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Abstract: Boron nitride nanotubes (BNNTs) are an exciting class of nanomaterials due to their
unique chemical and physical characteristics. In recent decades, BNNTs have gained huge attention
in research and development for various applications, including as nano-fillers for composites,
semiconductor devices, hydrogen storage, and as an emerging material in biomedical and tissue
engineering applications. However, the toxicity of BNNTs is not clear, and the biocompatibility is
not proven yet. In this review, the role of BNNTs in biocompatibility studies is assessed in terms
of their characteristics: cell viability, proliferation, therapeutic outcomes, and genotoxicity, which
are vital elements for their prospective use in biomedical applications. A systematic review was
conducted utilising the databases Scopus and Web of Science (WOS) (2008–2022). Additional findings
were discovered manually by snowballing the reference lists of appropriate reviews. Only English-
language articles were included. Finally, the significant analysis and discussion of the chosen articles
are presented.

Keywords: boron nitride nanotubes; toxicity; cytotoxicity; biocompatibility; biomedical; tissue engi-
neering

1. Introduction

The past decade has witnessed the rapid development of nanoscale science and tech-
nology that led to the discovery of various interesting elements of boron nitride nanotubes
(BNNTs). Since BNNTs were reported theoretically in 1994 [1,2] and produced experi-
mentally in the following year (using an arc discharge method) [3], there has been a lot
of interest in the research and development of BNNTs as a counterpart nanomaterial for
carbon nanotubes (CNTs). BNNTs are similar in structure to CNTs, being cylindrical rolls
in which carbon atoms are altered with boron and nitrogen atoms arranged in a hexagonal
lattice (Figure 1) [4]. Consequently, various methods focusing on the synthesis of BNNTs
have been developed, such as chemical vapour deposition (CVD) [5], ball milling [6], substi-
tution reactions [7], co-precipitation, and annealing processes [8]. These methods produced
various geometric nanotubes, purity, and structures of BNNTs to meet the required phys-
iochemical properties. However, standardised methods to produce high yield and high
purity BNNTs is still in early stages [9]. Therefore, the synthesis of BNNTs still appears in lit-
erature using different catalyst materials to produce application compatible BNNTs [10,11].
Furthermore, BNNTs are structural analogues of CNTs but possess unique chemical and
physical properties. BNNTs are electrical insulation with a wide bandgap (~6.0 eV) [4,12]
and the conducting of the tubes is independent of chirality, unlike CNTs [4,12]. In ad-
dition, BNNTs possess Young’s modulus up to 1.2 TPa [13] and are stable in air, up to
1100 ◦C [14]. In comparison, CNTs are chemically stable up to 500 ◦C in air [12,14]. The
thermal conductivity of BNNTs is slightly higher than CNTs (~300 W·mK−1) [12,15] at
about ~350 W·mK−1 [12] for a diameter of tube ranging from 30–40 nm [4]. In addition,
the high-purity BNNTs possess an optical band gap of ~6.0 eV with the absorption peak at
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~205 nm [12,16]. In addition, it was reported that bending of individual BNNTs can alter
the insulating behaviour and act as semiconductors [12,16,17]. Owing to their intriguing
physical and chemical properties, BNNTs gained significant interest in various applications
such as magnetorheological devices [12], nanoelectronics [18], microelectromechanical
systems, space travel [19], optical [20], drug delivery [21], polymer nanocomposite [18],
and tissue engineering [18,22].
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Despite BNNTs being a promising material for various applications, the hydrophobic
nature of pristine BNNTs hindered its exploitation in BNNTs applications. In terms of
biomedical applications, the solubility, homogeneity, and stability in aqueous media are
vital factors [23]. Therefore, to overcome the challenges, researchers have explored the
functionalisation of BNNTs (f-BNNTs) with various organic and inorganic materials to
obtain water-soluble BNNTs and to enhance the cellular uptake of BNNTs in biomedical
applications [23]. Hence, it was evident that a breakthrough in the synthesis and functional-
isation of BNNTs would open doors to employ BNNTs in various biomedical applications.
However, the research and development of BNNTs is still in its infancy as regards utilising
BNNTs as a mainstream nanomaterial in biomaterial applications. This is because no stan-
dardised protocol exists to assess the toxicity and biocompatibility of BNNTs. Considering
this, the interaction of BNNTs with various types of cells, tissues, and organs needs to be
assessed to identify the toxicity of the material. The adverse effects of foreign materials in
clinical applications can impact the normal functions of tissues or organs, which can lead
to health issues and ultimately can be lethal to the tissues.

In this systematic review article, information regarding the toxicity or cytotoxicity as well
as the biocompatibility of BNNTs with various cell lines and animals is reported. Indeed, the
objective of the review is to clarify the biocompatibility and to promote the design of future
BNNTs in biological domains as having potential for tissue-engineering applications.

2. Methodology
2.1. Eligibility Criteria

In vitro and in vivo studies that used BNNTs to address toxicity and biocompatibility
until February 2022 from Scopus and Web of Science (WOS) databases were included in this
review. Included published studies were limited to English language and journal articles
only. The search excluded abstracts, reviews, letters, and theses.

2.2. Types of Interventions

Studies that were conducted using BNNTs as the source to investigate cell viability, cy-
tokines, inflammation, genotoxicity, and toxicity effects on animals were included. Studies
that used derivates of boron nitride, boron nitride nanospheres, boron nitride nanoribbons,
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or boron nitride nanoplates were excluded. Studies discussing density functional theory
(DFT) or theoretical BNNT cellular dynamics were also excluded.

2.3. Information Source

A systematic search using Scopus and WOS was performed to identify studies (looking
at BNNTs in vivo and in vitro) reporting the outcomes of toxicity, cytokines, and biocom-
patibility of materials. The keywords that identified the studies are listed below (Table 1).
All the selected articles’ bibliographies were screened manually.

Table 1. List of keywords to identify the articles in Scopus and WOS.

Keywords

“Boron nitride nanotubes” or “bnnts” and “toxicity” or “in vivo” or “in vitro” or “tissue
engineering” or “biomedical”) and (limit—to (doctype, “ar”)) and (limit—to (srctype, “j”)) and

(limit—to (language, “English”)) and (limit—to (pub stage,” final”)

“Boron nitride nanotubes” (topic) and “biomedical” (topic) and review articles or proceedings
papers or book chapters or early access (exclude—document types) and articles (document types)

and English (languages)

“Boron nitride nanotubes” (topic) and “tissue engineering” (topic) and review articles or
proceedings papers or book chapters or early access (exclude—document types) and articles

(document types) and English (languages)

“Boron nitride nanotubes” (topic) and “toxicity” (topic) and review articles or proceedings papers
or book chapters or early access (exclude—document types) and articles (document types) and

English (languages)

“Boron nitride nanotubes” (topic) and “in vivo” (topic) and review articles or proceedings papers
or book chapters or early access (exclude—document types) and articles (document types) and

English (languages)

“Boron nitride nanotubes” (topic) and “in vitro” (topic) and review articles or proceedings papers
or book chapters or early access (exclude—document types) and articles (document types) and

English (languages)

2.4. Data Collection

The obtained articles from search sources were extracted into an Excel spreadsheet,
and this was performed using the PRISMA search strategy (Figure 2). Two independent
reviewers performed the screening of the articles. Titles and abstracts were screened initially
by one reviewer (A.B.K.) using the selection criteria described in Figure 1. Selected studies
from the first screening were then screened independently by two reviewers (A.B.K. and
I.K.). The full text of the studies was verified independently by the same reviewers (A.B.K.
and I.K.) using the same selection criteria. The reviewers discussed differences in opinion
until a consensus was reached. Snowballing search from other reviews and selected papers
was also conducted to identify additional articles.
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3. Results
3.1. Study Selection

The process of article selection and data extraction is shown in Figure 1. In the primary
search, a total of 284 articles were found from the Scopus and WOS databases. A total of
140 articles were chosen after duplicates were removed. Then, records were screened and
irrelevant studies such as simulations and non-toxicity studies (according to the abstracts
and titles) were removed, and 65 studies remained. In the next step, the full texts of
65 selected articles were reviewed, and 4 articles were removed. Ultimately, a total of
61 articles were included in this systematic review (Table 2).
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Table 2. Summarised correlation between BNNTs geometry, functionalisation, dosage, and time of exposure on various cells and their outcomes.

Authors and
References

Synthesis/
Source of BNNTs

Geometrical
Dimensions of BNNTs

Functionalisation/
Composition of

BNNTs

Dosage and Time of
Exposure

Animal Model/
Cell Line

Physiochemical
Characterisation

Biocompatibility and
Toxicity Assays Outcomes

Kakarla et al. [24,25] Co-precipitation
and annealing Diameter: 70 to 130 nm

Hydroxyl-BNNTs
(BNNTs-OH)/BNNTs

reinforced alginate and
gelatin/BNNTs

reinforced alginate
hydrogel scaffolds

0.05 to 0.1 w·v−1%;
up to 72 h HEK 293T

Scanning electron
microscopy (SEM),

transmission electron
microscopy (TEM),
Fourier transform

spectroscopy (FTIR),
mechanical,

thermogravimetric
analysis (TGA)

Viability: Trypan blue
and Ready Probes™

Cell Viability Imaging
Kit (blue/green)

Good printability, mechanical
strength, and thermal stability
with the addition of BNNTs.
Minimal toxicity at higher
concentrations of BNNTs.

Evariste et al. [26] Commercial BNNTs
(B and N > 99.9%) Diameter: 2 to 14 nm –

0, 0.1, 1, and 10 mg·L−1;
up to 24 h.

Larvae were fed twice
daily with BNNTs

ground aquarium fish
food

Xenopus laevis SEM, TEM, TGA, XRD,
and Raman spectroscopy

Micronucleus test, cell
cycle analysis, analysis
of sequences from gut

microbiota survey

The specific surface area of
BNNTs was 163 m2·g−1.

Micrographs displayed 2 to
10 walls of nanotubes with a

mean outer diameter of
6 ± 2.6 nm.

BNNTs possessed minor threat
to amphibians.

Li et al. [27] Solid-state reaction

Folate-conjugated
BNNTs and coated

with auristatin-
phenethylamine (PE)

(BNNTs-FA@PE)

0–100 µg·mL−1 Hep G2 and L02

TEM, FTIR,
ultraviolet-visible

(UV-vis) absorption
spectroscopy, X-ray

photoelectron
spectroscopy (XPS), size

distribution and zeta
potential

CCK-8 assay, cellular
uptake, actin staining,

in vitro anticancer
effects, Annexin

V-FITC/ propidium
iodide (PI),

mitochondrial
membrane potential,
Western blot analysis,
detection of Caspase

3/7 activity

The morphology showed
bamboo-like shaped

nanotubes with diameter of
≈90 nm. BNNTs displayed

photoluminescence emission
bands at 419, 489, and 594 nm.

FTIR analysis displayed
BNNTs-FA and

BNNTs-FA@PE had
absorption bands at
2937–2829 cm−1 and

1250–950 cm−1 related to the
methylene bands of PE

molecules.
No toxicity in both cell lines
and significant increase in

metabolic and cellular uptake.

Li et al. [28] Solid-state reaction PE-loaded BNNTs 0–100 µg·mL−1 HeP G2 Cells SEM, TEM, Z-potential,
FTIR, UV–vis, XPS

Intracellular uptake,
lysosomal staining,
actin staining, cell

viability, flow
cytometry, western blot,

Capase-3/7 activity

The morphology images
displayed BNNTs bamboo-like

structures with good
dispersive behaviour.

Furthermore, BNNTs showed
strong emission bands related

to B-N and excellent PL
properties in the visible light
range. The in vivo analysis

displayed good internalisation
and stimulated cell apoptosis

of BNNTs-PE.
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Table 2. Cont.

Authors and
References

Synthesis/
Source of BNNTs

Geometrical
Dimensions of BNNTs

Functionalisation/
Composition of

BNNTs

Dosage and Time of
Exposure

Animal Model/
Cell Line

Physiochemical
Characterisation

Biocompatibility and
Toxicity Assays Outcomes

Xin et al. [29]

Commercial BNNTs
that contain 50%

BNNTs with 5 nm
wide and 200 µm

long

Length: 200 µm;
diameter: 5 nm –

4 or 40 µg;
4 h, 1–7 days,
1–2 months.

The mice were fed with
BNNT mixed in

dispersion media
through an

oropharyngeal
aspiration.

Male C57BL/6 J mice
SEM, TEM, electron

paramagnetic response
spectra

Lung lavage, BAL cell
differentiation, lactic

dehydrogenase activity
(LDH), BAL fluid
protein analysis,

lymphocyte phenotypic
quantification,

mediastinal lymph
node and spleen

analysis, white blood
cell differentiation,

histopathology,
macrophage uptake,

pulmonary clearance,
RNA isolation and

gene expression

The micrographic analysis of
BNNTs showed an ideal length

of nanotubes.
The specific surface area of

BNNTs was 182.6 ± 2.4 m2·g−1

with the density of 0.03 g·cm−3.
Only a higher dosage of BNNTs
caused the inflammation and a
lower dose did not show any

effects in the lung.

Lee et al. [21] Commercial BNNTs – Purified BNNTs 0–100 µg CHO-K1 and 3T3-L1 SEM, XRD, dispersion
stability

Cell viability, drug
delivery

The SEM and dispersion
stability analysis confirmed the
nanotubes in tubular structures

with stable dispersion in
aqueous media. The XRD

analysis observed the
hexagonal lattice of B−N

in BNNTs.
Purified BNNTs showed lower

cytotoxic at a higher dosage
and efficiently carried the drugs

than as synthesised BNNTs

Pasquale et al. [30] –

BNNTs loaded with
dox and coated with
cell membranes (CM)

(Dox-CM-BNNTs)

25, 50, 100, and
200 µg·mL−1;

up to 72 h
U87

TEM, FTIR, size
distribution, zeta

potential, TGA, dynamic
light scattering (DLS),

bicinchoninic acid assay

Cell uptake mechanism,
cell viability

The morphology of BNNTs
coated with CM was not precise
due to low thickness. The FTIR
confirmed that BNNTs coated

with CM with presence of
peaks related to amino acids of
CM proteins. The TGA analysis
indicated that the total weight
loss of CM-BNNTs was 20%.
DLS analysis indicated that

negative Z-potential related to
stable colloidal solution.

Dox-CM-BNNTs and free drug
were able to substantially
decline the cell viability

compared to non-treated
controls and BNNT controls.
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Table 2. Cont.

Authors and
References

Synthesis/
Source of BNNTs

Geometrical
Dimensions of BNNTs

Functionalisation/
Composition of

BNNTs

Dosage and Time of
Exposure

Animal Model/
Cell Line

Physiochemical
Characterisation

Biocompatibility and
Toxicity Assays Outcomes

Marcos da Silva
et al. [31]

Chemical vapor
deposition (CVD) –

BNNTs doped in situ
with samarium (Sm)
and gadolinium (Gd)
(SmBO3-BNNTs and

GdBO3-BNNTs)

10 and 50 µg·mL−1;
up to 24 h

HDF and Sarcoma
osteogenic (SAOS-2)

XPS, FTIR, SEM, TEM,
X-ray fluorescence

spectroscopy (XRF),
electron energy loss
spectroscopy (EELS),
vibrational sample

magnetometry (VSM),
neutron activation

MTT assay,
Calcein/Hoechst assay

SEM and TEM images
confirmed that the BNNTs
were successfully modified

with Sm and Gd with uniform
distribution on their surfaces.
The XPS and EELS analysis

further confirmed the presence
of Sm and Gd in the BNNTs.
In addition, VSM analysis
stated that coated BNNTs

exhibited magnetic properties.
50 µg·mL−1 of GdBO3-BNNTs

suggested low
biocompatibility with
fibroblasts (50% of cell

viability), but high
biocompatibility with SAOS-2

cells (80% of cell viability).

Ferreira et al. [32] CVD Diameter: 30 nm;
length: 1 µm

BNNT with the CREKA
peptide/99mTc-BNNT-

CREKA

100 µL;
1, 4 and 8 h 4T1 tumour cells SEM, TEM, TGA, zeta

potential, FTIR

Biodistribution
histopathological and

blood clearance
analysis; fluorescence

microscopy cell images

The SEM and TEM
micrographs revealed several
nanotubes with ≈10 nm outer

wall thickness. BNNTs and
coated BNNTs showed good

thermal stability. FTIR
analysis showed B-N

stretching vibrations and
additional C—H, O—H and

O—C bands in coated BNNTs.
BNNTs-CREKA as an effective

material for targeting the
primary tumour tissues and

metastatic tumour sites.

Ferreira et la. [33] Commercial BNNTs

BNNTs incorporated
with alkyl trimethyl
ammonium bromide

(ATAB)

0 to 0.2 wt%;
up to 72 h HaCaT

FTIR (degree of
conversion (DC) analysis),

microhardness, contact
angle, mineral deposition

Cytotoxicity assay and
antibacterial assay

No DC was noted in the
samples. The contact angle

was higher for functionalised
BNNTs. The minerals

deposition analysis was
displayed higher peak

intensities in BNNTs-ATAB.
No significant cell viability

reduction was observed in the
BNNTs-ATAB compared with

control groups (90%).
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Table 2. Cont.

Authors and
References

Synthesis/
Source of BNNTs

Geometrical
Dimensions of BNNTs

Functionalisation/
Composition of

BNNTs

Dosage and Time of
Exposure

Animal Model/
Cell Line

Physiochemical
Characterisation

Biocompatibility and
Toxicity Assays Outcomes

Bohns [34] Commercial
BNNTs Length: 200 µm

BNNTs reinforced
resin-based dental

sealants (RBSs)
0.1 and 0.2 wt% Pulp fibroblasts and

human keratinocytes

FTIR, tensile strength,
contact angle, surface

roughness, colour
assessment, Mineral

deposition

Sulforhodamine B
(SRB) cytotoxicity assay

No evidence of DC in the
BNNTs-RBSs. The additions of
BNNTs to RBSs did not show a
significant difference in tensile

strength from RBSs. The contact
angle values were adequate even

though the incorporation
of nanotubes.

Lower surface energy was noticed
for BNNTs comprising RBSs.

BNNTs at 0.1 and 0.2 wt% in RBSs
did not show any

cytotoxicity effects.

Çal [35] Commercial
BNNTs Diameter:5 nm BNNTs incorporated

with curcumin
10–300 µg·mL−1;

up to 24 h
HeLa, V79 and

CD34+ TEM, zeta potential MTT assay, comet assay

The TEM images showed the
BNNTs with micrometres length
and Z-potential with positive z

signals for curcumin in
the BNNTs.

BNNTs and BNNTs-curcumin
showed minimal toxicity in all

cell lines

Ricotti et al. [36] Annealing – Glycol-chitosan
(GC)-BNNTs

10 µg·mL−1;
for 24 h HDF and C2C12 Focused ion beam (FIB),

ICP-MS, EELS

Quantitative real-time
polymerase chain

reaction (qRT-PCR),
cytokine

measurements, calcium
transients imaging

FIB images revealed evenly
dispersed GC-BNNTs in cell

culture medium. The ICP-MS
showed highest content of boron
in cells treated with GC-BNNTs.

EEL spectrum confirmed the
presence of GC-BNNTs in sections

of C2C12 cells.
BNNTs were internalised on the
top layer of cells and localised
inside C2C12 cells, while no

particles were internalised by the
HDF cells. In addition, BNNTs
stimulate cell differentiation at
both gene and protein levels.

Augustine et al. [37] Thermal plasma – –
5 to 10 mg of BNNT in

20 mL glass
scintillation vial

NB4, HepG2, U87,
and A549

AFM, and probe
sonication

WST-8, MTT and
monitoring beating

behaviour of
cardiomyocytes

The AFM analysis of BNNTs
displayed that the tubes were

≈300 to 500 nm in length with 2 to
3 nm in height. While after probe

sonication, the length of
nanotubes decreased to

191.9 ± 5.2 nm.
BNNTs displayed cytotoxic to the

cells measured through
AFM-based cardiomyocyte assay.
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Table 2. Cont.

Authors and
References

Synthesis/
Source of BNNTs

Geometrical
Dimensions of BNNTs

Functionalisation/
Composition of

BNNTs

Dosage and Time of
Exposure

Animal Model/
Cell Line

Physiochemical
Characterisation

Biocompatibility and
Toxicity Assays Outcomes

Poudel et al. [38] Commercial
BNNTs 20–30 µm thickness

Polyvinylidene fluoride
(PVDF) and the

trifluoroethylene (TrFE)
reinforced with BNNTs
(PVDF-TrFE-BNNTs)

10 days Human tendon
derived cells

DSC, FTIR, differential
scanning calorimetry

(DSC), tensile analysis,
electrical poling,

quasi-static measurement
of piezoelectric coefficient

Fibronectin
functionalisation,

live/dead assay, cell
proliferation assay

Addition of BNNTs was evident
in enhancing mechanical
properties, melting and

crystallisation temperatures, and
crystallinity.

PVDF-TrFE-BNNTs
nanocomposite displayed

enhanced cell attachment and
proliferation compared to pure

PVDF-TrFE

Genchi et al. [39]
Pressurised

vapor/condenser
(PVC)

– PVDF-TrFE-BNNTs – Saos-2

SEM, TEM, AFM, piezo
response, piezoelectric

transduction, numerical
simulation

Cell differentiation, cell
stimulation, alizarin

red and collagen
staining, quantitative

real-time reverse
transcriptase

polymerase chain
reaction

The micrographs of BNNTs
revealed bundles of nanotube
ranging up to µm in length.

AFM topographic maps of the
PVDF-TrFE-BNNTs showed

~30 nm of mean surface
roughness with good piezo

electric properties.
The piezoelectric films of

PVDF-TrFE-BNNTs indicated
increased cell differentiation.

Demir et al. [40] Commercial
BNNTs

Average diameter 239.7
± 6.48 nm – 0.0003, 0.003, 0.027,

0.135, and 0.270 mg·g−1

Drosophila (D)
melanogaster adults

and larvae

SEM, TEM, DLS, laser
doppler velocimetry

(LDV)

Endotoxin assay,
drosophila strain,

exposure, and toxicity,
hemocytes collection,
ROS, gene expression
changes, genotoxicity,

antigenotoxicity, comet
assay

SEM and TEM images of BNNTs
revealed that the average

nanotubes length was
245 ± 65.72 nm. The DLS and

LDV analysis showed lower zeta
potential that indicated the

propensity of BNNTs to
aggregates.

BNNTs treated larvae increased
the genotoxicity and

antigenotoxicity.

Degrazia et al. [41] PVC –

BNNTs incorporated
with bisphenol A

glycerolate
dimethacrylate
(BisGMA) and
hydroxyethyl
methacrylate

0.05, 0.075, 0.1 and
0.15 wt% Fibroblasts

FTIR, contact angle, micro
tensile bond strength,

failure pattern analysis

Cytotoxicity
sulforhodamine B (SRB)
colorimetric assay, cell

viability

The successful incorporation of
0.1 wt% BNNTs into adhesive
resin increased the tensile and

longer stability.
BNNTs treated with cells did not

show any cytotoxicity.
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Table 2. Cont.

Authors and
References

Synthesis/
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Ferreira et al. [42] CVD – BNNTs–OH– ferric
oxide (Fe3O4)

0–2 µg·mL−1;
48 h HeLa

XRD, TEM, XPS,
vibrating sample

magnetometer (VSM)

WST-8 and CCK-8
assay, internalisation

tests, magneto
hyperthermia assay,

cell death assay
(calcein-AM and PI),

cell imaging

Micrograph imaging revealed a
bundle of nanotubes with tube like

structures. The XPS analysis
showed that BNNTs consisted

mostly of B and N atoms. Magnetic
measurements displayed that

coercivity and magnetisation were
not agitated with the addition

of BNNTs.
The results showed excellent
viability of cells treated with

OH-BNNT-Fe3O4 and validated
the internalisation capability of

BNNTs by the cells.

Ferreira et al. [43] CVD –
BNNTs-OH covered

with radioactive C-39
detectors

0–200 µg·mL−1;
up to 48 h HeLa SEM, FTIR, XRD

WST-8, CCK-8,
performance test, cells

irradiation

The outcomes showed no evidence
of changes in crystallinity of the
material and intense solid B-N

bands. No substantial differences
after irradiation in the

microstructures of the BNNTs
compared to pure BNNTs.

BNNTs had appropriate cell
viability and that irradiation with a

suitable flux of thermal neutron
without adverse damage in

the cells.

Ponraj et al. [44] Ball milling –

Gold nanoparticles
functionalised on

BNNTs and loaded
with dox

30, 60, and 90 µL DU145 TEM, XPS Cyquant assay

Micrographs images showed long
and medium BNNTs. XPS analysis
displayed the BNNT surface with

oxygen rate from 8 to 27.4%.
The dox loaded BNNTs killed ~99%

of cancer cells, which resulted in
good drug carrier for cancer

treatment.

Kodali et al. [45] Commercial
BNNTs Length:0.6 to 1.6 µm – 0–100 µg·mL−1 THP-1 cells, NLRP3

and c57BL/6J mice SEM, TEM, DLS

ROS, high content
epifluorescence

microscopy, lysosomal
membrane

permeabilisation,
cytokine analysis,
cathepsin B and

caspase 1 activity inside
the cells, phagocytosis
and lipopolysaccharide
(LPS) functional assays

The morphology images showed
BNNTs with a diameter ranging
from 13–23 nm observed with a

minimum agglomerate rate.
BNNTs showed acute

inflammation and toxicity both
in vitro and in vivo condition.
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Sen et al. [46] CVD –

Hydroxylated BNNTs
modified with

oligonucleotides
(BNNTs- OH-oligo)
and further doped
with morpholino

– MDA-MB-231-luc2 TEM, FTIR, agarose gel
electrophoresis

Cell viability assay,
luciferase activity

FTIR spectrum showed the B-N
and –OH bands in the BNNTs and

TEM images displayed some
damaged nanotubes due to

hydroxylation.
The luciferase activity decreased

when MDA-MB-231-luc2 cells were
incubated with

morpholino/oligo-BNNTs. The cell
viability results almost similar to

control.

Farshid et al. [47] Commercial
BNNTs

Length 1–2 µm and
diameter ~100 nm

BNNTs reinforced
propylene fumarate

(PPF-BNNTs)
nanocomposites

24 h MC3T3

TEM, X-ray spectroscopy,
Raman spectroscopy,
sol-fraction analysis,

compressive test

Presto Blue® assay,
LDH, Calcein-AM

staining, osmolarity of
degradation, cell
attachment and

spreading

BNNTs displayed a tubular
morphology with a diameter of

100 nm and length of 1–2 µm. The
spectroscopy analysis showed

good bands of B-N. Furthermore,
the compressive modulus

increased up to 6% with the
incorporation of BNNTs in PPF.

BNNTs reinforced polymer
nanocomposite was non-cytotoxic.

Emanet et al. [48] CVD Length: 5 µm; and
diameter 10 nm

BNNTs-OH reinforced
chitosan Up to 7 days HDF

SEM, TEM, fluorescent
microscopy, mechanical,
in vitro biodegradation

WST-1 colorimetric
assay, cell proliferation

and adhesion

The micrograph images showed
large pores in the BNNTs-chitosan

scaffolds. FTIR spectra of the
BNNTs showed the -OH and B-N

bands of the modified BNNTs
BNNT-OH-chitosan scaffolds
showed enhanced mechanical

strength and reduced water
absorption.

The cell viability results showed
that increase in viability rate over
the incubation time in BNNTs-OH

reinforced chitosan

Rocca et al. [49] CVD Length: 2 µm and
diameter ~50 nm

Pectin coated BNNTs
(P-BNNTs)

0 to 50 µg·mL−1;
up to 24 h RAW 264.7 SEM, TEM, zeta potential

WST-1 assay, quant-iT
PicoGreen dsDNA

assay, reactive oxygen
species, annexin

V-FITC apoptosis
detection, cytokine
detection, qRT-PCR

The results indicated that pectin
coated BNNTs significantly

improved the dispersibility of
BNNTs. Furthermore, the

micrograph analysis showed that
65% of cells positively internalised

of P-BNNTs without any effects
BNNTs with pectin did not show

any adverse effects on cells.
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Niskanen et al. [50]

Boron
oxide-assisted
chemical vapor

deposition
(BOCVD)

Length: 15 µm

BNNTs modified with
isopropanol, glycine

coated BNNTs loaded
with curcumin

0–50 µg·mL−1;
up to 72 h N9 murine microglia TEM

Confocal and
non-confocal
fluorescence

microscopy, cellular
uptake, cell viability,

mitochondrial
metabolic activity assay,
Griess test, ELISA assay

The micrograph analysis reported
that BNNTs were successfully

coated with glycine and loaded
with curcumin. However, the

sonication resulted in shortened
length and damaged some

nanotubes.
Non-cytotoxic.

Sen et al. [51] CVD – BNNTs-OH reinforced
gelatine and glucose 7 days HDF

SEM, TEM, contact angle,
tensile test, in vitro

biodegradation

Cell viability, adhesion,
and proliferation

The results indicated that the
biodegradation amount of the
scaffolds was slower with the

incorporation of BNNTs. The SEM
and fluorescence microscopy

images showed that the BNNTs
positively impacted cell adhesion

and proliferation.
The cells retained their own

morphology and increased the
proliferation rat with inclusion

of BNNTs.

Li et al. [52] CVD Length: 1–2 µm;
diameter: 80 nm – 0–50 µg·mL−1; up to

14 days MSCs SEM, TEM, AFM, protein
absorption Cell viability

The SEM and TEM images of
BNNTs showed the nanotubes of

1–2 µm length. The AFM analysis
confirmed that BNNTs were
uniformly distributed on the

surface of piranha solution treated
substrate. The protein absorption
measurement indicated highest

absorption ability with BNNTs on
the substrate.

BNNTs showed good
biocompatibility with MSCs.

Diez-Pascual et al.
[53] CVD –

Polyethylene glycol
grafted BNNTs

reinforced
poly(propylene

fumarate)
(PEG-g-BNNTs-PPF)

0, 0.1, 0.5, 1.0, 2.0,
4.0 wt%;

up to 24 h
HDF

FESEM, TGA, water
uptake, tensile tests,
antibacterial action,

biodegradability, protein
absorption, tribological

analysis

Cell viability
(alamarBlue assay)

SEM micrographs displayed a
random and uniform dispersion of
the PEG-g-BNNTs in the PPF. The

degree of hydrophilicity, water
absorption, protein absorption and

biodegradability enhanced with
increasing PEG-g-BNNTs content.

In addition, the BNNTs
nanocomposites did not show
toxicity for the adhesion and

growth of HDF cells.
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Fernandez-Yague
et al. [54] PVC –

Polydopamine (PD)
functionalised BNNTs

(PD-BNNTs)

1, 10, 30 µg·mL−1;
up to 72 h Osteoblasts XPS, TEM, DLS Live/dead assay

The TEM images indicated that the
BNNTs were successfully coated

with PD, and XPS analysis
confirmed the presence of

elemental composition of PD in
BNNTs varied from BNNTs. The

dispersion of PD-BNNTs in media
without any precipitation was

confirmed with DLS.
The PD-BNNTs do not show any

cytotoxic effects on cells.

Emanet et al. [55] CVD –
BNNTs-OH combined
with glucose, lactose

and starch

5 to 200 µg·mL−1;
up to 3 days HDF and A549 TEM, FTIR, TGA, protein

interaction

Cellular uptake, ROS,
cell viability,

genotoxicity assay

The TEM images displayed the
smooth nanotubes, and FTIR

analysis confirmed the -OH and
B-N bands in modified BNNTs.

Furthermore, the results indicated
no negative of cells treated with

BNNTs.

Danti et al. [56] – –
BNNTs functionalised
myoblast/microfibre

mesh constructs
108 h C2C12 SEM

Cellular viability,
protein expression,
spatial distribution,
4′-6′-diamidino-2-

phenylindole staining,
phalloidin-Alexa

488 stanning

Micrographs displayed the
myotubes on the surface of the

BNNTs.
The results stated that cells were

able to differentiate and to
internalise upon treating with

BNNTs.

Salvetti et al. [57] CVD Length: 10 µm;
diameter: 10–80 nm

Gum Arabic coated
BNNTs (GA− BNNTs)

100 or 200 µg·g−1;
4 and 24 h;

Injected GA-BNNTs
Planarians

TEM, morphometric
analysis, Inductive

coupled plasma
(ICP)-AES

DNA diffusion and
comet assay, propidium

iodide/JC1 staining,
qRT-PCR, phototactic

assay, analysis of
mitosis

The morphological analysis
demonstrated micrometres length

of BNNTs, and there were no
abnormalities observed after

injecting GA-BNNTs into
planarians.

BNNTs did not induce DNA
damage or apoptosis or does not

show harmful effects on planarian
stem cells.

Ferreira et al. [58] CVD Length–1 µm
BNNTs functionalised

with folic acid
(FA-BNNTs)

0–50 µg·mL−1;
1 and 3 days HeLA FTIR, XPS, TGA, TEM,

ICP microscopy

WST-1 assay, cell
uptake, lysosome

staining

The FTIR analysis demonstrated
bands related to B-N and C=O in

Fa-BNNTs. The XPS analysis
displayed strong B and N bonds in

FA-BNNTs. The microscopy
analysis displayed a hallow inner
channel with a detailed tubular

structure of nanotubes.
FA-BNNTs displayed increased in
cellular uptake compared to pure

BNNTs.
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Nakamura et al.
[59] – –

Poly(ethyleneglycol)–
1,2–distearoyl–sn–

glycero–3–
phosphoethanolamine

(mPEG–DSPE)
functionalised BNNTs

(BNNTs–DSPE–
PEG2000)

– B16 – MTT assay
BNNTs-DSPE-PEG2000 displayed
antitumor effect on cells incubated

over the time.

Ferreria et al. [60] CVD Diameter: 70 nm
Gum Arabic (GA)

functionalised BNNTs
(GA-BNNTs)

0–50 µg·mL−1;
1, 3, and 7 days Rat MSCs TEM, FTIR, Raman

spectroscopy, DLS

Cell viability, metabolic
activity, cytoskeleton

conformation,
differentiation of stem
cells into adipocytes

and osteocytes at gene
and phenotype

TEM images of the BNNTs
displayed hallow inner channels of

nanotubes, and spectroscopy
results showed the presence of B

and N bands. The toxicity analysis
showed that BNNTs were

cyto-compatible with non-toxic
effects on cells.

Li et al. [61] CVD –

Europium
functionalised BNNTs

and doped with
sodium gadolinium

(BNNTs@NaGdF4:Eu)

0–50 µg·mL−1;
3 and 20 h

Human LNcap
prostate cancer cells

X-ray spectrometry (XRS),
TEM Cellular uptake

Micrograph images showed
nanotube with inner shells coated

with EU and GD.
BNNTs@NaGdF4:Eu displayed

higher cell uptake and displayed
improvement of chemotherapy

efficacy through magnetic fields.

Barachini et al. [62] Ball milling and
annealing – PLL functionalised

BNNTs
0–10 µg·mL−1;

up to 72 h
Human dental pulp

stromal cells

UV–vis
spectrophotometer, SEM,

TEM

Cell viability, double
stranded (ds-DNA) and

glycosaminoglycan
(GAG) contents,

histological analysis

The micrographs showed that
PLL-BNNTs internalised inside
cytoplasm vesicles of a single

DPSC.
Non-cytotoxic.

Nitya et al. [63] CVD –

BNNTs functionalised
with four surfactants:

Pluronic (P123),
polyethyleneimine

(PEI), Pluronic (F127),
and ammonium oleate

(A.O.)

15.62, 31.25, 62.5, 125,
250, 500 and

1000 µg·mL−1;
24 h

Vero, Chang liver,
MCF7 and A549 XRD, TEM, XPS

MTT assay, DNA
fragmentation assay,

acridine orange
staining, ethidium
bromide stanning

The XRD showed the hexagonal
lattice of boron nitride and TEM

images confirmed the presence of
multiwalled BNNTs.

BNNTs functionalised with four
surfactants resulted in good

cytocompatibility.

Ciofani et al. [64] CVD Length: 10 µm;
diameter: 1.5 nm GA-BNNTs 0–50 µg·mL−1;

up to 72 h
SH-SY5Y and

HUVECs SEM

WST-1 assay, annexin
V-FITC/propidium

iodide
(PI) apoptosis analysis,

ROS, cytoskeleton
analysis,

immunofluorescence,
qRT-PCR, detection of
endothelial adhesion
molecule expression

The morphology images showed
that BNNTs were internalised in

the cells.
BNNTs with high purity about

20 µg·mL−1 displayed good
biocompatibility.
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Ferreria et al. [65] CVD –

BNNTs functionalised
with glucosamine

(GA), polyethylene
glycol (PEG) 1000, and

chitosan (CH)

0 to 100 µg·mL−1;
48 h MRC-5

FTIR, TGA, TEM, XRD,
photon correlation

spectroscopy and zeta
potential analysis,

physical stability study,
fluorescence microscope

MTT assay, ROS

The results indicated that BNNTs
were successfully obtained and

functionalised, achieving a
standard size and dispersity

considered satisfactory for in vitro
studies.

BNNTs functionalised with PEG
and chitosan showed significant

cell damage and increase
cytotoxicity at higher concentration
(above 50 µg·mL−1). However, the
results stated that no considerable

changes in cell morphology or
increase in ROS.

Danti et al. [66] Ball milling and
annealing – poly-L-lysine-(PLL)

coated BNNTs
0–20 µg·mL−1;

up to 72 h hOB

UV–vis/NIR
spectrophotometer, TEM,

Zeta potential
distribution

MTT assay, ROS,
annexin V-FITC/PI,

cellular uptake,
investigation of

BNNTs-treated hOB
cells under ultrasound

irradiation, gene
expression, biochemical

assay, histologic
analyses

The evaluation with TEM or
spectroscopy confirmed that

PLL-BNNTs were internalised at
cytoplasm level and were noticed

in membranal vesicles.
The results stated PLL-BNNTs

were non-cytotoxic.

Turco et al. [67] Annealing –

Glycol (G)-chitosan
(C)-coated boron

nitride nanotubes(GC-
BNNTs)

0–100 µg·mL−1;
up to 72 h HUVECs

TEM, SEM, XRS and
immunofluorescence

microscopy

Cell viability, cell
proliferation, surface

enzyme immunoassay,
cytoskeleton

organisation and focal
adhesions analysis,

endothelial adhesion
molecule expression

The SEM and TEM images
displayed non-continuous

nanotubes with no presence of
regular stacking single units. TEM

analysis indicated cellular
internalisation after treating cells

with GC-BNNTs.
GC-BNNTs did not show adverse

effects on cell biology or DNA
damage, which resulted in

non-cytotoxicity.

Ciofani et al. [68] Annealing – Gadolinium coated
BNNTs (Gd-BNNTs)

0–100 µg·mL−1;
up to 72 h SH-SY5Y ICP-MS, XRS, TEM

WTS-1 assay and DNA
content

quantification, cell
labelling using MRI

experiments

The TEM images displayed defects
on the nanotubes due to

functionalisation. The ICP-MS and
XRS confirmed the presence of B

and N elements in BNNTs.
Furthermore, the EDX and ICP

analyses showed Gd-BNNTs as a
favourable negative contrast agent.
It was stated that Gd-BNNTs were
biocompatible with their ability to
efficiently label and distinguish in

MRI images at 7 T.
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Ciofani et al. [69] Annealing Length–500 nm GC-BNNTs

5 and 10 mg·kg−1;
up to 7 days;

injected
into the marginal ear

vein of animals

New Zealand male
rabbits

DLS, SEM, TEM, X-ray
spectroscopy

Blood analysis,
pharmacokinetic

analysis, objective
symptoms such as

sweating, excitement,
trembling, and head

nodding were analysed

The morphology images displayed
bamboo-like nanotubes. The DLS

confirmed good dispersion in aqueous
media after modification with GC.Results

stated that all doses were extremely
endured by the animals, with no indication

of major effects.

Ciofani et al. [70] Annealing –

BNNTs-OH coated
with 3-aminopropyl-

triethoxysilane
(APTES)

0–100 µg·mL−1;
up to 24 h NIH/3T3

Z-potential analysis,
X-ray spectroscopy, SEM,

TEM, XPS

WST-1 assay, ds-DNA
quantification, cell

internalisation analysis,
actin staining

The atomic composition analysis confirmed
the maximum percentage of B and N atoms
present in BNNTs. The SEM/TEM images
displayed nanotubes with small bundles of

nanotubes. The functionalised BNNTs
resulted in good cytocompatibility at
higher concentration (100 µg·mL−1).

Soares et al. [71]

Metallic
oxide-assisted
chemical vapor

transport

–
GC-BNNTs coated
with radioelement

99mTc

5 and 40 mg·kg−1;
10 and 30 min, 1 and

24 h;
Injected intravenously
into the tail of Swiss

mice

Swiss mice
SEM, TGA, FTIR, photon
correlation spectroscopy,
zeta potential analysis

Radioactivity analysis,
scintigraphy imaging

biodistribution analysis

The morphology images confirmed the
nanotubes coated with GC. The FTIR

spectrum confirmed strong bands of B-N in
BNNTs and −OH, C=H and C=H in

GC-BNNTs. The TGA results displayed
that BNNTs had less weight loss compared

to GC-BNNTs.
The in vivo distribution analysis indicated
that major elimination of BNNTs by renal
excretion and accumulation in the liver,

spleen, and intestines.

Ciofani et al. [72] Annealing – GC-BNNTs

1 mg·kg−1;
2, 24, and 72 h;

injected into the
marginal

ear vein of animals

New Zealand male
rabbits

FIB, TEM, AFM, Size
distribution, Z-potential

analysis

Blood analysis to
evaluate hematic

parameters and live
and kidney

functionality

The FIB and TEM images of BNNTs
showed the presence of bamboo-like shape
nanotube structures with diameter ranging
between 30 and 100 nm. The AFM images
revealed that nanotubes edges decorated

with globular structures. Z-potential
analysis demonstrated good stability of

GC-BNNTs dispersion in aqueous medium.
GC-BNNTs did not cause any organ failure

or effects on blood parameters.

Menichetti et al.
[73] Ball milling – PLL-BNNTs 1–100 µg·mL−1;

up to 72 h SH–SY5Y
MRI experiments,

UV–vis/NIR
spectrophotometry

MTT assay, metabolic
activity testing, cell

adhesion

The PLL-BNNTsnoted at 3T showed
considerable signal attenuation with

increasing the concentration of BNNTs.
The PLL-BNNTs compatibility in vitro at

least up to 100 µg·mL−1.

Horvath et al.
[74] – – –

0.05, 1, and
2 µg·mL−1;
up to 6 days

A549, RAW 264.7,
3T3-L1, HEK 293 SEM, TEM

Cytopathological
analyses, MTT assay,
FMCA assays, DNA

assays

The BNNTs morphology images showed
multiwalled nanotubes found in the

plasmathe membrane of the cells.
BNNTs induced higher toxicity in all the

cell lines.
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Lahiri et al. [75] Commercial Length–0.4–5.8 µm;
diameter 10–145 nm

BNNTs reinforced
hydroxyapatite
(BNNTs-HA)

1, 3, and 5 days Osteoblasts
SEM, TEM, XRD,

nanoindentation, Vickers
indent impression

Cell viability

The SEM/TEM images showed the
nodular and cylindrical shaped

BNNTs. The XRD results confirmed
the hexanol lattice of B and N atoms.

The composite with the highest
BNNTs concentration displayed
excellent mechanical properties.

The BNNTs-HA did not induce any
significant effects on cells.

Ciofani et al. [76] Annealing – GC-BNNTs 0–100 µg·mL−1;
up to 48 h SH-SY5Y cells SEM, TEM, UV–vis

MTT assay, WST-1
assay, DNA content

assessment, ROS,
annexin V-FITC with PI

Early apoptosis
detection

The SEM/TEM images showed a
bamboo-shaped nanotube.

Furthermore, the UV-vis spectrum
confirmed strong absorption at

5.5 eV related to BNNTs.
The cytotoxicity results with

MTT-assay interfered the toxicity
results and resulted in wrong

toxicity data at low
concentrationwhile WST-1 showed

non-toxicity above 50 µg·mL−1. The
results stated no significant ROS or

apoptosis up to 100 µg·mL−1.

Lahiri et al. [77] Commercial –

Polylactide-
polycaprolactone
copolymer (PLC)
reinforced with

BNNTs
(PLC−BNNTs)

0, 2 and 5 wt% Osteoblasts, murine
macrophages

SEM, XRD, micro-Raman
spectroscopy, tensile tests

Cell viability, gene
expression, nucleic acid

isolation, qRT-PCR

The SEM images displayed both
tubular and bamboo-shaped

nanotubes. The spectroscopy strong
BNNTs as well as co-polymer peaks
in PLC-BNNT. The elastic modulus

of PLC-BNNTs increased up to
1370% with an increase in BNNTs

concentration.
PLC-BNNTs incubated with cells

did not increase in rate of cell death
and hence resulted in

non-cytotoxicity.

Ciofani et al. [78] Ball milling and
annealing – PLL-BNNTs Up to 72 h C2C12 TEM

MTT assay, live/dead
assay using annexin
V-FITC, metabolic
activity, apoptosis
detection, double

stranded (ds)-DNA
and protein

quantification,
qRT-PCR, gel

electrophoresis,
Western

blot analysis,
immunocytochemistry

The TEM images confirmed the
stable dispersion with a small

amount of aggregates nanotubes in
dispersion agents.

PLL-BNNTs did not show any
difference in MyOD and Cx43 gene

expression. The viability results
indicated excellent cell proliferation

and metabolic activity up to
concentration of 10 µg·mL−1.
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Raffa et al. [79] Ball milling and
annealing Radius–40 nm PLL-BNNTs Up 24 h SH-SY5Y

UV–vis/NIR
(near-infrared)

spectrophotometer,
focused ion beam (FIB)

microscopy,
electroporation analysis

MTT assay

The UV–vis/NIR
quantification reported the

best and repeatability
absorption of PLL-BNNTs.

The microscopy images
showed the bundles of

nanotubes. The cells exposed
to BNNTs

facilitated electroporation
displayed excellent cell

viability, metabolism, and
proliferation.

Ciofani et al. [80] Ball milling and
annealing method – Folic acid

(FA)-PLL-BNNTs 10 µg·mL−1; 24 h T98G FIB microscopy, UV-vis
spectroscopy, Z-potential

MTT assay, cellular
uptake, lysosome

tracking assay,
Quantum dots labelling

images

The FIB images showed that
the FA-PLL-BNNTs could be
internalised by tumour cells.

The UV-vis analysis displayed
firm peaks for BNNTs and

PLL-BNNTs. The Z-potential
evaluation showed the strong

positive Z-signals for
FA-PLL-BNNTs. The

functionalised BNNTs
indicated ability to treat

malignant cerebral tumours.

Chen et al. [81] CVD – – 100 mg·mL−1; up to
4 days HEK 293 TEM

Cell count and cell
viability using annexin

V-FITC/PI assay

The microscopy images
showed high purity

multiwalled BNNTs. BNNTs
demonstrated

non-cytotoxicity.

Ciofani et al. [82,83] Ball milling and
annealing – Polyethyleneimine

(PEI)-coated BNNTs
10 µg·mL−1;

up to 72 h SH-SY5Y TEM, UV–vis/NIR
spectrophotometer

Trypan blue exclusion
viability assay, MTT

cell proliferation assay,
cell uptake, cell
imaging using

fluorescent microscope

The morphology images
showed a bundle of nanotubes.

Furthermore, the cell treated
with BNNTs did not show any
evidence of cell morphology
changes. BNNTs treated with

cells indicated no considerable
effects on viability,

metabolism,
and cellular replication of this

cell line.
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3.2. The Synthesis of BNNTs

The synthesis process of BNNTs essentially depends on the conversion of B and N
atoms into BN radicals [84]. Various methods to develop BNNTs depend considerably
on diverse strategies, including precursors, conditions, and equipment, to obtain the
high-yield BNNTs. In 1995, BNNTs were synthesised along with the analysis of their
structural characteristics. The synthesis was carried out using various methods, such as
laser ablation [15], chemical vapour deposition (CVD) [16], ball milling [17], substitution
reaction [18], co-precipitation, and annealing [19]. All these syntheses produced BNNTs
with a variety of purity levels, structures, and diameters to meet the requirements for
particular physical and chemical properties. The real applications of BNNTs are still far
from the market, but some laboratory-level exploration has been successfully achieved. For
example, BNNTs unitisation in various applications such as BNNTs reinforced polymeric
composites [20], BNNTs reinforced ceramic composites [21] and hydrogen storage [22] have
been carried out effectively.

3.2.1. Arc Discharge Method

Chopra et al. [3] were the first to report the experimental synthesis of BNNTs by using
the arc discharge method. The procedure involved a BN rod as the precursor, which was
inserted into a hollow tungsten anode electrode and arc plasma was generated between the
precursor and anode to produce BNNTs. The BNNTs produced were multi-layer nanotubes
with lengths of 200 nm and a diameter ranging from 1 to 3 nm [3]. The yield ratio of the
obtained BNNTs was 1:1 for B:N [3]. Cumings et al. [85] reported the plasma-arc method,
which can produce large-scale amounts of pure BNNTs. During the process, a grey, web-like
material grew near the top of the chamber, while a thin layer of grey soot covered the side
walls of the chamber [85]. Both the web-like material and the grey soot contained high
amounts of BNNTs. Nevertheless, the web-like material had a slightly higher amount of
BNNTs compared to the grey soot [85]. Saito et al. [86] reported BNNTs synthesised using
arc discharge with the reaction between the zirconium diboride electrode in a nitrogen
(N2) atmosphere. Single-wall BNNTs, with a diameter ranging from 2 to 5 nm, were
obtained with different chiral angles containing the zigzag and the armchair [86]. Recently,
Yeh et al. [87] demonstrated a stable synthesis of BNNTs, with a precursor of B anode in
an atmosphere of N2, using the arc discharge method. The report indicated that BNNTs
produced from this method were single and multi-walled nanotubes. However, the major
drawback of the arc discharge method is that it is challenging to manufacture BNNTs at
commercial quantity, as the reaction zone at the arc core is limited to a modest capacity [84].

3.2.2. Ball Milling Method

Ball milling is another method utilised to synthesise BNNTs [88]. Chen et al. [89]
demonstrated the synthesis of BNNTs with a boron powder ball milled under ammonia
(NH3) gas for 150 h and subsequently annealed at 1000 to 1200 ◦C in the N2 environment.
The report stated that the long hours of milling through the nitration process resulted in
high-yield BNNTs. Gerald et al. [90] described the BNNTs produced from precursors (tung-
sten carbide) in a ball mill. The characterisations of the study stated that thick-walled BN-
NTs were produced in milling conditions under an ammonia atmosphere. Similarly, other
researchers produced BNNTs using various catalysts, mainly iron(III) chloride (FeCl3) [91],
iron (Fe) [6], ferric nitrate (Fe(NO3)3) [92], iron(II, III) oxide (Fe3O4) [93], B [94], and silicon
carbide (SiCf/SiC) [95]. The synthesised BNNTs were mostly in bamboo-like nanotube
shapes with a diameter ranging from 50 to 200 nm with a length of 1.0 mm.

3.2.3. Laser Ablation

The laser ablation method is used to synthesise BNNTs at higher temperatures. Gold-
berg et al. [96] demonstrated the synthesis of BNNTs through laser heating of precursor
cubic-BN and hexagonal-BN in a diamond anvil in the N2 atmosphere. The obtained
BNNTs were 3–15 nm in diameter. In another study, Yu et al. [97] reported the production
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of BNNTs using the evaporation of BN, along with cobalt and nickel at 1200 ◦C in the
presence of a laser beam. The findings stated that the BNNTs had a diameter ranging from
1.5 to 8 nm. Additionally, it was further stated that the tips of nanotubes were either flat
cap or semi-circular [97]. Smith et al. [98] demonstrated the synthesis of the long single-
and multi-walled BNNTs through the pressurised vapour condition. BNNTs of 3 cm in
length were obtained. More recently, Kim et al. [99] reported dual growth modes of BNNTs
using a high-temperature pressure laser ablation. It was observed that BNNTs with both
closed- and open-end nanotubes were obtained [99].

3.2.4. Thermal Plasma

Thermal plasma is another technique used to produce BNNTs. This method is sim-
ilar to the laser ablation technique but capable of producing a large volume of BNNTs.
Kim et al. [100] demonstrated producing BNNTs of small diameter (~5 nm) using hexagonal-
BN by the thermal plasma technique. BNNTs with high crystallinity, purity, and yield
were produced without needing a higher amount of catalyst [100]. Similarly, Fathal-
izadeh et al. [101] described a low-wall number BNNTs synthesis method using the thermal
plasma method. The result showed that catalyst-free BNNTs with a production rate of
35 g·h−1 was obtained [101]. Compared with the laser ablation method, the production
rate is 300 times higher than the thermal plasma process [101]. Recently, Kim et al. [102]
reported that BNNTs were synthesised using direct current thermal plasma. The report
stated that the high-yield BNNTs were produced at a production rate of 12.6 g·h−1. BNNTs
with a diameter of 7 nm were obtained with low input power and gas. Hence, thermal
plasma provides an efficient way to mass-produce BNNTs with high quality [102–104].

3.2.5. Chemical Vapour Deposition (CVD) and Thermal Annealing

The CVD method has been playing a promising role in synthesising BNNTs. In this
process, the yield and structure of the BNNTs are mainly based on the precursor, catalyst,
temperature, gas, and equipment. Experimentally, BNNTs grown in the CVD method are
commonly through horizontal or vertical furnaces at high temperatures. Furthermore, the
furnace with dual temperatures was also considered in the synthesis of BNNTs using CVD.
Lee et al. [105] applied the CVD method with a precursor loaded in a quartz tube and placed
the tube in a horizontal furnace. The design was used to grow the BNNTs through flowing
NH3 and react with the precursor to obtain high BNNTs. Recently, Koken et al. [10] reported
the synthesis of BNNTs at a temperature of 1050 ◦C with the precursor (colemanite) and
catalyst (Fe2O3) through CVD. The produced BNNTs were multi-walled with a diameter
of 62 to 82 nm. The CVD technique is studied with various precursors, catalysts, and
temperatures to produce BNNTs [106].

In addition to the methods mentioned above, there are other synthesis techniques to
produce BNNTs; for example, the co-precipitation and annealing method, where B powder,
Fe2O3, and urea were mixed to obtain a precursor and annealed at 1200 ◦C for 5 h [8]. The
grown BNNTs had a diameter ranging from 10 to 80 nm with the shape of bamboo and
quasi-cylindrical [8]. Another method was heating the B powder, Fe2O2, and ammonium
chloride in the autoclave at 600 ◦C for 12 h [106,107]. The diameter of obtained BNNTs was
100 nm. To better understand these techniques, they are summarised in Table 3.

Table 3. Summary of different synthesis methods for BNNTs.

Methods Temperature (◦C) References

Arc-discharge >3426.85 [3,85,87,108–110]
Laser ablation 1200–5000 [96,98,111–113]

Ball mill/annealing 1000–1300 [6,88–92,114–121]
Template synthesis 500–1580 [122–129]

Thermal plasma >526.85 [84,100–102,130]
CVD 1100–1700 [131–143]

Autoclave 450–600 [107,144,145]
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Overall, the thermal plasma method is currently applicable in the commercial produc-
tion of BNNTs. The cost of 100 mg of BNNTs is within USD 100 [18]. However, ongoing
research and development will continue to obtain more efficient methods to produce higher
purity and yield BNNTs to stimulate the availability of the material.

3.3. BNNTs Functionalisation, Modification, and Types of Composites

Although BNNTs possess excellent characteristics and are recognised as structural
analogues of CNTs, the hydrophobic nature of BNNTs limited their utilisation in biomedical
applications. One of the major drawbacks of using pristine BNNTs in cell culture is the
tendency to form agglomeration [81], which can affect both cell proliferation and biocom-
patibility evaluation [65,81]. Thus, the initial step to employ BNNTs in biological systems is
to obtain the homogenous dispersion of BNNTs in aqueous media or in other physiological
media [146,147]. To overcome this limitation, the functionalisation of the surface of BNNTs
with various approaches such as covalent [148], noncovalent [149], defect reaction, and
inner-space filling [150,151] were employed to give nanotubes a good dispersibility in
water and biological mediums (Figure 3a). Additionally, BNNTs were functionalised with
lipids [23], antibodies [152], peptides [153], specific molecules, or quantum dots [146] to
uncover the full possibilities of using BNNTs in biomedical applications. The illustration of
BNNTs functionalisation is shown in Figure 3.
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Experiments were conducted through various consecutive steps of thermal stirring and
sonication with various agents such as glycol-chitosan (GC) [76]; poly-L-lysine (PLL) [78];
methoxy–poly(ethylene glycol)–1,2–distearoyl–sn–glycero–3–phosphoethanolamine-N con-
jugate (mPEG-DSPE) [23]; polyethyleneimine (PEI) [82]; 3-aminopropyltrimethoxysilane
(APTES) [70]; doxorubicin (DOX) and deoxyribonucleic acid (DNA), to obtain stable dis-
persion of BNNTs in cell-culture mediums.

3.4. Cell Sources

The most dominant cell types used in the included articles were human embry-
onic kidney cells (HEK293, HEK293T) [24,25,74,81,154], human neuroblastoma cells (SH-
SY5Y) [30,64,68,73,76,79,82,155], mouse embryonic fibroblasts (NIH/3T3) [70], human
dermal fibroblasts (HDF) [31,36,48,51,55], lung fibroblasts (MRC-5) [65,156], dental pulp
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fibroblasts [34,41,62], lung epithelium cells (A549) [37,55,74], macrophage cells (RAW
264.7) [49,74], human liver epithelium (HeP G2) [27,28,37], human peripheral blood
(NB4) [37], glioblastoma cells (malignant U87 [30,37,156], T98 [80,156]), mammary gland
adenocarcinoma cells (MCF-7) [156], N9 murine microglia cells [50], osteoblasts [54,66,75,77],
osteoblast precursor cell line derived from mouse musculus calvaria (M3CT3) [47], THP-
1 [45], NLRP3-deficient human monocytic cells [45], human osteosarcoma cell line (SAOS-
2) [31,39], murine macrophages [77], Henrietta Lacks (HeLa) [35,42,43,58], CD34+ cells [35],
V79 cells [35], bronchoalveolar lavage cells (BAL) [29], B16 melanoma [59], human LNcap
prostate cancer cells [61], human endothelial cells (HUVECs) [64,67], human hepatocytes
(L02) [27], C2C12 mouse myoblasts [36,56,78,155], human tendon cells [38], 4T1 tumour
cells [32], bone-marrow mesenchymal stem cells (MSCs) obtained from bilateral femora
from Fischer 344/N syngeneic rats [52], MSCs [60], human prostate adenocarcinoma cells
(DU145) [44], MDA-MB-231-luc2 cells [46], and human keratinocytes (HaCaT) [33] to assess
the toxicity and biocompatibility of the BNNTs.

3.5. Methods Evaluating In Vitro Biocompatibility of BNNTs
3.5.1. Cell Viability Assays

In the selected articles various methods have been used to analyse the effects of the
BNNTs-incubated cells on cell viability and cytotoxicity assays (Figure 4a). The most com-
monly used evaluations were 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) [31,35,76,78,82,156], 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium (WST-1) [68], alamarBlue™ [30], Trypan Blue assay [78,82], tetrazolium-8-[2-(2-
methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium] monoso-
dium salt (CCK-8) [27], lactic dehydrogenase (LDH), and amido black assay [67]. These
assays are calorimetric methods to evaluate cell viability, proliferation, and cytotoxicity.
For instance, MTT assays are dissolved in a solubilisation solution that results in a coloured
solution with absorbance at 500–600 nm, using a spectrophotometer. Subsequently, WST-
1 assay is a water-soluble assay with greater stability and sensitivity, providing rapid
measurements. Another method is LDH assay, which is used to evaluate the level of
plasma-membrane damage in cell population. Another very simple method is Trypan Blue
assay. Trypan Blue highlights the dead cells that are easily observed under bright-field
microscopy [24,25,82].

Cytotoxicity of BNNTs can be detected by staining the live and dead cells. The
staining reagents penetrate the living cells and transform the membrane into fluorescent
dye colours such as blue, green, and red, which can be detected with flow cytometry
and fluorescence microscopy [146,157]. To identify the BNNTs cytotoxicity, the studies
used calcein AM [31,68], ethidium homodimer III (Ethd-III) [68], annexin V-Fluorescein
(FITC)/PI [27,42,49,64,66,76] assay, actin staining [29] and 4′,6-diamidino-2-phenylindole
(DAPI) staining and trizima solution [33].

3.5.2. Total Reactive Oxygen Species

Generally, BNNTs (foreign matter) incubated with cells tend to increase reactive
oxygen species (ROS) [40,45,64–66,76]. The inclined ROS levels cause cellular stress that
can be observed using oxidation-sensitive fluorescent dyes like 5-(and-6)-carboxy-2′,7′-
dicholrodihydrofluorescein diacetate (carboxy-H2DCFDA) [157]. The evaluation is carried
out by flow cytometry in the FITC channel and fluorescence microscopy. The oxidative
stress may increase due to sudden changes in environmental conditions or during infection,
which causes damage to cellular proteins, lipids, and DNA that has been associated with
inflammation, cancer, and other physiological conditions.

3.5.3. Genotoxicity Evaluation

Genotoxicity testing is performed to detect and identify hazards, and to determine the
mutation of germ cells and cancer development (Figure 4b) [46]. The genotoxicity of BNNTs
can be assessed using the comet assay [35,40,57]. The comet assay can be used with in vivo
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and in vitro evaluation of genotoxicity. The single-cell gel electrophoresis assay detects
low levels of DNA damage in a small number of cells. Measurements of genotoxicity are
carried out using Comet IV software or manual counting.

 
Figure 4 (a) Illustration of cell viability assay. Reproduced with permission from Ref [67]. Copyright 2013 Elsevier; 
(b) Morpholino-oligo-BNNTs cultured with MDA-MB-231-luc2 cells to evaluate gene slicing efficiency. 
Reproduced with permission from Ref [46]. Copyright 2017, Elsevier. 
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Figure 4. (a) Illustration of cell viability assay. Reproduced with permission from Ref. [67]. Copyright
2013 Elsevier; (b) Morpholino-oligo-BNNTs cultured with MDA-MB-231-luc2 cells to evaluate gene
slicing efficiency. Reproduced with permission from Ref. [46]. Copyright 2017, Elsevier.

3.6. BNNTs Biocompatibility In Vitro

BNNTs in biomedical applications have been studied in in vitro assessments using
various cell lines to understand the toxicity levels and biocompatibility. Ciofani et al. [82]
(in 2008) first reported the toxicity of BNNTs, using SH-SY5Y cells. The BNNTs were
functionalised with polyethyleneimine (PEI) and incubated in the cell line for up to 72 h to
evaluate the toxicity [82]. The viability tests were carried out using Trypan Blue and MTT
assay [82]. The results stated that PEI-coated BNNTs were non-cytotoxic and displayed no
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negative effects on cell functions [82]. Furthermore, it was mentioned that due to the PEI on
the surface of the BNNTs, the cell-uptake mechanisms were not impacted. The outcomes of
the study stated that BNNTs did not show any significant toxicity levels, up to 5 µg·mL−1

for up to 72 h [82]. Similarly, Raffa et al. [79] demonstrated the toxicity of BNNTs using
the same cell lines with different functionalisation material. The study as carried out on
PLL-coated BNNTs (PLL-BNNTs). Furthermore, the BNNTs were tested as a nanotool to
facilitate cell electropermeabilisation (EP) with extremely low electric fields varying from
40–50 V/cm [79]. The results demonstrated that the presence of BNNTs (facilitated with EP)
displayed high cell viability, metabolism, and proliferation. In addition, BNNTs mediated
with EP aided in increasing cell permeabilisation with low voltage to allow chemicals or
DNA to be introduced into cells for drug delivery and therapeutic treatments [79]. Using
the same human neuroblastoma cells, Ciofani et al. [76] explained the cytocompatibility and
stability that was attained through BNNTs wrapped with glycol-chitosan (GC-BNNTs). The
various concentrations of GC-BNNTs (0, 5, 10, 20, 50 and 100 µg·mL−1) were incubated in
cells for 48 h and assessed with both MTT and WST-1 assay [76]. The results stated that the
BNNTs at higher concentrations showed optimal cytocompatibility with no adverse effects
on viability, toxicity, early apoptosis, and ROS. Moreover (and interestingly), the results
stated that the MTT assay showed false cytocompatibility findings due to the BNNTs
interactions with tetrazolium salts that hindered the results, which showed a viability
decrement of 10 µg·mL−1. However, a water-soluble assay, namely WST-1, indicated that
intrusion did affect the enzymatic reaction, with no decrease in viability at 10 µg·mL−1 [76].
Furthermore, the early apoptosis detection and ROS detection performed after 48 h showed
no evidence of significant negative effects with cells incubated with different concentrations
of BNNTs-GC [76]. Similarly, other studies carried out using the same cell line showed
significant cytocompatibility in vitro, up to 100 µg·mL−1 [68,73] (See Table 2).

3.6.1. Human Embryonic Kidney Cells

Chen et al. [81] showed the biocompatibility of BNNTs with HEK cells. The BNNTs
were synthesised using a chemical vapour technique (CVD) with a geometry of 20–30 nm
diameter and lengths ranging up to 10 mm [81]. The BNNTs were incubated in HEK
293 cells without any functionalisation, up to 100 mg·mL−1 [81]. Additionally, the toxicity
of BNNTs was compared with CNTs of similar length and diameter. The results indicated
that BNNTs showed similar cell growth in control (cells cultured in a medium without nan-
otubes) [81]. In contrast, CNTs showed a significant decrease in cell growth after 4 days [81].
Furthermore, the apoptosis and necrosis analysis with annexin V-FTIC/propidium staining
on cells treated with BNNTs and glycodendrimer coated BNNTs observed that BNNTs
directly bind to cell surfaces [81]. This easy method demonstrated that coated BNNTs and
uncoated BNNTs revealed comparable dendrimer-bearing galactose deposits that were
adept at cooperating with proteins and cells [81].

3.6.2. T98g and Fibroblast Cells

In another study, the cytocompatibility of BNNTs with yields of 80 and 97% purity
was functionalised with PLL (PLL-BNNTs) and was evaluated using T98G cells and human
gingival fibroblasts [80]. Furthermore, the functionalised BNNTs were bound with folic acid
(FA) to obtain folate conjugated PLL-BNNTs (FA-PLL-BNNTs) [80]. Both the PLL-BNNTs
and FA-PLL-BNNTs were covalently identified with carboxyl-derivatised quantum dots for
cellular-tracking studies [80]. After 24 h of treatment at 10 µg·mL−1 concentrations of both
PLL-BNNTs and FA-PLL-BNNTs, the contents displayed complete cytocompatibility of
PLL-BNNTs with both cell lines [80]. Furthermore, cell viability assayed using Trypan Blue
displayed >95% viability in each case [80]. The MTT assay displayed excellent metabolic
activity (80%) for both cells, with no significant difference to the control [80].
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3.6.3. Human Osteoblasts Cells

Danti et al. [66] investigated the toxicity of PLL-BNNTs using a different cell line
(primary human osteoblasts (HOBs)) and the effects of BNNTs with an ultrasound stimula-
tory method on cell function and maturation was studied [66]. The MTT viability assay
displayed excellent metabolic activity of the treated cells with PLL-BNNTs after 72 h [66].
The early apoptotic and necrotic phenomenal showed no substantial variation in both
control and PLL-BNNTs-treated cells after 24 and 72 h [66]. Furthermore, the osteoblast-cell
internalising BNNTs that were irradiated with low-frequency ultrasound showed improved
in protein concentration with respect to the controls [66]. Lahari et al. [77] addressed the
cytotoxicity of the BNNTs-reinforced polylactide-polycaprolactone copolymer (PLC) com-
posites using both HOBs and macrophage cells. The cytotoxicity evaluation was carried
out using an LDH assay and showed no adverse effects of the BNNTs-reinforced polymer
in both cells [77]. Furthermore, BNNTs-reinforced PLC increased the cell viability rate on
composite films. More interestingly, it was observed that fourfold and sevenfold increases
occurred in levels of expression of transcription factor Runx2 in composite films [77]. The
same group studied the biocompatibility of hybrid composite produced by BNNTs mixed
with hydroxyapatite (BNNTs-HA) using HOBs [75]. The results stated an accelerated
osteoblast-cell viability and proliferation within the presence of BNNTs [75].

In another study, Fernandez-Yague et al. [54] validated BNNTs functionalised with poly-
dopamine (PD) cytocompatibility using HOBs at concentrations of 1, 10, and 30 µg·mL−1.
The quantification of cell viability with PD-coated BNNTs-treated cells showed good
metabolic activity with a 90% proliferation rate, while uncoated BNNTs showed reduced
metabolic activity and proliferation rates compared to control conditions [54]. Moreover,
the study stated that PD-coated BNNTs localised to the HOB plasma membrane can be
deposited on the cell surface, acting as a protective layer and preventing endocytosis of
isolated nanotubes [54]. Furthermore, the PD-coated BNNTs were internalised by cells as
individual entities [54]. Another interesting investigation reported by Farshid et al. [47] was
on BNNTs-reinforced poly(propylene fumarate) (PPF-BNNTS) in vitro cytotoxicity, using
MC3T3 pre-osteoblasts. The cell viability was determined by the resazurin-based Presto
Blue® assay. It was reported that 1 µg·mL−1 PFF-BNNTs showed 100% cell viability while
100 µg·mL−1 showed 99 ± 13% [47]. The results suggested good cell viability, attachment
and spreading of MC3T3 cells on all experimental groups [47].

3.6.4. Fibroblast Cells

Ciofani et al. [70] reported on in vitro biocompatibility and cellular uptake of BNNTs
functionalised with amino salts, using fibroblast (NIH/3T3) cells. An aminosliane named
APTES was presented as a surface functionalisation agent for the BNNTs. This opened up
various interesting perspectives for BNNTs modification using biomolecules [70]. The ob-
tained BNNTs-coated APTES were incubated with NIH/3T3 cells for up to 72 h to study the
viability rate of cells [70]. The WST-1 assay showed (after 24 h) excellent metabolic activity
and viability of cells treated with 100 µg·mL−1 functionalised BNNTs [70]. However, after
72 h a decrement in viability rate was observed—about 16% at both 50 and 100 µg·mL−1

concentration of BNNTs [70]. DNA concentration analysis showed similar results as the
WST-1 assay with no significant effects after 24 h at higher concentrations. While there were
decreases up to 20% at 50 µg·mL−1 and 100 µg·mL−1 BNNTs concentration after 72 h [70].
The confocal microscopy images of actin-stained cells treated with f-BNNTs displayed no
evidence of f-BNNTs in cell nuclei [70]. Consequently, f-BNNTs demonstrated optimal
cytocompatibility at higher concentrations, with stable dispersion [70].

Emanet et al. [48] prepared the hydroxylated BNNTs (BNNT-OH)-chitosan scaffold
and tested their mechanical strength, swelling behaviour and biodegradability. The results
showed that the inclusion of BNNTs-OH into the chitosan scaffold increased the mechanical
strength and pore size at optimal for high cellular proliferation and adhesion [48]. The
chitosan-BNNT-OH scaffold was also found to be non-toxic to human dermal fibroblast
(HDF) cells due to their slow degradation rate. The results were confirmed with DAPI-
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stained cells proliferated on a chitosan-BNNT-OH scaffold better than the cells on the
chitosan-only scaffold [48].

In another study, Emanet et al. [55] reported functionalisation of the BNNTs by hy-
droxylation (h-BNNTs) and carbohydrate modification to increase the cellular uptake and
dispersibility of the nanotubes. Glucose, lactose, and starch-modified BNNTs (m-BNNTs);
BNNTs and h-BNNTs (5–200 µg·mL−1) were incubated (1–3 days) with two cell lines (HDF
and A549) to evaluate the cytotoxicity and the genotoxicity [55]. The A549-cell viability
declined to 40% and 60%, while the HDF-cell viability reduced to 90% during the second
and third days of the incubation with BNNTs and h-BNNTs [55]. In addition, m-BNNTs
showed no adverse effects on the viability of HDFs and A549 cells [55]. Meanwhile, the
ROS production significantly increased in BNNTs and h-BNNTs-exposed cells up to 70
and 110%, in both cases [55]. In contrast, the ROS production was not significant (20 and
30%) in m-BNNT-exposed cells, with respect to the control cultures [55]. With the comet
assay, BNNTs and h-BNNTs-treated cell tail-lengths were approximately 38%, while the
m-BNNT-exposed cell tail-lengths were 20% and 30% if compared to the positive control
cells, which were exposed to hydrogen peroxide [55]. Hence, the outcomes showed that the
increase in ROS levels in the cells was due to DNA damage [55]. Furthermore, the analysis
indicated that BNNTs and h-BNNTs were cytotoxic, but m-BNNTs were biocompatible for
various biomedical applications without significant damage to healthy cells [55].

Sen et al. [51] studied the biocompatibility of BNNTs-reinforced gelatine and glucose
scaffolds produced using an electrospinning technique. The biocompatibility tests were
carried out using HDF cells incubated with BNNTs-gelatine scaffolds after exposure for
up to 7 days [51]. The results stated that the scaffolds did not substantially impact the cell
viability rate (Figure 5) [51]. In other studies, Diez-Pascual et al. [53] reported polyethylene
glycol (PEG)-grafted BNNTs-reinforced poly (propylene fumarate) (PPF) nanocomposite
biomaterials for tissue-engineering applications. The cytotoxicity of PPF-PEG-g-BNNT
nanocomposites was assessed by culturing with HDF [53]. The viability results of various
concentrations of PPF-PEG-g-BNNT (0.0–4.0 wt%) showed negligible toxicity towards HDF
cell lines after 24 h [53]. Thus, the covalent grafting of BNNTs with PEG reduced the cyto-
toxicity towards the cells and likely aid in good dispersion of BNNTs in aqueous media [53].

Ferreira et al. [65] investigated the cytocompatibility of BNNTs functionalised with
organic hydrophilic agents composed of glucosamine (GA), polyethylene glycol (PEG)
1000 and chitosan (CH). The in vitro studies of f-BNNTs were conducted using lung fi-
broblast MCR-5 cells [65]. The functionalised BNNTs (0.1–50.0 µg·mL−1) treated with cells
showed an approximately 90% viability rate after 48 h [65]. At higher concentrations of
100 and 200 µg·mL−1 the viability was approximately 50% and 25% in samples of BNNTs-
CH and BNNTs-PEG [65], while BNNTs-GA maintained excellent viability (>90%) up to
100 µg·mL−1 after 48 h. Furthermore, with BNNTs-GA, the results stated that no significant
chromosomal damage, DNA damage, or ROS increase was observed, up to a concentra-
tion of 50 µg·mL−1 [65]. However, concentrations above 50 µg·mL−1 in BNNTs-CH and
BNNTs-PEG resulted in significant cell damage and increased cytotoxic activity [65].

Degrazia et al. [41] reported the cytotoxicity of a methacrylate-based adhesive contain-
ing BNNTs using fibroblast cells in derived dental pulp. The results stated that cell viability
of fibroblasts after 72 h was enhanced up to 10% when 0.05 wt% BNNTs were incorporated
into methacrylate-based adhesive [41]. Furthermore, it was stated that the cytocompatibil-
ity depended on the purity, concentration, and functionalisation of BNNTs [41]. Similar
studies have been conducted by Bohns et al. [34] and Barachini et al. [62] to analyse the
BNNTs cytotoxicity with fibroblast cells derived from dental pulp. It was reported that
BNNTs incubated with cells do not have any significant effect on the viability of cells.
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Figure 5. Microscopy images of HDF cells growing onto the BNNTs reinforced gelatine and glucose scaffolds. 
Reproduced with permission from Ref [51]. Copyright 2015, Elsevier. 

 

Figure 5. Microscopy images of HDF cells growing onto the BNNTs reinforced gelatine and glucose
scaffolds. Reproduced with permission from Ref. [51]. Copyright 2015, Elsevier.

3.6.5. HeLa Cells

Ferreira et al. [43] investigated the cytocompatibility of BNNTs using HeLa cells.
Concentrations of 10, 50, 100, and 200 µg·mL−1 of BNNTs were incubated with cells for
2 days and viability was assessed using WTS-1 assay [43]. The results showed that the
viability rate was more than 80% for all concentrations [43]. Furthermore, a cell-irradiation
assay was carried out to promote cell-death signalling in tumour cells, which showed
minor toxicity where BNNTs were internalised [43]. Overall, the biological assays showed
that the BNNTs had a suitable cell viability and that irradiation with an appropriate flux
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of thermal neutrons did not cause significant damage in the cells studied [43]. In another
study, BNNTs functionalised with folic acid (FA) were incubated with HeLa cells to evaluate
the cytocompatibility [58]. The in vitro assays tests indicated that no adverse effects were
found on HeLa cells cultured with FA-BNNTs and BNNTs in a concentration range of
0–50 µg·mL−1 [58]. Furthermore, the internalisation assessment revealed that BNNTs were
located outside the cells, while FA-BNNTs were highly internalised by the cells, indicating
an active role in the cell-uptake process (Figure 6) [58].
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Figure 6. (a) Confocal images of HeLa cells treatment with BNNTs and FA-BNNTs; (b) FA-BNNTs
internalisation by HeLa cells; (c) lysosome staining (in green) for FA-BNNT (in pink) co-localisation
evaluation. Reproduced with permission from Ref. [58]. Copyright 2015, Elsevier.

3.6.6. Human Umbilical Vein Endothelial Cells

Del Turco et al. [67] also studied the effects of GC-BNNTs (0–100 µg·mL−1) incubated
with HUVECs for 48 and 72 h. It was reported that no adverse effects were identified
in cell viability, the cytoskeleton, or DNA damage. Another interesting study used gum
Arabic (GA) as a non-covalent functionalisation agent to obtain dispersion and stability of
BNNTs [64]. The obtained gum-Arabic-coated BNNTs were cultured in both HUVECs and
SH-SY5Y cells, with concentrations of 0–100 µg·mL−1 [64]. The viability tests conducted
using WST-1 assay for SH-SY5Y and Amido Black assay for HUVEC cells demonstrated
that the f-BNNTs viability rate was not statistically different from the control cultures, up to
20 µg·mL−1 after 72 h [64]. However, there was a significant decrease in the rate of viability
in higher concentrations, after 72 h [64]. The micrograph images showed that cells failed to
reach confluence after 72 h in higher concentrations over 20 µg·mL−1 [64]. Additionally,
the results stated that no adverse toxic effects were displayed (up to 20 µg·mL−1) on both
cell types in terms of ROS production and apoptosis induction [64]. It was highlighted
that BNNTs were suitable for in vitro biomedical applications (up to 20 µg·mL−1) with a
suitable length and aspect ratio of the nanotubes [64].



Nanomaterials 2022, 12, 2069 29 of 42

3.6.7. Human Osteosarcoma Cells

Marcos da Silva et al. [31] conducted a study using an in vitro assay on BNNTs
incorporated with samarium and gadolinium (GdBO3-BNNTs) with a human osteosarcoma
cell line (SAOS-2) and HDF cells. The samples in a concentration of 10 µg·mL−1 showed
high biocompatibility both with fibroblasts (92% cell viability) and with SAOS-2 cells
(70% cell viability) [31]. A concentration of 50 µg·mL−1 indicated low biocompatibility
with fibroblasts (50% cell viability) but high biocompatibility with SAOS-2 cells (80% cell
viability) [31]. The results suggested that biocompatibility relied on low concentrations and
the osteosarcoma cells were more resistant to this material than normal cells [31]. The results
showed that the GdBO3-BNNTs can be used in scintigraphy radiotracers or as MRI contrast
medium, being able to promote the treatment of many types of tumours simultaneously
with their diagnosis [31]. Genchi et al. [39] investigated piezoelectric films of BNNTs-
reinforced poly(vinylidenedifluoride-trifluoroethylene) (PVDF-TrFE-BNNTs) that were
prepared by cast annealing and used SAOS-2 cells to evaluate the cytocompatibility. The
percentage of Alizarin Red-stained areas of piezoelectric PVDF-TrFE-BNNTs films was
higher with absence or presence of ultrasound. Moreover, the markers were significantly
increased in cells cultured on PVDF-TrFE-BNNTs films [39].

3.6.8. Mesenchymal Stem Cells

In another study, Li et al. [52] described the interaction between BNNTs and mesenchy-
mal stem cells (MSCs). The results stated that BNNTs displayed an increase in protein
absorption and enhanced the cell proliferation of MSCs that improved the secretion of
total protein by MSCs [52]. In addition, BNNTs increased the alkaline phosphate activity
as an early marker of osteoblasts and osteocalcin as a late marker of osteogenic differen-
tiation [52]. Overall, it was reported that BNNTs were able to enhance the osteogenesis
of MSCs, which showed potential in bone regeneration in orthopaedic applications [52].
Ferreira et al. [60] incubated GA-BNNTs in MSCs to investigate the cytocompatibility. The
cell viability and proliferation were not affected, up to 20 µg·mL−1 of GA-BNNTs [60].
The cytoskeleton study revealed a significant reorganisation of the forms based on f-actin
staining, because of uptake of the GA-BNNTs [60]. Additionally, it was indicated that
BNNTs enhanced the differentiation of MSCs into adipocytes (but not into osteocytes) and
led to an increase in mRNA level for adipocyte differentiation [60].

3.6.9. MDA-MB-231-luc2 Cells

Sen et al. [46] demonstrated that BNNTs could be functionalised with oligonucleotides
(oligo-BNNTs) and chemically hybridised to morpholinos (morpholino/oligo-BNNTs).
The hybridised composite used delivery of morpholinos into MDA-MB-231-luc2 cells [46].
The gene-slicing assessment stated that luciferase activity decreased when MDA-MB-
231-luc2 cells were treated with morpholino/oligo-BNNTs, which showed gene-slicing
efficiency [46]. The WST-1 assay displayed that the scrambled morpholino/oligo-BNNTs,
scrambled lipofectamine, morpholino/oligo-BNNTs, and morpholino-lipofectamine did
not significantly affect cell viability (88 ± 4% for all) [46].

3.6.10. Glioblastoma Cells

Niskanen et al. [50] evaluated the response of cells such as N9 microglia and U25IN
glioblastoma to BNNTs coated with glycine and loaded with model drug, curcumin, and
fluorescent probes. The length of the BNNTs was approximately 2 µm with the ends opened
up due to the sonication process [50]. The cell viability tests uncovered that microglia cell
death occurred when exposed to a BNNT concentration over 10 µg·mL−1 [50]. However,
U25IN cells remained viable when they were exposed to the higher concentration of BNNTs,
under the same conditions [50]. In contrast, the viability of U25IN cells was reduced after
24 h of exposure to the higher concentration. Whereas curcumin-g-BNNTs incubated with
microglia cells was decreased in the viability at a concentration higher than 50 µg·mL−1, the
U25IN cell loss was 25.3 ± 6.3% at 50 µg·mL−1 [50]. The mitochondrial metabolic activity
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of cells indicated that drugs such as curcumin can be effectively incorporated into BNNTs,
internalised by tumour cells, and can release therapeutic effects [50]. The curcumin-loaded
BNNTs reduced the inflammation from microglia cells stimulated with LPS. However,
curcumin-g-BNNTs showed reduced metabolic impairment caused by BNNTs devoid of
curcumin [50].

3.6.11. Vero, Chang Liver, MCF7, and A549 Cells

Nitya et al. [63] used BNNTs functionalised with four different surfactants such as
Pluronic-P123, PEI, Pluronic-F127, and ammonium oleate (A.O.) to investigate their antibac-
terial properties and conduct cytotoxic studies. The pristine BNNTs and surfactant-coated
BNNTs were evaluated to interpret their antibacterial activity and cytotoxicity levels in
various cells such as Vero, Chang liver, MCF7, and A549 cells [63]. The toxicity levels were
analysed using an MTT assay. The results stated that the F127-coated BNNTs and pristine
BNNTs showed good viability rates in all cell lines, up to 250 µg·mL−1 [63]. P123 and
A.O-coated BNNTs showed no adverse effects, up to 125 µg·mL−1 [63]. However, PEI func-
tionalised BNNTs showed significant toxicity levels on Vero and Chang liver cells at lower
concentrations [63]. In addition, DNA fragmentation of F127-coated BNNTs indicated the
apoptotic pathway of cell death in cancer cells [63].

3.6.12. Other Types of Cells

Rocca et al. [49] investigated pectin-coated BNNTs (P-BNNTs) incubated with RAW-
264.7 macrophages to evaluate in vitro cyto- and immune-compatibility. The WST-1 assay
results demonstrated that cell metabolism was not altered by P-BNNTs treatment at all the
considered concentrations with respect to the control cultures [49]. The proliferation rate
was assessed using Quant-iT™ PicoGreen® ds-DNA assay, which showed no differences in
terms of DNA concentration in the treated samples, compared to the control [49]. Flow-
cytometry measurements of necrotic/apoptotic phenomena finally exhibited that an acute
treatment with P-BNNTs, up to 50 µg·mL−1, did not cause a statistically significant growth
of necrotic, early apoptotic, or late apoptotic cells in comparison to a control culture [49].
Furthermore, P-BNNTs did not stimulate inflammation responses, both at protein and gene
levels [49]. Poudel et al. [38] analysed the cellular response to piezoelectric materials com-
posed of PVDF-TrFE-BNNTs and evaluated cytocompatibility using human-tendon-derived
cells. The cell-proliferation assays confirmed that cells cultured on PVDF-TrFE/BNNT
nanocomposites demonstrated enhanced proliferation for up to 10 days in culture relative
to pure PVDF-TrFE films [38].

Pasquale et al. [30] investigated the BNNTs doped with doxorubicin (Dox) and coated
with cell membranes (CM) derived from glioblastoma multiforme (GBM-a brain-cancer
cell type) cells (Dox-CM-BNNTs) that are able to kill GBM cells in vitro while leaving
healthy brain cells unaffected. The anti-cancer properties of Dox-CM-BNNTs at various
concentrations such as 25, 50, 100, and 200 µg·mL−1 were examined on U87 MG glioblas-
toma cells and related to the cytotoxicity of CM-BNNTs and mPEG-DSPE-BNNTs [30].
The results showed that cell viability decreased in both Dox-CM-BNNTs and free Dox
after 24 and 72 h in all concentrations [30]. However, the CM-BNNTs and mPEG-DSPE-
BNNTs did not show any significant effects on the cells [30]. The reports highlighted
that 100 µg·mL−1 Dox-CM-BNNTs displayed a significant cell-death rate and resulted in
anti-cancer effects [30].

Li et al. [61] examined the utility of BNNTs@europium-doped sodium gadolinium
fluoride (BNNTs@NaGdF4:Eu) for fluorescence imaging and magnetic targeting, especially
for cancer therapy (Figure 7). BNNTs@NaGdF4:Eu was incubated with human LNcaP
prostate-cancer cells to evaluate the influence of a permanent magnetic field and in vitro
cell uptake [61]. The fluorescence intensity results indicated that for mediums containing
20 µg·mL−1 of BNNTs@NaGdF4:Eu, a significant cell uptake of 404 ± 30 was observed
in the presence of a magnetic field and in the absence of a magnetic field it was 315 ± 18,
while for pure cells in the presence of a magnetic field it was 230 ± 3 [61]. Furthermore, the
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cancer-cell viability in the absence and presence of a magnetic field was measured through
30% of Dox loading BNNTs@NaGdF4:Eu [61]. The viability rate of human LNcaP prostate
cancer decreased after exposure to dox-BNNTs@NaGdF4:Eu in the presence of a magnetic
field [61]. In contrast, in the absence of a magnetic field, the value was higher than it was in
the presence of a magnetic field. Moreover, the multifunctional BNNTs composites showed
potential in enhancement of chemotherapy with efficient use of magnetic fields [61].
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Ferreira et al. [32] validated the tumour-homing peptide CREKA functionalised BN-
NTs (BNNTs-CREKA) effects on 4T1 tumour cells. The in vivo analysis observed that
a significant amount of BNNTs-CREKA piled up at the tumour to target the cells [32].
Furthermore, biodistribution studies were conducted in mice after injecting radioactive
99m-BNNTs-CREKA [32]. The radioactivity biodistribution was assessed by an automatic
scintillation counter in liver, spleen, kidneys, stomach, thyroid, heart, intestines, tumour,
and muscle after exposure for up to 8 h with organs removed from mice [32]. It was ob-
served that the tumour uptake was higher compared to non-targeted tissues such as muscle,
intestines, heart, and thyroid, while the uptake was higher in liver, spleen, and kidney due
the macrophages present in these organs after exposure [32]. Similarly, Nakamura et al. [59]
synthesised BNNTs functionalised with DSPE-PEG2000 to investigate antitumour outcomes
om B16 melanoma cells [59]. The results indicated that BNNTs-DSPE-PEG2000 showed
higher antitumour effects in B16 cells [59].

In another study, Danti et al. [56] presented an interesting analysis on BNNT func-
tionalised muscle-cell microfibre-mesh scaffolds acquired through a tissue-engineering
three-dimensional (3D) platform to study a wireless stimulation system for electrically
responsive cells and tissues [56]. The scaffolds were seeded with C2C12 myoblast cells
under low ultrasound (US) irradiation [56]. The results stated that the cells’ interaction
with BNNTs increased gene (Cx43) expression in 3D samples. Additionally, the higher
protein levels of Cx43 and myosin were detected in the 3D scaffold model. The findings in-
dicated that there was potential for developing appropriate in vitro platforms for biological
modelling [56].
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3.6.13. In Vitro Studies Stated BNNTs Are Cytotoxic

The above-mentioned studies were generally in favour of BNNTs biocompatibility.
However, there are debatable results about their toxicity in the literature. Horvath et al. [74]
highlighted the toxicity of pure BNNTs, which were dispersed with Tween 80 on various cell
lines, such as lung epithelium cells, mouse macrophage cells, mouse embryonic fibroblasts,
and HEK 293, with a maximum BNNT concentration of 20 µg·mL−1 [74]. Various viability
assessments were performed and cytotoxic effects at a minimal dose of BNNTs incubated
with cells was noticed [74]. The study highlighted the size and aspect ratio and absence of
biomolecules that lead to higher toxicity levels in cell cultures [74]. Augustine et al. [37]
investigated a novel atomic force microscopy (AFM)-based cardiomyocyte assay that
reliably assesses the cytotoxicity of BNNTs. High-energy probe sonication was used
to modify and control the length of BNNTs [37]. Cytotoxicity studies using the novel
cardiomyocyte AFM model agreed with traditional colorimetric cell metabolic assays, both
revealing a correlation between tube length and cytotoxicity with longer tubes having
higher cytotoxicity [37]. In addition to the size-dependent cytotoxicity, it was found that
BNNTs exhibited concentration- and cell-line-dependent cytotoxic effects [37]. Çal et al. [35]
demonstrated the cytotoxicity and DNA damage effects of BNNTs and curcumin using
HeLa cells, CD34+ cells, and V79 cells. The MTT and Comet assay indicated that curcumin
and BNNTs-curcumin were cytotoxic in all the concentrations [35]. Furthermore, the
increase in ROS caused DNA damage to cells treated with BNNTs. The results stated that
curcumin and BNNTs-curcumin concentration groups were similar, which may be a sign of
the BNNTs inertness [35].

Overall, the results of BNNTs in in vitro toxicology depend on the purity, function-
alisation, and geometrical dimensions of BNNTs. Taken together, all the literature on
in vitro assessment of BNNTs showed good biocompatibility. The biocompatibility data for
in vitro conditions reported thus far (on various cell lines) stated that BNNTs are potential
nanomaterials for nanovectors, therapeutic, and biomedical applications although further
in vivo and clinical analysis is needed.

3.7. BNNTs Biocompatibility In Vivo

The biocompatibility of BNNTs should be further assessed to identify the toxicity
levels to tissue at the organism level through in vivo studies. The in vivo studies have been
conducted using BNNTs, either pristine or functionalised, and various dispersion agents
injected/fed into the animals. The animals were generally injected or fed with various
dosages of BNNTs to investigate the toxicity levels or unusual inflammation reactions in
their airways or blood or distribution of BNNTs in the organisms.

To date, in vivo assessment of BNNTs is very limited. An initial pilot study was carried
out by Ciofani et al. [72] which was performed with BNNT-GC (1 mg·mL−1) injected into
the marginal ear veins of five rabbits [72]. The blood tests were performed up to 72 h after
injection and compared with plain GC (1 mg·mL−1) solution [72]. The results stated that
there was no alteration of the basic hematic parameters that could subtend the functional
impairment of blood, liver, or kidneys [72]. No acute toxicity was observed after BNNTs-GC
was injected into rabbits over the period [72]. In another investigation by Ciofani et al. [69],
a higher dose of up to 10 mg·kg−1 of GC-BNNTs was injected into the rabbits. Additionally,
an assessment was performed after injecting 5 mg·kg−1 of GC-BNNTs once per day for
three days [69]. The blood-analysis report showed no evidence of negative effects on blood
or liver and there was no kidney impairment [69]. Furthermore, plasma pharmacokinetic
studies indicated no significant temporary accumulation of BNNTs in tissues that could act
as reversible reservoirs [69]. Collectively, these data suggest a relatively high clearance of
BNNTs from the blood and a quick distribution in the organism and/or excretion [69].

Soares et al. [71] demonstrated BNNTs functionalised with GC and radiolabelled with
99mTc and injected into Swiss mice tails in order to evaluate their biodistribution. The
results showed that, after 24 h, GC-BNNTs had accumulated in the liver, spleen, and gut,
and had been eliminated via renal excretion (Figure 8) [71].
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Figure 8. Scintigraphic image of radiographic GC-BNNTs biodistribution in mice; (a–c) show the
images after injecting at time intervals of 30 min, 1, and 4 h, respectively. Reproduced with permission
from Ref. [71]. Copyrights 2012, Elsevier.

Salvetti et al. [57] reported the effects of BNNTs on stem cells and tissue regeneration
in planarians. BNNTs coated with GA were injected into planarians at concentrations
of 100 or 200 µg·g−1 for 15 days [57]. It was stated that GA-BNNTs were internalised
by intestinal cells within 1 day after injection and did not induce any DNA damage in
animals [57]. However, the study failed to detect the difference in expression levels of
molecular markers specific to stem cells and stem-cell progenies that indicate BNNTs effects
in stem cells [57]. The study found no adverse effects on neoblasts, which are essential for
tissue regeneration [57]. Furthermore, the analysis stated that GA-BNNTs did not show
any effects in the morphogenetic process [57].

Demir et al. [40] studied the antioxidant/antigenotoxic properties of BNNTs using
drosophila melanogaster. The analysis stated that non-relevant genotoxic effects were
observed in the wing-spot assay or in the Comet test [40]. Furthermore, it was observed
that BNNTs significantly reduced the genotoxic effect of potassium dichromate (PDC) and
the intracellular levels of ROS, which indicates the non-toxic effects of BNNTs [40].

In contrast to the above studies, Xin et al. [29] reported the toxicity of BNNTs after
being exposed to lung cells, using an in vivo time-course model. The in vivo studies were
performed on male C57BL/6J mice with BNNTs (~50% purity) at 200 µm length and
5 nm width (Figure 9) [29]. BNNTs at 4 and 40 µg concentrations were exposed for 4 h,
1, 4, and 7 d, 1 and 2 months to mice (lungs) to measure and evaluate pulmonary and
extrapulmonary toxicity [29]. Bronchoalveolar lavage (BAL) was utilised on the BNNTs-
exposed mice to collect fluid and BAL cells to demonstrate the toxicity [29]. The results
indicated that high doses of BNNTs considerably enhanced the lactate dehydrogenase
activity (LDH) from 4 h to 7 d post exposure, compared to low dose and control groups [29].
However, the low dose of BNNTs did not show any significant lung injury as indicated by
LDH activity throughout the time points [29]. Furthermore, the cells displayed a minimal
level of inflammation in the high-dose group with resolution over time and no fibrosis [29].
In addition, the lung-clearance analysis observed that ~50% of the BNNTs cleared over the
time period [29]. The lung gene expression of Cxcl2, Ccl2, Il6, Ccl22, Ccl11 and Spp1 was
considerably increased, 4 h and 1 d after exposure at 40 µg [29]. However, the inflammation
and acute-phase gene expression decreased over the times [29]. Interestingly, 4 µg BNNTs
did not show any unfavourable effects in the toxicity results, post exposure [29]. Thus, it
was determined that high doses of BNNTs showed acute pulmonary inflammation and
injury after 7 days of exposure [29].
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Similarly, Kodali et al. [45] reported acute toxicity both in vitro and in vivo using
commercial-grade BNNTs, which are composed of∼50–60% BNNTs and∼40–50% impu-
rities of boron and hexagonal boron nitride. The studies were conducted both in vitro
(using THP-1 and NLRP-3 cells) and by injecting 40 µg of BNNTs into male mice [45].
The in vitro studies stated that the BNNTs exhibited dose-dependent acute toxicity and
oxidate stress [45]. The results were further confirmed with in vivo tests following a BN-
NTs exposure, with an increase in bronchoalveolar lavage levels of LDH, a pulmonary
polymorphonuclear cell influx, loss in mitochondrial membrane potential, and higher
accumulation levels of 4-hydroxynonenal [45]. Additionally, cytokine analysis displayed
acute inflammation following the exposure of BNNTs to both cells and in vivo [45].

To summarise, based on the reports available, it was evident that the as-synthesised
BNNTs with impurities cause acute toxicity in vivo as well as in vitro. Furthermore, BN-
NTs functionalised with various materials showed cytocompatibility up to a maximum
concentration of 100 µg·mL−1. However, further in-depth analysis of BNNTs in various
in vivo aspects could give a better understanding of BNNT biocompatibility.

4. Biomedical and Tissue-Engineering Applications

Due to their interesting physiochemical properties, BNNTs have been gaining sig-
nificant attention from researchers and industries. In biomedical and tissue-engineering
applications, when BNNTs are functionalised with various organic and inorganic mate-
rials, non-toxicity is reported, up to dosage levels of 100 µg·mL−1. Thus far, some of
the studies have suggested applications of BNNTs in cancer-tumour treatment [32,61,80],
drug carries or drug delivery [30], radioisotope accumulation of tumours [31], MRI con-
trast agents [68,73], reinforcement for biomaterials to produce tissue scaffolds [53,56],
orthopaedic procedures [75,77], dental procedures [41,62], bioimaging [158], and bioprint-
ing [24,25]. Not only are there biocompatibility properties but there are also amazing
piezoelectrical properties, leading some to propose BNNTs as nanotransducers for the
electrical stimulation of cells [39,56].

4.1. Boron Neutron Capture Therapy (BNCT)

Cancer is one of the significant causes of death in humans worldwide. Researchers
have focused on finding a novel material for targeting the tumour cells with radiation
therapy and chemotherapy. In this regard, BNNTs have been investigated as potential
material to target cancer cells. For instance, Li et al. [28] demonstrated the Auristatin-PE-
coated BNNTs as a drug delivery system to act against the liver cancer cells. The outcomes
stated that the PE-BNNTs killed tumour cells and showed promise for treating liver cancer.
Furthermore, Li et al. [61] stated that BNNTs@NaGdF4:Eu was a possible material with
the ability to use in chemotherapy drug delivery systems in the presence of a magnetic
field. Similarly, Nakamura et al. [59] stated that functionalised BNNTs displayed a higher
accumulation of tumour cells with a combination of thermal neutron irradiation on BNCT.
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4.2. Nanovectors

Recent evaluations on the interaction between the BNNTs with living cells confirmed
BNNTs as promising nanovectors for various applications in biomedicine; for instance, PEI-
coated BNNTs combined with fluorescent markers demonstrated as nanovectors for cell
therapy by tracking their uptake by SHY-SY5Y cell lines [83]. Similarly, PLL-BNNTs were
demonstrated as nanovectors that can enter the cells when exposed to the electroporation
to a 40–60 V·cm−1 electric field.

4.3. Tissue Engineering

Recent studies demonstrated that BNNTs combined with various polymeric materials
can be used as scaffolds for tissue engineering applications. The scaffolds can be developed
using various tissue engineering techniques such as electrospinning or additive manufac-
turing. For instance, BNNTs combined with co-polymer PLC films were demonstrated
as scaffolds for orthopaedic applications with excellent mechanical and biocompatible
properties [77]. Similarly, BNNTs combined with resin-based dental sealants showed po-
tential materials in therapeutic procedures of dental hard tissues [34]. In another study,
Kakarla et al. demonstrated that BNNTs reinforced gelatine and alginate as a hydrogel to
produce hydrogel scaffolds for tissue engineering applications [24,25].

Most of the biocompatibility analysis findings with BNNTs’ interaction with different
live cells have provided more profound insights. Taken all together, the studies have reported
that BNNTs are a promising nanomaterial for biomedical and tissue-engineering applications.

5. Summary and Outlook

The selection of suitable biomaterials for applications in biomedical research is often
associated with the materials’ interactions with living matter. Therefore, the biosafety and
biological properties of the material must be considered. Regarding the use of BNNTs,
the exploitation of biological properties and interactions with various cell lines and living
matter is still at the entry level. A number of challenges still need to be addressed before
BNNTs are validated for clinical applications. One of the major issues is BNNTs insolubility
in aqueous media. Various organic and inorganic materials have been reported for the
functionalisation of BNNTs to obtain stabilised and dispersible BNNTs in aqueous media.
However, only a few biomolecules and biocompatible materials have been explored in
functionalised BNNTs. Therefore, a wide range of BNNTs (functionalised with various
biomaterials or biomolecules) need to be evaluated in vivo and in vitro to understand the
toxicity levels. Another major aspect is to find BNNTs toxicity in the living body. Thus far,
only a few studies have reported on living-body experiments with commercially available
BNNTs and functionalised BNNTs. The results are contradictory, as the studies are limited.
Hence, further studies focused on BNNTs in various living organisms and the effects on
tissues and organs could help to increase the potential biomedical application of BNNTs.

For instance, as an innovative nanomaterial, BNNTs show a great range of promising
results in cancer treatments, especially in boron-neutron cancer treatment. Additionally,
BNNTs aid in increasing bright fields in MRI and creating piezoelectrical material to
stimulate cells—these show potential for biomedical applications. However, it was reported
that BNNTs with impurities (composed during synthesis or catalyst) displayed acute
toxicity under in vitro and in vivo conditions. Thus, it is mandatory to address the influence
on cytotoxicity of the impurities or catalysts used in the synthesis of BNNTs.

In summary, the data as a whole suggested that BNNTs with various functionalised
materials were not cytotoxic in concentrations up to 100 µg·mL−1. Furthermore, the results
confirmed the high potential of BNNTs in various biomedical and tissue-engineering
applications. Simultaneously, it was reported that BNNTs are able to address cell behaviour
and probe morphological and functional signatures of tumours. However, the candidacy of
BNNTs as being optimal for an impressive variety of applications in the biomedical domain
needs to be explored more. The biocompatibility of BNNTs under in vivo conditions needs
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to be assessed further to address biosafety in living organisms. This could pave the way to
significant progress in pharmacology, nanomedicine, and even in clinical research.
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