, m0Hc2;? ¼ F0

2px2 1�T=TCð Þ and m0Hc2;k ¼ F0
ffiffiffiffi
12
p

2pxd ð1�T=TCÞ1=2,
respectively13.

We applied also the Landau–Ginzburg analysis to a (001)
LaAlO3/SrTiO3 sample using the same growth conditions as those
used for the (110)-oriented samples. The analysis of the
experimental data concludes that the coherence length is
xE40 nm and the superconducting thickness is dE13 nm, in
close agreement with the values previously reported14,35. We,
thus, demonstrate in a quantitative manner that the spatial
extension of superconductive (110) interfaces (dE24–30 nm) is
considerably larger than the one usually reported for (001)
interfaces (dE10–13 nm) (refs 14,35).

The wider spatial extent of the (110)-2D state is also inferred
from the analysis of the Pauli paramagnetic limit of the upper
critical fields. For high-enough magnetic fields, the paramagnetic
susceptibility induces a parallel alignment of the Cooper pair
spins that eventually breaks them apart, giving a higher bound for
the upper critical fields18,36. This value can be assessed as
m0HP

c �1:76kBTC
� ffiffiffi

2
p

mB, where kB is the Boltzmann’s constant
and mB is the Bohr magneton (assuming a g factor of 2)18,36.
Although this upper bound is generally fulfilled, it is violated in
some cases. One example is the case of ultrathin SrTiO3 2D
superconducting layers for which the values of m0Hc2,8 were
found to exceed largely the Pauli limit. This was explained by the
large intrinsic spin–orbit coupling at interfaces, which becomes a
prominent energy scale as the thickness is reduced18. The
correlation between the spatial confinement and the anisotropy of
the 2D superconductivity is also borne out in the (001) and (110)
LaAlO3/SrTiO3 interfaces. Figure 2d summarizes this observation:
the upper critical fields m0Hc2,8 measured in (001) interfaces are
significantly higher than those measured in (110) samples at any
temperature. As a matter of fact, for the (001) interface the Pauli
limit is already violated at temperatures below Tr220 mK, close
to TC. Instead, the Pauli limit is only surpassed at temperatures
Tr110 mK for the (110) interface, further away from the
transition (Fig. 2d). Again, this is an indication of stronger
2DEG confinement at the (001) interface.

Electrostatic modulation of 2D superconductivity. The different
2DEG spatial extent has also consequences on the electrostatic
modulation of the superconductivity. We performed electrostatic
gating experiments in (001)- and (110)-oriented samples that
were contacted by top and backgate electrodes and electric fields
were applied in the range of Vg¼±400 V (Fig. 3). Positive/
negative voltages correspond to the accumulation/depletion of
electrons at the interface, respectively. Hall and capacitance
experiments allowed us to obtain the sheet carrier density mod-
ulation as a function of the voltage Vg for both the film orien-
tations. The curves of carrier density that we extract from Hall
measurements exhibit a reduction of nHall for positive Vg (Fig. 3f).
Such a feature is the hallmark of multiband conduction, in which
high- and low- mobility carriers participate in the transport in the
regime of accumulation, whereas only one type of carrier is

relevant in the regime of depletion (Vgoo0) (ref. 16). The total
carrier density nS, comprising both heavy and light electron
bands, can be obtained by experiments that measure the
capacitance between the backgate and the 2DEG. In this case,
the value of ns is extracted by integration over the voltage range
ns Vg
� �

¼ ns Vg ¼ �V
� �

þ 1
eA

R V
�V CðVÞdV , where A is the area

of the capacitor. Note that, in agreement with the two-carrier
scenario, only one band is involved in transport at negative Vg

and nS is superimposed to nHall within this range of applied
voltages (Fig. 3f). Instead, in the regime of accumulation, Vg40,
two bands are involved and nS and nHall differ significantly16,37.

Figure 3e summarizes the results of the electrostatic gating
experiments, where the superconducting transition temperature
TC and the resistance Rsheet at the normal state are plotted as a
function of the gate voltage Vg. We see that the carrier density is
largely modulated for both orientations, with variations Dns¼ 0.2
� 0.8� 1014 cm� 2 and Dns¼ 0.4� 1.6� 1014 cm� 2 for (001)
and (110) interfaces, respectively. However, despite similar
modulations of the carrier density for both orientations, their
effects on the superconductivity are dramatically different
depending on the crystal orientation. More specifically, the
superconductivity of the (001)-interface could be suppressed for a
range of applied fields (Fig. 3a), in agreement with previous
reports15. At the (001) interface the TC(Vg) curve exhibits a
dome-like shape (Fig. 3e), indicating that superconductivity is
suppressed at fields above VgEþ 200 V and below VgE� 50 V.
Instead, for (110) interfaces the superconducting state is never
switched off by electric fields (Fig. 3b) and the transition
temperature is modulated by at most about 50% (Fig. 3e). The
much larger tunability of (001) interfaces with respect to (110) is
again consistent with the narrower extension of 2DEGs at (001)
wells.

Modulation of the Rashba spin–orbit field. Previous works have
demonstrated that there is a strong spin–orbit field that stems
from a Rashba-type interaction at the LaAlO3/SrTiO3 inter-
face38,39. As a result, an effective magnetic field BSO is felt by
electrons moving relativistically under the influence of the
interface intensive electric fields E0¼ �rV(r). Remarkably, the
intensity of BSO is directly related to electron hopping between t2g

orbitals that, although forbidden in the unperturbed system away
from interfaces, are however allowed in the presence of the field E0

(ref. 40). In particular, E0 induces a polarization of the atomic
orbitals, which break their symmetry and, as a consequence, allows
a hybridization within the t2g manifold in the metal–oxygen
network that contributes to BSO (refs 40,41). Because of the
different 2DEG band structure along (001) or (110), the spin–orbit
field BSO is expected to have a strong orientational dependence.

To probe the effects of orientational reconstruction on the
spin–orbit term BSO, we analysed the field dependence of the
magnetoconductance at the normal state recorded at a tempera-
ture T¼ 3.3 K under applied electric fields (Fig. 4a,b). The
experimental data were fitted to the expression38,42

DsðBÞ
G0

¼�C
1
2
þ Btr

B

� �
þ 3

2
C

1
2
þ BfþBSO

B

� �
� 1

2
C

1
2
þ Bf

B

� �

� ln
BfþBSO

Btr

� �
þ 1

2
ln

BfþBSO

Bf

� �� 	
�AK

s 0ð Þ
G0

B2

1þCB2

ð1Þ

that describes the change of conductivity with field Ds(B)
normalized by the quantum of conductance G0¼ e2/ph
(refs 38,42,43). In equation (1), quantum corrections to the
conductance in the 2D limit are described by the four first terms,
where C(x) is the digamma function, and Btr, Bf and BSO are the
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effective fields related to the elastic, inelastic and spin–orbit
scattering terms, respectively43. Finally, the last term in
equation 1, involving the parameters AK and C, is the Kohler

term that gives an account of orbital magnetoresistance. Fittings
of the experimental data to equation (1) were excellent, as shown
in Fig. 4a,b for both orientations and for different electric fields.
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The parameters BSO;AKand Bf extracted from these fittings are
shown in Fig. 4c,d. It turns out that the Kohler term AK became
rather large at positive fields Vg4þ 100 V (Fig. 4d), making
difficult a precise evaluation of the spin–orbit term in the regime
of strong electron accumulation. For that reason in Fig. 4c we
plotted the evolution of the term BSO restricted to the range
Vg¼±100 V, where accurate values of the spin–orbit
contribution can be obtained.

For the (001) sample, the values of BSO that we obtained from
fittings to equation (1) are in the same range as reported
previously for the same orientation, with a similar asymmetric
dependence of the spin–orbit field with Vg (refs 38,43). In the
regime of depletion (Vgo0 V), the values of the spin–orbit field
are BSOo0.5 T, whereas for electron accumulation (Vg40 V) the
spin–orbit term rises up to BSOE1.5 T. We thus observe a strong
asymmetric field dependence of BSO for the interfaces along (001).
In contrast, the electrostatic modulation of BSO is very weak along
(110), and the spin–orbit field is largely unaffected by the
electrostatic gating, with values restricted within a much narrower
range BSOE0.6–0.7 T (Fig. 4c). In brief, our analysis demon-
strates that the Rashba spin–orbit fields at the (110) interfaces are
substantially different from those along (001). This observation
illustrates how band engineering based on crystal symmetry can
be exploited to tailor the spin–dependent transport along SrTiO3-
based quantum wells44,45.

Discussion
The different spatial extension of the quantum wells along (001)
and (110) and the different behaviour of the Rashba spin–orbit
fields can be elucidated on the grounds of the modulation of the
2DEG sub-band structure observed in the experiments24 that, in
turn, can be understood using the fundamental concepts of
quantum physics of solids. When we consider the orbitals of t2g

electrons that are confined along (001) or (110), the quantum well
entrapment of dxy, dxz and dyz wavefunctions produces an energy
splitting between the different eigenstates that is inversely
proportional to their effective masses along the confinement
direction46. Figure 5 illustrates schematically the arguments that
we expose in the following. Note that although the full complexity
of the quantum sub-band structure47,48 is ignored in this Figure—
as we depict only one sub-band for each type of orbital— the
essential physics is captured. More specifically, for confinement
along (001), p-type bonding between dxy states leads to small
wavefunction overlapping and large effective mass, while along
(110) s-like bonds between dxy orbitals lead to much smaller
effective mass (Fig. 5a,b). Instead, the overlapping of dxz/dyz

states has intermediate values for both the orientations.
This results in a hierarchy of out-of-plane effective masses given
by m�xy;o001444ðm�xz;o0014;m�xz;o1104;m�zy;o0014;m�zy;o1104Þ
44m�xy;o1104 that, in turn, yields the energy orbital landscape
outlined in Fig. 5c,d, which is in agreement with the 2DEG
sub-band hierarchy observed in X-ray linear dichroism
experiments46,49.

As a consequence of the observed rearrangement of orbital
symmetries, the spatial extension of the 2DEG must change
significantly with the crystal orientation. In this respect, Fig. 5c,d
plot schematically the carrier spatial distributions of dxy, dxz and
dyz states: along (001) the first dxy sub-band is expected to be at
the bottom of the well, with little spatial spread; on the contrary,
along (110) the dxy level raises its energy above the dxz/dyz states,
and its spatial extent is considerably larger. In addition to orbital
occupancy, contributions from the anisotropic character of the
dielectric constant tensor may also influence the 2DEG spatial
extent. Therefore, the modulation of the orbital hierarchy
described here provides a natural explanation for the distinct
anisotropy of the 2D superconductivity and spatial extension for
quantum wells oriented along (001) and (110).
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Figure 5 | Energy landscape and orbital symmetries of 2DEGs at (001) and (110) LaAlO3/SrTiO3 interfaces. (a) Along (001), the overlapping

of dxy orbitals is very small, while it is moderately large for dxz/dyz states. (b) Along (110), the overlapping of dxy orbitals is the largest. Since

the effective mass along the confinement direction is inversely proportional to the orbital overlapping, the hierarchy of masses is given by

m�xy;o001444ðm�xz;o0014;m�xz;o1104;m�zy;o0014;m�zy;o1104Þ44m�xy;o1104. The rules of quantum physics in solids dictate the energy landscape in the quantum

wells: (c) Orbitals with symmetry dxy lie at the bottom of (001) quantum wells, while dxz/dyz are higher in energy; (d) Along (110), the dxz/dyz states have

lower energy and the dxy levels are at the top. The different energy hierarchy of orbitals determines a larger spatial extension for 2DEGs along (110) as

compared with (001). (e) Sketches how the dxy and dxz/dyz orbitals are distorted by the inversion symmetry breaking field E0 at the interface. Along (001),

dxy states have a small projection along the out-of-plane direction and they are weakly polarized by E0, whereas dxz/dyz states project along the direction of

confinement and are largely polarized. (f) Instead, along (110), both kinds of orbitals are affected similarly by the interface fields. Within the range

of applied fields, the electrostatic modulation has dissimilar effects on the spin–orbit fields BSO. Along (001), only dxy orbitals are filled at Vgo0, whereas at

Vg40 the dxz/dyz states are progressively occupied. Thus, at low electrostatic doping, BSO is smaller because of the relatively small atomic orbital

polarization of dxy states, whereas the population of dxz/dyz orbitals at positive Vg increases significantly BSO. Instead, along (110) the dependence of BSO on

the applied fields is weak, because all t2g orbitals are expected to undergo polarizations of similar strength.
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By the same token, the redistribution of the orbital sub-band
hierarchy also explains the distinctive dependence of the Rashba
spin–orbit fields on the orientation. As mentioned above, the
interface electric field E0 induces a polarization of the atomic
orbitals that breaks their symmetry along the direction of the
quantum well. This enables new covalent channels within the t2g

manifold and the oxygen network that contributes to BSO (refs
40,41). The key point is to recognize that orbitals with large
projections over the normal to the interface are those more
sensitive to the inversion symmetry breaking fields E0, giving
larger Rashba effects40,41. Such atomic orbital polarization is
graphically depicted in Fig. 5e in the form of spatially distorted
orbitals.

In the light of these observations, the asymmetric modulation
of BSO with field along (001), Fig. 4c, can be explained because dxy

orbitals are weakly polarized due to their minimal projection
along the confinement direction, while dxz/dyz states have much
stronger spatial asymmetry (Fig. 5e). As a result of the 2DEG sub-
band hierarchy along (001), the electrostatic modulation of
orbital occupancy is anticipated to give a significant variation of
BSO as a function of the orbital occupancy: at Vgo0 V only dxy

orbitals are populated; the orbital polarization is weak (Fig. 5e)
and BSO is relatively small. In contrast, as we enter the regime of
accumulation and dxz/dyz bands start to be filled, the spin–orbit
term begins to increase significantly, in agreement with the
significantly larger orbital polarization of these orbitals.

The situation is radically different for the (110) interface. Now,
the electrostatic modulation of BSO is very weak and the spin–
orbit field is largely unaffected by the electrostatic gating. This
behaviour, which may seem surprising in the light of the
modulation of carrier density with electrostatic gating (Fig. 4d),
can be well understood on the grounds of the similar atomic
orbital polarizations of dxy and dxz/dyz orbitals along (110),
Fig. 5e. Indeed, along (110), all t2g orbitals are expected to
undergo similarly strong polarizations (Fig. 5e) and, therefore, the
spin–orbit field BSO is expected to have a rather weak dependence
on the applied field, as confirmed by the experiments.

In summary, we have shown that the orbital reconstruction
that occurs for LaAlO3/SrTiO3 quantum wells confined along two
different directions, (001) and (110) has a deep impact on the
physical properties of these 2DEGs. We claim that the different
energy landscapes and hierarchy of orbital symmetries are behind
the observed differences in the 2DEG spatial extensions and spin–
orbit fields. The analysis of the 2D superconductivity is consistent
with 2DEGs extending spatially over (110) at larger distances
than at (001) interfaces. At the same time, electrostatic gating
experiments have provided relevant clues to understand the
distinctive spatial distribution of t2g states with respect to the
interface that results from the modified energy sub-band
hierarchy and the renormalization of the associated effective
band masses. Our work shows that crystal symmetry is an extra
degree of freedom to realize different 2DEG band reconstructions
at the LaAlO3/SrTiO3 interface, thus allowing a selective
occupancy of states of different symmetry. Such new perspective
for 2DEG band engineering is very alluring, as it opens new
research fields to extend our current understanding of the link
between orbital symmetry and magnetism and superconductivity
at LaAlO3/SrTiO3 quantum wells.

Methods
Sample preparation. For the growth of (110)-oriented samples, the SrTiO3 sub-
strates were treated in a dedicated furnace at 1,100 �C for 2 h under ambient
conditions26,27. Samples with (001) orientation were grown on TiO2-terminated
SrTiO3 substrates. The TiO2 termination of the SrTiO3(001) single crystals was
obtained by chemical treatment followed by thermal annealing50,51. LaAlO3 thin
films were grown by pulsed laser deposition (l¼ 248 nm) monitored by high
pressure reflection high-energy electron diffraction. The substrates were heated

from room temperature to deposition temperature (850 �C) in an oxygen partial
pressure PO2¼ 0.1 mbar. During deposition, the LaAlO3 was grown under a
pressure PO2¼ 10� 4 mbar and 1-Hz repetition rate, with laser pulse energy of
around 26 mJ. Films with thickness 7, 8, 10 and 14 MLs were prepared on (110)
substrates, whereas the (001)-oriented sample had a LaAlO3 thickness of 10 MLs.
At the end of the deposition, samples were cooled down in an oxygen rich
atmosphere to minimize the formation of oxygen vacancies that could lead to
extrinsic mechanisms of conduction. More specifically, the samples were cooled
from T¼ 850 to 750 �C under a pressure PO2¼ 0.3 mbar and under
PO2¼ 200 mbar from T¼ 750 �C down to room temperature, including a dwell
time of 1 h at 600 �C.

Magnetotransport. The electrical characterization was performed by using six-
contact arrangement in Hall geometry, from which the sheet resistance, sheet
carrier density and electron mobility were extracted as a function of temperature
and gate voltage. The current was injected along the in-plane (001) direction in
(110)-interfaces. The LaAlO3/SrTiO3 interface was contacted via ultrasonic wire
bonder with Al wires. Measurements at temperatures below 1.8 K were measured in
a dilution cryostat by applying 50 nA AC current of frequency 13.67 Hz. For the
estimation of critical field, the magnetic field was applied parallel and perpendi-
cular to the sample plane with sweep rates of 1.6 mT s� 1. For the measurement of
the parallel critical magnetic field of the 110 samples, the field was applied in the
same direction than the current, that is, along the in-plane (001). Electric fields
were applied using voltage source. No leakage current (o5 nA) was detected up to
largest applied voltages ±400 V.

Transmission electron microscopy. STEM-HAADF images were acquired with a
NION UltraSTEM, equipped with a 5th order NION aberration corrector and
operated at 200 kV, and in a FEI Titan (60–300 kV) STEM operated at 300 kV,
equipped with a probe Cs corrector from CEOS, a monochromator and a high-
brightness field-emission gun (X-FEG). HAADF signals for the samples were
collected from the detector inner-angles of B86 and B60 mrad for the NION and
FEI Titan microscopes, respectively. Specimens for STEM were prepared by con-
ventional methods, by grinding, dimpling and argon ion milling.
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