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Simple Summary: The incidence of thyroid pathologies has been increasing worldwide. Historically,
the detection of thyroid neoplasms relies on medical imaging analysis, depending mainly on the
experience of clinicians. The advent of artificial intelligence (AI) techniques led to a remarkable
progress in image-recognition tasks. AI represents a powerful tool that may facilitate understanding
of thyroid pathologies, but actually, the diagnostic accuracy is uncertain. This article aims to provide
an overview of the basic aspects, limitations and open issues of the AI methods applied to thyroid
images. Medical experts should be familiar with the workflow of AI techniques in order to avoid
misleading outcomes.

Abstract: Artificial intelligence (AI) uses mathematical algorithms to perform tasks that require
human cognitive abilities. AI-based methodologies, e.g., machine learning and deep learning, as
well as the recently developed research field of radiomics have noticeable potential to transform
medical diagnostics. AI-based techniques applied to medical imaging allow to detect biological
abnormalities, to diagnostic neoplasms or to predict the response to treatment. Nonetheless, the
diagnostic accuracy of these methods is still a matter of debate. In this article, we first illustrate the
key concepts and workflow characteristics of machine learning, deep learning and radiomics. We
outline considerations regarding data input requirements, differences among these methodologies
and their limitations. Subsequently, a concise overview is presented regarding the application of AI
methods to the evaluation of thyroid images. We developed a critical discussion concerning limits
and open challenges that should be addressed before the translation of AI techniques to the broad
clinical use. Clarification of the pitfalls of AI-based techniques results crucial in order to ensure the
optimal application for each patient.

Keywords: thyroid neoplasm; medical imaging; artificial intelligence; machine learning; deep
learning; radiomics; prediction; diagnosis

1. Introduction

The role of medical imaging in the clinical workflow has noticeably increased from
a mainly diagnostic tool up to a central contribution in early detection, diagnosis, treat-
ment planning and monitoring of diseases [1–4]. Medical imaging provides information
concerning the characteristics of human tissues in a non-invasive, repeatable manner and
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became a routine practice in clinical care [2]. In recent decades, the innovations in this field
concerned both devices, i.e., hardware, and analysis tools used in medical imaging. In the
clinical practice, the main use of medical images corresponds with qualitative assessment
of the anatomical area. Images, in addition, are characterized also by a high quantity
of numerical information and recently, a quantitative evaluation has been developed in
order to identify possible correlations between the numerical data contained in the digital
images and the pathophysiology of the tissue [3]. The quantitative analysis has the aim to
achieve information from standard-of-care images, e.g., ultrasound imaging (US), computer
tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography
(PET), which are not easily quantifiable by means of naked-eye observations for clinical
outcomes [5,6].

Analysis of image features in the context of medical imaging is an emerging field of
study but extensive literature already exists [7–9]. In the majority of earlier works, the
image features are analyzed with the aim of detection and diagnosis of abnormal regions
within human tissues [10–12]. These applications are often referred as computer-aided
detection (CADe) and computer-aided diagnosis (CADx) systems [3]. The output of the
CAD analysis is used by the expert clinicians as a second opinion in detecting lesions or
making diagnosis and aims at improving the accuracy of the diagnosis and reducing the
time for image interpretation [6].

Recently, a further detailed extension associated with quantitative analysis of medical
imagines has led to the emergence of radiomics as a new field of medical research [1,2].
Radiomics aims at extracting numerous quantitative descriptors with the purpose of
achieving more useful information of tissue lesion and response of treatment in order to
be used for personalized medicine [1,2,13]. It is worth noticing that standardization of the
procedure is still under development, as thoroughly discussed in [14].

The above-mentioned approaches apply methodologies from the artificial intelligence
(AI) field to achieve a partial or full automation of various steps of the process concerning
the analysis of medical images [6]. Thorough understanding of their working principle is
necessary in order to develop efficient predictive models and personalization treatment.
This review article aims to highlight strengths and limitations of the different AI-based
techniques applied for the evaluation of the pathophysiological state of the thyroid.

2. Artificial Intelligence in Medical Imaging

Artificial intelligence (AI) is a term coined by McCarthy and colleagues [15,16] in
1950s referring to a branch of computer sciences in which mathematical algorithms attempt
to perform tasks that normally require human cognitive abilities [8]. Applications of
AI have witnessed unprecedented growth in recent decades due to the enhancement of
computational power and availability of large dataset. In the medical field, AI can use
complex algorithms to develop models with the scope of improving diagnostic accuracy,
prognosis, and medical image interpretation [17]. We discuss in the following two different
machine learning (ML) methodologies adopted to perform medical imaging analysis.

2.1. Machine Learning

Machine learning (ML), a term first coined by Arthur Samuel [18], is a field of AI in
which the computer is trained to perform tasks by learning from example data and make
predictions based on its exposition to previous samples [4]. In medical imaging analysis,
ML algorithms are crucial components of both CAD systems and radiomics studies.

ML algorithms are generally divided into supervised and unsupervised learning
methods. Supervised learning requires a labelled dataset, i.e., a set of input data with
their corresponding output (labels) that is used to identify a function linking inputs to
outputs [19]. Unsupervised learning operates on an input dataset without the need of
labels. This ML algorithm searches for patterns that can separate input data into subsets
with similar characteristics [7]. In this review article, we focus on supervised learning since
it is the most common approach applied to medical images analysis [20].
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In medical applications, input data include medical images or clinical data, while the
output label can be the differentiation of malignant from benign nodules, the classification
of images into diagnostic categories or the response treatment, e.g., recurrence, survival.
The output of the predictive model leads to a subsequent distinction of ML problems:
classification and regression. In classification tasks, the model performs a decision among
a small and discrete set of choices, i.e., binary classification, e.g., identifying a tumor as
malignant or benign. Regression models refers to the estimation of continuous output
variables, e.g., assessment of disease severity [20].

Historically, ML algorithms were applied in CAD systems for classifications pur-
poses [20]. Subsequently, this method was used as a step of radiomics analysis. In this
section we describe the workflow of the ML algorithm with classification task frequently
encountered in the CAD framework [10,21,22] (Figure 1). A supervised ML model is
composed of two phases, i.e., training and application phase (Figure 1a). In the training
phase, a set of input images with their corresponding class labels are used to train the
predicting model. From the input image, a region of interest (ROI) is delineated manually
or semi-automatically by expert clinicians. Subsequently, a set of image features, e.g.,
morphological and grey level-based features, are extracted. Differently from other methods
that will be discussed subsequently in this work, in ML algorithms of CAD systems, the ex-
traction and selection of image features are performed manually by the expert. It represents
a crucial step in order to identify the significant variables that can be correlated with the
medical endpoint. In CAD applications, the features used in the analysis are those closely
associated with what clinicians use in their diagnosis of the lesions [4]. Subsequently, the
features are entered as input to the ML algorithm to train the model.

Examples of typical feature-based supervised learning algorithms are logistic regres-
sions, support vector machine, random forests and neural networks [23]. As an example of
these feature-based ML algorithms, we focus here on the support vector machine (SVM)
method, which is commonly used in biomedical binary classification problems [17,24].
Overall, SVM (Figure 1b) is a binary classifier that aims to identify the decision boundary,
or hyperplane, that maximizes the separating margin between two classes [4,25].

For instance, let consider N training samples {(xi, yi)}N
n=1 of input features x and their

corresponding class or label yi ∈ {−1;+1} where yi = −1 indicates the class with malignant
samples and yi = 1 indicates the class with benign samples. In the simplest case, there exists
a function f (x):

f (x) = β·x + β0, (1)

with β and β0—decision boundary parameters such that f (x) ≥ 0 for yi = +1 and f (x) < 0 for
yi = −1.

This means that the training samples from the two classes are separated by the
hyperplane f (x) = β·x + β0 = 0. The margin m, i.e., the distance between a class and the
decision boundary, is set to be inversely proportional to the decision boundary parameter,
i.e., m = 1

‖β‖ .
In order to identify the hyperplane that maximizes the separating margin between the

two classes, SVM solves the following optimization problem that aims to minimize the cost
function J(β, ξ) with respect to β, ξ [24,26]:

min
β, ξ

J(β, ξ) = min
β, ξ

1
2
‖β‖2 + C

N

∑
i=1

ξi (2)

subject to the constraints yi (β·x + β0) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , N. In Equation (2), C > 0 is
a penalty parameter to control the tolerance error ξi allowed for each sample being on the
wrong side of the margin.

From Equation (2), it can be noticed that the minimization of the parameter β increases
the separation between the two classes and improves generalizability of the classifier, while
minimization of second term of Equation (1) improves fitting accuracy [4].
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Subsequently, in the testing phase, the trained classifier is used to characterize new
input data with unknown label (test set).

It is worth pointing out that the decision function of the classifier is fully specified
by the training set, while the test set is only used to evaluate the performance of the
model. On one hand, to obtain a model that well-performs when applied to new data,
the training dataset should be sufficiently large. On the other hand, to obtain robust and
reliable evaluation of the performance of the model, the test set should be sufficiently large.
Frequently, since this condition is difficult to achieve in the medical field by simply splitting
the available data in training and test set, a k-fold cross-validation framework [7] is usually
adopted. K-fold cross validation consists of partitioning the dataset into k subsets of equal
size. The model is trained on (k − 1) datasets while one subset is retained for model test.
The process is repeated k times with each subset used once as test dataset [20]. The overall
performance of the model is then assessed for example as the average performance over
the k repetitions.
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Feature-based ML algorithms are suitable for medical image analysis since predictive
models can be developed from small datasets [7]. Moreover, these methods are usually
interpretable and can provide insights on the reasons why a certain class is predicted.
Nonetheless, some initial steps of the process, as the definition of the features to be extracted
from images and the selection of the medical region of interest has to be performed by
experts. In addition, it should be taken into account that all supervised ML methods could
be affected by overfitting, i.e., the predicting model learns exactly the training set but
fails to fit new data from the test set [20]. However, it is possible to mitigate this issue by
adopting a cross-validation set-up and by reducing the number of features used by the
model by means of feature selection methods.

2.2. Deep Learning

Deep learning (DL), a term coined in 1986 by Rina Dechter [27], is a new class of ML
methods developed through the advancement of artificial neural networks which were
considered as artificial representations of the human neural architecture [23]. DL relies on
networks of computational units, i.e., neural units arranged in layers that gradually extract
higher level features from input data, e.g., image. These structures learn discriminative
features from data automatically, allowing to approximate complex nonlinear relationship
with outstanding performance [27,28]. Differently from traditional feature-based ML
approaches, DL is able to achieve diagnosis automation, avoiding human intervention [29].
In medical applications, DL algorithms are implemented for detection and characterization
of tissue lesions as well as for the analysis of disease progression [27,28].

While several DL architectures have been developed, this article focuses on convo-
lutional neural networks (CNNs), introduced by LeCun [30]. CNNs are typically applied
for image recognition and computer vision applications because they preserve spatial
relationships in 2D data, and therefore outperform other architectures on image pattern
recognition. More specifically, the input of a CNN is arranged in a grid structure and
processed through convolution and pooling layers that preserve these relationships. The
final layers are typically fully connected and can be conceived as a multi-layer perceptron
classifier on the features automatically extracted by the convolutional part. The network is
trained to identify patterns in a set of labelled training data and the outputs are compared
with the actual labels. During training the network parameters are tuned until the patterns
identified by the network represent good predictions for training data. The network is then
used to make predictions on new data in the test set [31].

Figure 2 shows a typical architecture of CNN developed to perform classification
tasks. The input of the CNN algorithm is represented by numerical data of the selected
ROI from the medical image. Firstly, a convolutional step is considered which contains a
set of filters, e.g., k1 in Figure 2. Thus, a convolution is performed between each filter and
the input of the layer, e.g., image data. A convolution is a space-invariant linear operation
on 2D grids and is equivalent to applying a filter to an image. The filter slides over the
input image, its values are multiplied with the image pixel values and then summed to
determine the value in the corresponding position of the output feature map. An example
of a convolution operation is reported in Figure 3a. The number and size of filters are CNN
hyperparameters and are typically not optimized during training. More and larger filters
lead to more powerful network with more parameters to optimize, which increases the
risk of overfitting [32]. The convolutional process in every convolutional layer is expressed
mathematically as follows:

X`
k = σ

(
W`−1

k ∗ X`−1 + b`k
)

(3)

where X`
k is the new feature map, σ(·) is an element-wise nonlinear activation function, W is

the filter values, b`k is a bias parameter and the symbol ∗ indicates a convolutional operator.
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Subsequently, an activation function is applied element-by-element to the calculated
output of the convolution prior to using the map as an input to the next layer of the
network. Rectified linear unit (ReLU) is one of the most used activation functions, and
has been empirically found to accelerate the convergence of the learning procedure [28]. It
is linear for positive inputs, mapping them unchanged to the next layer, while it blocks
negative values. Mathematically, ReLU is expressed as follows [28]:

f (x) = max(0, x) (4)

where x is an activation value achieved from the previous layer.
Some CNN architectures also consider pooling operations, whose effect is to down-

sample the feature maps. This operation considers small regions of the input map and
outputs a single number for each region, e.g., the maximum value as illustrated in Figure 3b.
It reduces the dimensions of the feature map and decreases the number of pixels to be
processed in the next layers of the network [33]. Conceptually, as we progress deeper in
the network, neuron activation values represent progressively higher-level and larger-scale
visual patterns in the input, and therefore require lower spatial resolution.

The final part of the CNN architecture is characterized by a fully connected layer,
i.e., each neural unit of the actual layer is connected to every neural unit in the successive
layer (Figure 2). Firstly, the feature map is flattened into a column vector (Figure 3c) and
then connected to one or more fully connected layers. The output nodes of the last fully
connected layer can be regarded as a vector of unnormalized probabilities [28].

The softmax function is a function applied to the last fully connected layer of the CNN
in order to transform the k real values of the vector into values in the range (0;1) so that
can be assumed as probabilities (Figure 3d). The relation is as follows [28,33]:

σ(z)i =
ezi

∑K
j=1 ezj

(5)

where the zi values are the elements of the fully connected layer and the denominator
represents the normalization term.

The output layer of the CNN considered is constituted by neural units which indicate
the probabilities for each class.

The analysis of the available literature shows an increasing interest on applying DL
architecture for medical image analysis. It is worth mentioning that for systems in which
the set of visual features is well defined, simpler feature-based ML techniques, such as
SVM algorithms, are easier, more interpretable and more effective [28].

The main limitation to the use of DL consists of the large datasets required to train
the model [34]. Compared with publicly available datasets in other areas, the current
availability of medical US datasets is still limited [34]. To face the data requirements,
several studies [33,35] considered pre-trained CNN architectures developed with trainings
on ImageNet, a large labelled collection of low-resolution color photographs. To date, DL
architectures pre-trained on high resolution medical images are not available. Therefore, a
large dataset of medical images is a mandatory step to enhance CNNs performance [34].

3. Radiomics

Radiomics is an emerging field that uses automated high-throughput extraction algo-
rithms to achieve large amounts (200+) of quantitative features from medical images [1,2].
Radiomics is also indicated as quantitative imaging [36] which can be applied to any image
generated in the clinical setting. It can be performed on subregions of a tumor, metastatic
lesions and in normal tissues. The term feature represents a descriptor of an image, of
tumor or healthy tissue, such as parameters derived from image grayscale intensity or
shape [37].

Radiomics has its roots on computer-aided diagnosis systems [38], although method-
ological workflow and applications are distinct [2]. It concerns the extraction of quantitative
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features from medical images that subsequently are related to biological endpoints and clin-
ical outcomes [39]. Radiomics makes use of digital data stored in those images to develop
diagnostic, predictive or prognostic models to support clinical decisions and optimize
personalized treatment planning. The main difference with CAD systems consists of the
relationship that radiomics has to identify between the current characteristics of the tissue
lesion and its temporal evolution in the perspective of a personalization of the therapy [38].

Radiomics involves several processes, each with its own critical aspects that need to
be taken into account. Two workflows can be implemented to perform radiomic studies in
function of the AI technique adopted (Figure 4): (i) conventional or ML-based radiomics
where the features to be extracted are predefined and (ii) DL-based radiomics where the
features are not predefined but automatically extracted from the underlying data [6,7].

Cancers 2021, 13, x FOR PEER REVIEW 9 of 20 
 

 

 

Figure 4. Schematic flowchart of radiomics approach. Xi represent the feature extracted from the image data. 

The main aspects of the conventional radiomics workflow concerns: image acquisi-

tion, data selection, feature extraction and selection and the development of predictive 

model [1,36]. From medical image such as US, CT, MR and/or PET images, the region of 

interest (ROI) is selected and subsequently the lesion is manually segmented, i.e., deline-

ated with computer-assisted contouring, by an experienced clinician [7]. Subsequently, 

image data undergoes preprocessing operations, e.g., gray-level discretization, which en-

able a higher reproducibility of results [6]. The extraction of quantitative imaging features 

involves descriptors of spatial relationships between the various intensity level, heteroge-

neity patterns, shape and relations of the tissue lesion with surrounding tissues. A feature 

selection procedure is then performed to identify the most relevant predictive features 

[7,24]. The collection of features which hold prognostic or predictive value represent a 

feature signature, frequently indicated also as quantitative imaging biomarkers. The se-

lected features are then analyzed to develop classified models to predict outcomes either 

alone or in combination with additional information, such as demographic, clinical, 

comorbidity or genomic data [1,3]. 

Segmentation represents a crucial subprocess of radiomics since many extracted fea-

tures may depend on the segmented region. In several radiomics studies the ROI is man-

ually delineated by experts [21,40–42]. A number of algorithms has been developed for 

semi-automatic segmentation [22]. Region growing-based algorithm and grey-scale 

threshold-based methods are frequent techniques applied for ROI definition. However, 

manual delineation by an expert is considered the gold standard though is subjected to 

Figure 4. Schematic flowchart of radiomics approach. Xi represent the feature extracted from the image data.

The main aspects of the conventional radiomics workflow concerns: image acquisi-
tion, data selection, feature extraction and selection and the development of predictive
model [1,36]. From medical image such as US, CT, MR and/or PET images, the region of in-
terest (ROI) is selected and subsequently the lesion is manually segmented, i.e., delineated
with computer-assisted contouring, by an experienced clinician [7]. Subsequently, image
data undergoes preprocessing operations, e.g., gray-level discretization, which enable a
higher reproducibility of results [6]. The extraction of quantitative imaging features in-
volves descriptors of spatial relationships between the various intensity level, heterogeneity
patterns, shape and relations of the tissue lesion with surrounding tissues. A feature selec-
tion procedure is then performed to identify the most relevant predictive features [7,24].
The collection of features which hold prognostic or predictive value represent a feature
signature, frequently indicated also as quantitative imaging biomarkers. The selected
features are then analyzed to develop classified models to predict outcomes either alone or
in combination with additional information, such as demographic, clinical, comorbidity or
genomic data [1,3].
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Segmentation represents a crucial subprocess of radiomics since many extracted
features may depend on the segmented region. In several radiomics studies the ROI is
manually delineated by experts [21,40–42]. A number of algorithms has been developed
for semi-automatic segmentation [22]. Region growing-based algorithm and grey-scale
threshold-based methods are frequent techniques applied for ROI definition. However,
manual delineation by an expert is considered the gold standard though is subjected to inter-
observer variability and is a time-consuming task [37]. To avoid possible bias, evaluation
by multiple clinicians or a combination of multiple algorithms could be considered [43].

Typically, radiomics features are divided into [2,6,44]:

1. Morphological, that are based on the geometric properties of the ROI, e.g.: volume,
maximum surface area, maximum diameter.

2. First-order statistics or histogram based, which describe, through histograms, the
distribution of grayscale intensity without concern for spatial relationships within the
ROI. For instance, calculated features are grey level mean, maximum, minimum and
percentiles.

3. Second-order statistics or textural features, that represent statistical relationship be-
tween the intensity levels of neighboring pixels within the ROI that allow to quantify
image heterogeneity, e.g., absolute gradient, grey level co-occurrence matrix (GLCM)
grey level run-length matrix (GLRLM), grey level size zone matrix (GLSZM) and grey
level distance zone matrix (GLDZM). For instance, GLCM indicates the number of
times the same combination of intensity occurs in two pixels separated by a specific
distance δ in a known direction.

4. Higher-order statistics features, which are computed after the application of mathe-
matical transformation and filters that lead to highlighting repeated patterns, histogram-
oriented patterns or local binary patterns, e.g., wavelet or Fourier transforms.

Accurate definitions of radiomics features are provided in the image biomarker stan-
dardization initiative (IBSI) [14].

The radiomic features are subjected to a subsequent feature selection to prevent over-
fitting, improve learning accuracy and reduce computation time. The selection process
should eliminate unreliable, not informative or redundant features. The selection methods
can be divided into three classes: (i) filter methods which asses the usefulness of a given
feature with various statistical tests for their correlation with the outcome variable [2,7];
(ii) wrapper method which uses an external classifier algorithm to score different sub-
sets of features based on their classification performance; (iii) embedded method where
the selection is intrinsic to the model training, i.e., features are selected to optimize the
performance of the implemented learning algorithm. Filter methods are simple and compu-
tationally efficient, but consider features as independent and any interaction between them
is ignored [24]. Wrapper methods reduce the risk of overfitting but are computationally
intensive [7,24]. Embedded methods are computationally more efficient since the selection
procedure is part of the training process [7,24]. A frequent embedded algorithm with
good performance used in radiomics studies is the least absolute shrinkage and selection
operator (LASSO) [7,24].

Subsequently, the selected features are used to implement a mathematical model in
order to predict the established medical endpoints. Regarding the choice of modelling
methodology, the identification of a suitable method depends on several factors as sample
size or study endpoint [36]. It is advantageous to include in the model information beyond
radiomics, e.g., clinical data and/or other “-omic” information, e.g., genomic data [45].
The integration of data from multiple sources, e.g., medical imaging, disease risk factors,
therapy procedures and follow up data, in the mathematical model will facilitate the
development of a personalized treatment.

As previously mentioned, the target of the radiomics studies can be either a present
characteristic, e.g., tumor phenotype, or a future prediction, e.g., treatment response.
Usually, radiomics studies make use of the feature-based ML algorithms that are also
considered in CAD systems. By means of feature-based ML methods, the relationship
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between input data, e.g., selected radiomics features and target outcome, is determined by
means of training examples. SVM is one of the most successfully applied algorithms.

DL-based radiomics allows to automatically extract imaging features and achieve the
predicted outcome. In fact, the different components of the DL architecture perform all the
processing steps described in the ML-based model, including feature extraction, selection
and predicting model implementation. CNNs is the most common architecture used in
radiomics studies and its characteristics have been previously described in Section 2.2.

Validation is a crucial component of the workflow of both conventional and DL-based
radiomics. Ideally, the trained model should be tested in cross-validation or on an external,
independent dataset before being applied on the new dataset [38].

4. AI and Radiomics in Thyroid Diseases

Ultrasound imaging is the recommended method for early detection and diagnosis
of thyroid lesions due to its economy, effectivity and absence of radiation [46–49]. It is
widely accepted as the first imaging modality for thyroid disease, for instance by American
and European associations of endocrinology [50]. AI applications in the medical field are
of increasing interest since they represent a possible approach to reduce the number of
invasive clinical procedures [36].

Mainly, AI algorithms have been implemented for the classification of thyroid nodules,
i.e., differentiating among benign or malignant state [9,10,21,22,33,41,51–56]. The outcomes
of these studies are compared with the diagnosis of radiologists with different levels of
experience. Research comparing the diagnostic ability between feature-based ML and DL
algorithms is limited in the literature, but interesting outcomes are provided in [22]. Overall,
an improvement emerged in terms of both specificity and accuracy in DL studies [57,58]
with respect to feature-based ML classical applications [22], mostly determined by the
capacity of DL of capturing complex patterns. In some studies [57–59], DL algorithms show
accuracy values in line with those of radiologists. In addition, Jin et al. [20] also pointed
out that the use of AI algorithms was useful to junior radiologists allowing a noticeable
improvement of their diagnostic performance, reaching values of accuracy similar to those
of intermediate-level radiologists. Studies of interest concerning the application of feature-
based ML methods and DL algorithms are described in Tables 1 and 2, respectively. Tables
were organized according to the publication time, in a decreasing order.

Table 1. Machine learning (ML)-based studies.

Study Description Cohort Method Performance

Zhao et al., 2021
[21]

Classification
106 patients SVM

Accuracy: 82%
Benign/malignant thyroid nodules Sensitivity: 91%

US Specificity: 78%

Park et al., 2019
[22]

Classification
286 patients SVM

Accuracy: 75.9%
Benign/malignant thyroid nodules Sensitivity: 90.4%

US Specificity: 58.8%

Zhang et al., 2019
[51]

Classification
826 patients SVM

Accuracy: 83%
Benign/malignant thyroid nodules Sensitivity: 86.1%

US Specificity: 82.7%

Yoo et al., 2018
[41]

Classification
50 patients SVM

Accuracy: 84.6%
Benign/malignant thyroid nodules Sensitivity: 80%

US Specificity: 88.1%

Chang et al., 2016
[10]

Classification
118 patients SVM

Accuracy: 98.3%
Benign/malignant thyroid nodules Sensitivity: N/A

US Specificity: N/A

Abbreviations: US—ultrasound; SVM—support vector machine; N/A—not available.
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Table 2. Deep learning (DL) studies.

Study Description Cohort Method Performance

Kim et al., 2021
[59]

Malignancy risk thyroid modules 757 patients CNN
Accuracy: 85.1%
Sensitivity: 81.8%
Specificity: 86.1%

Wu et al., 2021
[52]

Classification
1396 patients CNN

Accuracy: 82%
Benign/malignant thyroid nodules Sensitivity: 85%

US Specificity: 78%

Jin et al., 2020
[11]

Classification
695 patients CNN

Accuracy: 80.3%
Benign/malignant thyroid nodules Sensitivity: 80.6%

US Specificity: 80.1%

Liang et al., 2020
[9]

Classification
221 patients CNN

Accuracy: 75%
Benign/malignant thyroid nodules Sensitivity: 84.9%

US Specificity: 69%

Buda et al., 2019
[57]

Nodule detection
1230 patients CNN

Accuracy: N/A
Predict malignancy Sensitivity: 87%

Risk level stratification Specificity: 52%

Ko et al., 2019
[54]

Classification
519 patients CNN

Accuracy: 87.3%
Benign/malignant thyroid nodules Sensitivity: 90%

US Specificity: 82%

Park et al., 2019
[22]

Classification
286 patients CNN

Accuracy: 86%
Benign/malignant thyroid nodules Sensitivity:91%

US Specificity: 80%

Wang et al., 2019
[33]

Classification
276 patients CNN

Accuracy: 90.3%
Benign/malignant thyroid nodules Sensitivity: 90.5%

US Specificity: 89.91%

Li et al., 2018
[55]

Classification
17 627 patients CNN

Accuracy: 86%
Benign/malignant thyroid nodules Sensitivity: 84%

US Specificity: 87%

Chi et al., 2017
[58]

Classification
592 patients CNN

Accuracy: 96.3%
Benign/malignant thyroid nodules Sensitivity: 82.8%

US Specificity: 99.3%

Ma et al., 2017
[56]

Classification
4782 patients CNN

Accuracy: 83%
Benign/malignant thyroid nodules Sensitivity: 82.4%

US Specificity: 84.9%

Abbreviations: US—ultrasound; CNN—convolutional neural network; N/A—not available.

Radiomics is considered a promising method to be encompassed in the pipeline of
precision medicine on the basis of specific characteristics of the patient [2]. Whilst the first
AI approach to the medical imaging, i.e., CAD system, is focused on the differentiation
among benign and malignant thyroid lesions, radiomics extends the analysis to prognosis
and response to treatment evaluation [1]. In fact, [42,60,61] implemented radiomics models
that analyze the risk stratification and predict the aggressiveness of the thyroid carcinoma
with high values of accuracy, i.e., roughly 85 percent. Radiomics analysis has the potential
to determine tumor phenotypes or the presence of gene mutations [62,63]. Furthermore,
several studies have investigated by means of radiomic features the occurrence of metas-
tases [64] or disease-free survival [65]. It also emerged that radiomics studies aimed at
performing classification tasks regarding the nature of thyroid nodules are characterized
by minor accuracy with respect to classical ML approach [66]. It is worth pointing out that
although radiomics has been applied for several anatomical areas, research concerning
thyroid lesions is relatively limited. Studies of interest concerning radiomics applications
for thyroid lesions are described in Table 3, organized according to the publication time, in
a decreasing order.
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Table 3. Radiomics studies.

Study Description Cohort Method Performance

Park et al., 2021
[60]

Classification:
Benign/malignant thyroid nodules

730 features extracted and 66 selected
US

1609 patients ML-based radiomics

Accuracy: 77.8%
Sensitivity: 70.6%
Specificity: 79.8%

Peng et al., 2021
[67]

Classification
Benign/malignant thyroid nodules

US
8339 patients DL-based radiomics

Accuracy: 89.1%
Sensitivity: 94.9%
Specificity: 81.2%

Wang et al., 2021
[42]

Evaluation of extrathyroidal extension (ETE) in patients with papillary thyroid carcinoma;
479 features extracted; 10 features selected

US
132 patients ML-based radiomics

Accuracy: 83%
Sensitivity: 65%
Specificity: 74%

Wei et al., 2021
[61]

Evaluation of extrathyroidal extension (ETE) in patients with papillary thyroid carcinoma
MRI

102 patients ML-based radiomics
Accuracy: 79%
Sensitivity: 75%
Specificity: 80%

Zhao et al., 2021
[21]

Classification
106 patients ML-based radiomics

Accuracy: 75.5%
Benign/malignant thyroid nodules Sensitivity: 69.7%

US Specificity: 78.1%

Guo et al., 2020
[64]

Prediction of thyroid cartilage invasion from Laryngeal and hypopharyngeal squamous cell carcinoma;
1029 features extracted; 30 features selected

CT images
265 patients ML-based radiomics

Accuracy: 90%
Sensitivity: 80.2%
Specificity: 88.3%

Kwon et al., 2020
[62]

Predict the presence or absence of BRAF proto-oncogene, serine/threonine kinase (BRAF) mutation in papillary
thyroid cancer

US
96 patients ML-based radiomics

Accuracy: 64.3%
Sensitivity: 66.8%
Specificity: 61.8%

Wang et al., 2020
[66]

Classification
1040 patients ML-based radiomics

Accuracy: 66.8%
Benign/malignant thyroid nodules Sensitivity: 51.2%

US Specificity: 75.8%

Zhou et al., 2020
[40]

Classification
1734 patients DL-based radiomics

Accuracy: 97%
Benign/malignant thyroid nodules Sensitivity: 89.5%

US Specificity: 84.1%

Gu et al., 2019
[63]

Evaluating immunohistochemical characteristics in patients with suspected thyroid nodules
CT images 103 patients ML-based radiomics

Accuracy: 84%
Sensitivity: 93%
Specificity: 73%

Park et al., 2019
[65]

Estimate disease free survival rate in patients with papillary thyroid carcinoma;
768 patients ML-based radiomics

Accuracy: 77%
730 features extracted and 40 selected Sensitivity: N/A

US Specificity: N/A

Abbreviations: US—ultrasound; MRI—magnetic resonance imaging; CT—computer tomography; ML—machine learning; DL—deep learning; N/A—not available.
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5. Discussion

Medical images provide a comprehensive view of the tumor and its environment, and
they can be used to improve the diagnostic accuracy of early lesions, to classify benign from
malignant tissues and to define risk and improve therapy [43,68]. Imaging is a non-invasive
method and with no risk of the infections or the complications that accompany biopsies [2].
In recent decades, images have been converted into quantitative data and subsequently
analyzed with AI tools.

Intratumoral heterogeneity and modifications over time are common features of
neoplasms [43]. Samples of tumor acquired through biopsy may fail to represent the
variations within the tumor. In addition, AI methods, analyzing the overall image of
the lesion, have the potential to capture tumor heterogeneity and could represent an
intermediate step between imaging and biopsy [28,36]. Nonetheless, it is worth pointing out
that AI systems learn on a case-by-case basis. AI algorithms are implemented considering
gold standards of pathological diagnosis that are hard to identify in every patient, due
to inter-variability among subjects. Moreover, as it emerged from the overview of the AI
methods, the predicting model is developed on the basis of a finite training dataset. Thus,
since human tissues are characterized by high heterogeneity and variability inter- and intra-
subjects, no finite training set can fully represent the variety of cases that might occur in
the clinical practice. Extensive research is still required to improve the generalizability and
accuracy of AI-based models. From this perspective, the standalone use of AI applications
for diagnosis should be still avoided in the clinical practice. In fact, to this date, several
studies [7,20,28,43] recommend that the lesion evaluation should be achieved from a
combination between the clinician evaluation and ML or DL outcome. Moreover, it is
worth noticing that most AI-based studies focused on thyroid pathologies are performed
using retrospectively collected data [9,11,33,40,42,51,55,60–63,65–67]. Conversely, studies
that prospectively evaluate AI predictive models concerning thyroid disease diagnosis
are limited in the literature [22,41]. In retrospective studies, cohorts are selected among
patients with definitive diagnosis achieved mainly through histopathological examination.
As highlighted by Wu et al. [69], evaluations should include more prospective studies
on medical AI models to reduce risk of overfitting and enhance accuracy of the clinical
outcomes.

AI methods are based on the analysis of image features in order to develop predic-
tive models. Differentiating benign and malignant thyroid nodule is mainly achieved
from ML-based studies. The most used US features adopted by ML algorithms for thy-
roid investigations were size, shape, margin, composition echogenicity, as defined by the
thyroid imaging reporting and data system (TI-RADS) classification [10,21,22,51]. Ac-
cording to an analysis of the available literature, the TI-RADS approach allows a good
discrimination among benign and malignant thyroid nodules. However, the inclusion of
additional features, e.g., calcifications, internal content, can represent a factor that improves
accuracy [70].

Radiomics studies were applied also to other thyroid pathologies, e.g., extrathyroidal
extension (ETE) in patients with papillary thyroid carcinoma (PTC) [42,61], thyroid carti-
lage invasion from laryngeal and hypopharyngeal squamous cell carcinoma [64]. In these
studies, the extracted features derive from morphological, first order statistics, textural
and higher order statistics groups. Wang and colleagues [42] highlighted that improve-
ment of ETE diagnosis is achieved when features related to PTC heterogeneity are taken
into account. Similarly, in [64] Guo et al. studied thyroid cartilage invasion from laryn-
geal and hypopharyngeal squamous cell carcinoma and showed that tumor invasiveness
can be investigated considering features related to tumor heterogeneity. Furthermore,
Kwon et al. [62] highlight that BRAF mutation may be investigated with histogram-based
and textural features that reflect echogenicity and heterogeneity of the region of interest,
respectively.
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Several studies also performed comparison between the performance of AI-based
models and that of expert clinicians. The available data in literature mostly report that the
performance of DL algorithms is similar to that of healthcare professionals. As discussed
by [20,67], AI applications may improve the accuracy of thyroid diagnosis diseases, es-
pecially for junior radiologists. In fact, interpretation of medical images highly depends
on the experience level of clinicians. For instance, for junior radiologists the sensitivity is
reported in a range between 40 percent and 100 percent while the specificity spans between
50 percent and 100 percent. It was observed that the use of AI algorithms to achieve a
second opinion on the characterization of thyroid lesions can improve the accuracy of
junior radiologists from roughly 82 percent to 87 percent [67]. Moreover, Peng and co-
workers [67] highlighted that taking into account the outcomes of AI as a second opinion
has reduced fine needle aspiration procedures by 27 percent and the number of missed
malignancies of roughly 2 percent.

Furthermore, the experience level of the clinicians has an important impact also on
the performance of the AI-based methods. The input data of the AI algorithms is the ROI
selected by the expert. It is commonly accepted that image acquisition and segmentation
are critical subprocesses due to inter-operator variability. Recent studies [8,28] suggest that
semi- or fully automated methods could improve algorithm performance, but currently the
manual segmentation performed by experts continues to be the main method adopted. For
instance, most of the ML-based studies applied to the thyroid are performed considering a
manual segmentation of the ROI [21,41]. In addition, the ML-based investigations reported
in [10,22] have introduced a semi-automatic method that is characterized by an initial
automatic selection of a box region and subsequently by a manual contouring performed
by expert clinicians. Conversely, the studies that applied DL algorithms to thyroid imaging
considered a manual selected box around the region under investigation [9,11,52,54]. Fur-
thermore, it is worth pointing out that radiomics studies are based on a manual contouring
along the borders of the thyroid tumor [60–62] or slightly within the borders of the tumor
to avoid artifacts [64].

To date, most studies highlight that the main limitation of AI algorithms is the reduced
dataset used for predictive model development and validation. Ideally, independent
training and validation datasets, composed of data images achieved with different US
equipment and from multiple centers, i.e., multicenter training cohorts, allow to optimally
develop the predicting model, avoiding overfitting and enhancing generalizability and
model performance [67].

For instance, in radiomics studies, Gilies and coworkers [43] provide an empirical rule
concerning the size of the dataset in order to avoid overfitting. It is suggested that almost
10–15 patients are needed for each examined radiomic feature. Thus, also features selection
represents a crucial step during the evaluation.

AI methods represent a powerful approach that in future may assist clinicians in
diagnostic decisions [22,71], while combined with other “-omic” data as occur in radiomics
analysis may improve the risk factor analysis for personalized estimation of disease-free
survival. As mentioned, AI methods could be also applied to contribute to treatment
planning. For instance, radiomics combined with other clinical parameters may help to
predict which patients are likely to have a satisfactory response to emerging therapies as
high-intensity focused ultrasound (HIFU), that allows the thermal tissue treatment and the
consequent reduction in thyroid nodule volume by directing energy inside the target zone
with non-invasive instruments [72–74].

Several efforts are performed to increase the availability of open access database of
labeled medical images that will help to train the predictive models developed with AI
techniques. However, pitfalls and limitations associated with the AI approach should be
considered, especially related to the difficulty to achieve a generalizable model in order to
ensure optimal application for each patient.

With regard to the application of the AI in the daily practice of the clinical medicine,
beyond the hype around these technologies, the financial investment is pouring and
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brand-new products started flowing into the market. As of early 2020, there were 64 FDA-
approved AI-ML medical device and algorithms, many of which are already integrated
into clinical care. Remarkably, 21 were related to Radiology [75]. Nonetheless, recent
literature reviews report that the impact is still minimal as the majority of the AI-ML
studies are retrospective in nature, deviate from existing reporting standards and often
outline proof-of-concept approach [76].

From the pure clinical standpoint, all these findings should be interpreted according
to the routine clinical practice. In fact, US is recognized as the most relevant imaging
procedure for the assessment of thyroid nodule and almost all thyroid patients are man-
aged according to US features of their thyroid gland. This worldwide diffused approach
is based on the high sensitivity and specificity of US in discriminating malignant from
benign thyroid lesions. Further improvement of US performance by AI remains however
desirable [77,78]. In addition, a not negligible number of thyroid goiters are incidentally
discovered during other imaging evaluations (i.e., CT, MR, PET/CT) of patients with
non-thyroid indication [79]. While the performance of these imaging procedures is poor
or suboptimal to identify malignant and benign nodules among adrenal thyroid inciden-
talomas, a significant effort should be made in the future to improve their capability to
initially select patients requiring an urgent or not endocrinological evaluation combined
with in-office US examination.

6. Conclusions

The evaluation of images has a central role in the clinical workflow. It is worth
highlighting that image interpretation requires deductive reasoning, using knowledge
of pathological processes, integration from prior examination and investigations and
consultation with other physicians. To date, AI techniques can be an integral part of the
procedure, but cannot emulate the overall process.

A further approach to improve the assessment of medical images can be represented
by the integration of AI-based models with mixed reality tools. The authors retain that
in-depth analysis should be performed to analyze the potential of mixed reality within the
diagnostic workflow.

Author Contributions: Conceptualization, F.B. and P.T.; methodology, F.B., A.P., L.A., A.G., L.R.,
F.M. and P.T.; software, A.P.; validation, F.B., A.P., L.A., A.G., L.R., F.M. and P.T.; formal analysis,
F.B. and A.P.; investigation, F.B., A.P., L.A., A.G., L.R. and P.T.; resources, P.T.; data curation, F.B.
and A.P.; writing—original draft preparation, F.B. and A.P.; writing—review and editing, F.B., A.P.,
L.A., A.G., L.R., F.M. and P.T.; visualization, F.B. and A.P.; supervision, F.B., F.M. and P.T.; project
administration, P.T.; funding acquisition, P.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard,

R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer
2012, 48, 441–446. [CrossRef] [PubMed]

2. Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-
Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat.
Commun. 2014, 5, 4006. [CrossRef] [PubMed]

3. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577.
[CrossRef]

4. Machine Learning in Radiation Oncology; El Naqa, I.; Li, R.; Murphy, M. (Eds.) Springer: Cham, Switzerland, 2015. [CrossRef]
5. Lohmann, P.; Bousabarah, K.; Hoevels, M.; Treuer, H. Radiomics in radiation oncology—basics, methods, and limitations.

Strahlenther. Onkol. 2020, 196, 848–855. [CrossRef] [PubMed]
6. Frix, A.-N.; Cousin, F.; Refaee, T.; Bottari, F.; Vaidyanathan, A.; Desir, C.; Vos, W.; Walsh, S.; Occhipinti, M.; Lovinfosse, P.; et al.

Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians. Pers. Med. 2021, 11, 602. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ejca.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/22257792
http://doi.org/10.1038/ncomms5006
http://www.ncbi.nlm.nih.gov/pubmed/24892406
http://doi.org/10.1148/radiol.2015151169
http://doi.org/10.1007/978-3-319-18305-3_1
http://doi.org/10.1007/s00066-020-01663-3
http://www.ncbi.nlm.nih.gov/pubmed/32647917
http://doi.org/10.3390/jpm11070602
http://www.ncbi.nlm.nih.gov/pubmed/34202096


Cancers 2021, 13, 4740 16 of 18

7. Castiglioni, I.; Rundo, L.; Codari, M.; Di Leo, G.; Salvatore, C.; Interlenghi, M.; Gallivanone, F.; Cozzi, A.; D’Amico, N.C.;
Sardanelli, F. AI applications to medical images: From machine learning to deep learning. Phys. Med. 2021, 83, 9–24. [CrossRef]

8. Iqbal, M.J.; Javed, Z.; Sadia, H.; Qureshi, I.A.; Irshad, A.; Ahmed, R.; Malik, K.; Raza, S.; Abbas, A.; Pezzani, R.; et al. Clinical
applications of artificial intelligence and machine learning in cancer diagnosis: Looking into the future. Cancer Cell Int. 2021, 21,
1–11. [CrossRef]

9. Liang, X.; Yu, J.; Liao, J.; Chen, Z. Convolutional Neural Network for Breast and Thyroid Nodules Diagnosis in Ultrasound
Imaging. BioMed Res. Int. 2020, 2020, 1763803. [CrossRef]

10. Chang, Y.; Paul, A.K.; Kim, N.; Baek, J.H.; Choi, Y.J.; Ha, E.J.; Lee, K.D.; Lee, H.S.; Shin, D.; Kim, N. Computer-aided diagnosis
for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based
assessments. Med. Phys. 2016, 43, 554–567. [CrossRef]

11. Jin, Z.; Zhu, Y.; Zhang, S.; Xie, F.; Zhang, M.; Zhang, Y.; Tian, X.; Zhang, J.; Luo, Y.; Cao, J. Ultrasound Computer-Aided Diagnosis
(CAD) Based on the Thyroid Imaging Reporting and Data System (TI-RADS) to Distinguish Benign from Malignant Thyroid
Nodules and the Diagnostic Performance of Radiologists with Different Diagnostic Experience. Med. Sci. Monit. 2020, 26, e918452.
[CrossRef]

12. Fujita, H. AI-based computer-aided diagnosis (AI-CAD): The latest review to read first. Radiol. Phys. Technol. 2020, 13, 6–19.
[CrossRef] [PubMed]

13. Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J.W.L. Machine Learning methods for Quantitative Radiomic
Biomarkers. Sci. Rep. 2015, 5, 13087. [CrossRef] [PubMed]

14. Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.;
Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput
Image-based Phenotyping. Radiology 2020, 295, 328–338. [CrossRef] [PubMed]

15. McCarthy, J.J.; Minsky, M.L.; Rochester, N. Artificial Intelligence. Research Laboratory of Electronics (RLE) at the Massachusetts
Institute of Technology (MIT). 1959. Available online: https://dspace.mit.edu/handle/1721.1/52263 (accessed on 3 March 2010).

16. McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A proposal for the Dartmouth summer research project on artificial
intelligence, August 31, 1955. AI Mag. 2006, 27, 12.

17. Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past,
present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [CrossRef] [PubMed]

18. Bera, K.; Schalper, K.A.; Rimm, D.L.; Velcheti, V.; Madabhushi, A. Artificial intelligence in digital pathology—New tools for
diagnosis and precision oncology. Nat. Rev. Clin. Oncol. 2019, 16, 703–715. [CrossRef]

19. Wernick, M.N.; Yang, Y.; Brankov, J.G.; Yourganov, G.; Strother, S. Machine Learning in Medical Imaging. IEEE Signal Process.
Mag. 2010, 27, 25–38. [CrossRef] [PubMed]

20. Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. RadioGraphics 2017, 37, 505–515.
[CrossRef]

21. Zhao, C.-K.; Ren, T.-T.; Yin, Y.-F.; Shi, H.; Wang, H.-X.; Zhou, B.-Y.; Wang, X.-R.; Li, X.; Zhang, Y.-F.; Liu, C.; et al. A Comparative
Analysis of Two Machine Learning-Based Diagnostic Patterns with Thyroid Imaging Reporting and Data System for Thyroid
Nodules: Diagnostic Performance and Unnecessary Biopsy Rate. Thyroid 2021, 31, 470–481. [CrossRef]

22. Park, V.; Han, K.; Seong, Y.K.; Park, M.H.; Kim, E.-K.; Moon, H.J.; Yoon, J.H.; Kwak, J.Y. Diagnosis of Thyroid Nodules:
Performance of a Deep Learning Convolutional Neural Network Model vs. Radiologists. Sci. Rep. 2019, 9, 1–9. [CrossRef]

23. Cui, S.; Tseng, H.; Pakela, J.; Haken, R.K.T.; El Naqa, I. Introduction to machine and deep learning for medical physicists. Med.
Phys. 2020, 47, e127–e147. [CrossRef]

24. Forghani, R.; Savadjiev, P.; Chatterjee, A.; Muthukrishnan, N.; Reinhold, C.; Forghani, B. Radiomics and Artificial Intelligence
for Biomarker and Prediction Model Development in Oncology. Comput. Struct. Biotechnol. J. 2019, 17, 995–1008. [CrossRef]
[PubMed]

25. Guorong, W.; Dinggang, S.; Mert, R.S. Machine Learning and Medical Imaging; Academic Press: London, UK, 2016. [CrossRef]
26. El-Naqa, I.; Yang, Y.; Wernick, M.N.; Galatsanos, N.P.; Nishikawa, R. A support vector machine approach for detection of

microcalcifications. IEEE Trans. Med. Imaging 2002, 21, 1552–1563. [CrossRef] [PubMed]
27. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18,

500–510. [CrossRef] [PubMed]
28. Chartrand, G.; Cheng, P.M.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep Learning: A Primer for

Radiologists. RadioGraphics 2017, 37, 2113–2131. [CrossRef]
29. Aggarwal, R.; Sounderajah, V.; Martin, G.; Ting, D.S.W.; Karthikesalingam, A.; King, D.; Ashrafian, H.; Darzi, A. Diagnostic

accuracy of deep learning in medical imaging: A systematic review and meta-analysis. NPJ Digit. Med. 2021, 4, 65. [CrossRef]
30. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
31. Lundervold, A.S.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z Med. Phys. 2019, 29,

102–127. [CrossRef]
32. Mazurowski, M.A.; Buda, M.; Saha, A.; Bashir, M.R. Deep learning in radiology: An overview of the concepts and a survey of the

state of the art with focus on MRI. J. Magn. Reson. Imaging 2019, 49, 939–954. [CrossRef]
33. Wang, L.; Yang, S.; Yang, S.; Zhao, C.; Tian, G.; Gao, Y.; Chen, Y.; Lu, Y. Automatic thyroid nodule recognition and diagnosis in

ultrasound imaging with the YOLOv2 neural network. World J. Surg. Oncol. 2019, 17, 1–9. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ejmp.2021.02.006
http://doi.org/10.1186/s12935-021-01981-1
http://doi.org/10.1155/2020/1763803
http://doi.org/10.1118/1.4939060
http://doi.org/10.12659/MSM.918452
http://doi.org/10.1007/s12194-019-00552-4
http://www.ncbi.nlm.nih.gov/pubmed/31898014
http://doi.org/10.1038/srep13087
http://www.ncbi.nlm.nih.gov/pubmed/26278466
http://doi.org/10.1148/radiol.2020191145
http://www.ncbi.nlm.nih.gov/pubmed/32154773
https://dspace.mit.edu/handle/1721.1/52263
http://doi.org/10.1136/svn-2017-000101
http://www.ncbi.nlm.nih.gov/pubmed/29507784
http://doi.org/10.1038/s41571-019-0252-y
http://doi.org/10.1109/MSP.2010.936730
http://www.ncbi.nlm.nih.gov/pubmed/25382956
http://doi.org/10.1148/rg.2017160130
http://doi.org/10.1089/thy.2020.0305
http://doi.org/10.1038/s41598-019-54434-1
http://doi.org/10.1002/mp.14140
http://doi.org/10.1016/j.csbj.2019.07.001
http://www.ncbi.nlm.nih.gov/pubmed/31388413
http://doi.org/10.1016/B978-0-12-804076-8.09995-3
http://doi.org/10.1109/TMI.2002.806569
http://www.ncbi.nlm.nih.gov/pubmed/12588039
http://doi.org/10.1038/s41568-018-0016-5
http://www.ncbi.nlm.nih.gov/pubmed/29777175
http://doi.org/10.1148/rg.2017170077
http://doi.org/10.1038/s41746-021-00438-z
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1016/j.zemedi.2018.11.002
http://doi.org/10.1002/jmri.26534
http://doi.org/10.1186/s12957-019-1558-z
http://www.ncbi.nlm.nih.gov/pubmed/30621704


Cancers 2021, 13, 4740 17 of 18

34. Liu, S.; Wang, Y.; Yang, X.; Lei, B.; Liu, L.; Li, S.X.; Ni, D.; Wang, T. Deep Learning in Medical Ultrasound Analysis: A Review.
Engineering 2019, 5, 261–275. [CrossRef]

35. Erickson, B.J.; Korfiatis, P.; Kline, T.L.; Akkus, Z.; Philbrick, K.; Weston, A.D. Deep Learning in Radiology: Does One Size Fit All?
J. Am. Coll. Radiol. 2018, 15, 521–526. [CrossRef]

36. Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even,
A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol.
2017, 14, 749–762. [CrossRef]

37. Avanzo, M.; Stancanello, J.; El Naqa, I. Beyond imaging: The promise of radiomics. Phys. Med. 2017, 38, 122–139. [CrossRef]
[PubMed]

38. Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and deep learning
methods for radiomics. Med. Phys. 2020, 47, e185–e202. [CrossRef] [PubMed]

39. Tseng, H.-H.; Wei, L.; Cui, S.; Luo, Y.; Haken, R.K.T.; El Naqa, I. Machine Learning and Imaging Informatics in Oncology. Oncology
2020, 98, 344–362. [CrossRef] [PubMed]

40. Zhou, H.; Jin, Y.; Dai, L.; Zhang, M.; Qiu, Y.; Wang, K.; Tian, J.; Zheng, J. Differential Diagnosis of Benign and Malignant Thyroid
Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images. Eur J. Radiol. 2020, 127, 108992. [CrossRef]

41. Yoo, Y.J.; Ha, E.J.; Cho, Y.J.; Kim, H.L.; Han, M.; Kang, S.Y. Computer-Aided Diagnosis of Thyroid Nodules via Ultrasonography:
Initial Clinical Experience. Korean J. Radiol. 2018, 19, 665–672. [CrossRef] [PubMed]

42. Wang, X.; Agyekum, E.A.; Ren, Y.; Zhang, J.; Zhang, Q.; Sun, H.; Zhang, G.; Xu, F.; Bo, X.; Lv, W.; et al. A Radiomic Nomogram
for the Ultrasound-Based Evaluation of Extrathyroidal Extension in Papillary Thyroid Carcinoma. Front. Oncol. 2021, 11, 625646.
[CrossRef]

43. Gillies, R.J.; Schabath, M.B. Radiomics Improves Cancer Screening and Early Detection. Cancer Epidemiol. Biomark. Prev. 2020, 29,
2556–2567. [CrossRef]

44. Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl.
Med. 2020, 61, 488–495. [CrossRef]

45. Tunali, I.; Gillies, R.J.; Schabath, M.B. Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine.
Cold Spring Harb. Perspect. Med. 2021, 11, a039537. [CrossRef] [PubMed]

46. Cao, Y.; Zhong, X.; Diao, W.; Mu, J.; Cheng, Y.; Jia, Z. Radiomics in Differentiated Thyroid Cancer and Nodules: Explorations;
Application; and Limitations. Cancers 2021, 13, 2436. [CrossRef] [PubMed]

47. Araneo, R.; Bini, F.; Rinaldi, A.; Notargiacomo, A.; Pea, M.; Celozzi, S. Thermal-electric model for piezoelectric ZnO nanowires.
Nanotechnology 2015, 26, 265402. [CrossRef] [PubMed]

48. Scorza, A.; Lupi, G.; Sciuto, S.A.; Bini, F.; Marinozzi, F. A novel approach to a phantom based method for maximum depth
of penetration measurement in diagnostic ultrasound: A preliminary study. In Proceedings of the 2015 IEEE International
Symposium on Medical Measurements and Applications (MeMeA), Turin, Italy, 7–9 May 2015; pp. 369–374. [CrossRef]

49. Marinozzi, F.; Branca, F.P.; Bini, F.; Scorza, A. Calibration procedure for performance evaluation of clinical Pulsed Doppler
Systems. Measurement 2012, 45, 1334–1342. [CrossRef]

50. Shen, Y.-T.; Chen, L.; Yue, W.-W.; Xu, H.-X. Artificial intelligence in ultrasound. Eur. J. Radiol. 2021, 139. [CrossRef]
51. Zhang, B.; Tian, J.; Pei, S.; Chen, Y.; He, X.; Dong, Y.; Zhang, L.; Mo, X.; Huang, W.; Cong, S.; et al. Machine Learning-Assisted

System for Thyroid Nodule Diagnosis. Thyroid 2019, 29, 858–867. [CrossRef]
52. Wu, G.G.; Lv, W.Z.; Yin, R.; Xu, J.W.; Yan, Y.J.; Chen, R.X.; Wang, J.Y.; Zhang, B.; Cui, X.W.; Dietrich, C.F. Deep Learning Based on

ACR TI-RADS Can Improve the Differential Diagnosis of Thyroid Nodules. Front. Oncol. 2021, 11, 575166. [CrossRef]
53. Koh, J.; Lee, E.; Han, K.; Kim, E.-K.; Son, E.J.; Sohn, Y.-M.; Seo, M.; Kwon, M.-R.; Yoon, J.H.; Lee, J.H.; et al. Diagnosis of thyroid

nodules on ultrasonography by a deep convolutional neural network. Sci. Rep. 2020, 10, 1–9. [CrossRef]
54. Ko, S.Y.; Lee, J.H.; Yoon, J.H.; Na, H.; Hong, E.; Han, K.; Jung, I.; Kim, E.K.; Moon, H.J.; Park, V.Y.; et al. Deep convolutional

neural network for the diagnosis of thyroid nodules on ultrasound. Head Neck 2019, 41, 885–891. [CrossRef]
55. Li, X.; Zhang, S.; Zhang, Q.; Wei, X.; Pan, Y.; Zhao, J.; Xin, X.; Qin, C.; Wang, X.; Li, J.; et al. Diagnosis of thyroid cancer using deep

convolutional neural network models applied to sonographic images: A retrospective; multicohort; diagnostic study. Lancet
Oncol. 2019, 20, 193–201. [CrossRef]

56. Ma, J.; Wu, F.; Zhu, J.; Xu, D.; Kong, D. A pre-trained convolutional neural network based method for thyroid nodule diagnosis.
Ultrasonics 2017, 73, 221–230. [CrossRef] [PubMed]

57. Buda, M.; Wildman-Tobriner, B.; Hoang, J.K.; Thayer, D.; Tessler, F.N.; Middleton, W.D.; Mazurowski, M.A. Management of
Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists. Radiology 2019, 292, 695–701.
[CrossRef] [PubMed]

58. Chi, J.; Walia, E.; Babyn, P.; Wang, J.; Groot, G.; Eramian, M. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning
Deep Convolutional Neural Network. J. Digit. Imaging. 2017, 30, 477–486. [CrossRef] [PubMed]

59. Kim, G.R.; Lee, E.; Kim, H.R.; Yoon, J.H.; Park, V.Y.; Kwak, J.Y. Convolutional Neural Network to Stratify the Malignancy Risk of
Thyroid Nodules: Diagnostic Performance Compared with the American College of Radiology Thyroid Imaging Reporting and
Data System Implemented by Experienced Radiologists. AJNR Am. J. Neuroradiol. 2021, 42, 1513–1519. [CrossRef] [PubMed]

http://doi.org/10.1016/j.eng.2018.11.020
http://doi.org/10.1016/j.jacr.2017.12.027
http://doi.org/10.1038/nrclinonc.2017.141
http://doi.org/10.1016/j.ejmp.2017.05.071
http://www.ncbi.nlm.nih.gov/pubmed/28595812
http://doi.org/10.1002/mp.13678
http://www.ncbi.nlm.nih.gov/pubmed/32418336
http://doi.org/10.1159/000493575
http://www.ncbi.nlm.nih.gov/pubmed/30472716
http://doi.org/10.1016/j.ejrad.2020.108992
http://doi.org/10.3348/kjr.2018.19.4.665
http://www.ncbi.nlm.nih.gov/pubmed/29962872
http://doi.org/10.3389/fonc.2021.625646
http://doi.org/10.1158/1055-9965.EPI-20-0075
http://doi.org/10.2967/jnumed.118.222893
http://doi.org/10.1101/cshperspect.a039537
http://www.ncbi.nlm.nih.gov/pubmed/33431509
http://doi.org/10.3390/cancers13102436
http://www.ncbi.nlm.nih.gov/pubmed/34069887
http://doi.org/10.1088/0957-4484/26/26/265402
http://www.ncbi.nlm.nih.gov/pubmed/26059217
http://doi.org/10.1109/MeMeA.2015.7145230
http://doi.org/10.1016/j.measurement.2012.01.052
http://doi.org/10.1016/j.ejrad.2021.109717
http://doi.org/10.1089/thy.2018.0380
http://doi.org/10.3389/fonc.2021.575166
http://doi.org/10.1038/s41598-020-72270-6
http://doi.org/10.1002/hed.25415
http://doi.org/10.1016/S1470-2045(18)30762-9
http://doi.org/10.1016/j.ultras.2016.09.011
http://www.ncbi.nlm.nih.gov/pubmed/27668999
http://doi.org/10.1148/radiol.2019181343
http://www.ncbi.nlm.nih.gov/pubmed/31287391
http://doi.org/10.1007/s10278-017-9997-y
http://www.ncbi.nlm.nih.gov/pubmed/28695342
http://doi.org/10.3174/ajnr.A7149
http://www.ncbi.nlm.nih.gov/pubmed/33985947


Cancers 2021, 13, 4740 18 of 18

60. Park, V.Y.; Lee, E.; Lee, H.S.; Kim, H.J.; Yoon, J.; Son, J.; Song, K.; Moon, H.J.; Yoon, J.H.; Kim, G.R.; et al. Combining radiomics
with ultrasound-based risk stratification systems for thyroid nodules: An approach for improving performance. Eur. Radiol. 2021,
31, 2405–2413. [CrossRef] [PubMed]

61. Wei, R.; Wang, H.; Wang, L.; Hu, W.; Sun, X.; Dai, Z.; Zhu, J.; Li, H.; Ge, Y.; Song, B. Radiomics based on multiparametric MRI for
extrathyroidal extension feature prediction in papillary thyroid cancer. BMC Med. Imaging 2021, 21, 20. [CrossRef] [PubMed]

62. Kwon, M.-R.; Shin, J.; Park, H.; Cho, H.; Hahn, S.; Park, K. Radiomics Study of Thyroid Ultrasound for Predicting BRAF Mutation
in Papillary Thyroid Carcinoma: Preliminary Results. Am. J. Neuroradiol. 2020, 41, 700–705. [CrossRef]

63. Gu, J.; Zhu, J.; Qiu, Q.; Wang, Y.; Bai, T.; Yin, Y. Prediction of Immunohistochemistry of Suspected Thyroid Nodules by Use of
Machine Learning-Based Radiomics. AJR Am. J. Roentgenol. 2019, 213, 1348–1357. [CrossRef]

64. Guo, R.; Guo, J.; Zhang, L.; Qu, X.; Dai, S.; Peng, R.; Chong, V.F.H.; Xian, J. CT-based radiomics features in the prediction of
thyroid cartilage invasion from laryngeal and hypopharyngeal squamous cell carcinoma. Cancer Imaging 2020, 20, 81. [CrossRef]

65. Park, V.; Han, K.; Lee, E.; Kim, E.-K.; Moon, H.J.; Yoon, J.H.; Kwak, J.Y. Association Between Radiomics Signature and Disease-Free
Survival in Conventional Papillary Thyroid Carcinoma. Sci. Rep. 2019, 9, 1–7. [CrossRef]

66. Wang, Y.; Yue, W.; Li, X.; Liu, S.; Guo, L.; Xu, H.; Zhang, H.; Yang, G. Comparison Study of Radiomics and Deep Learning-Based
Methods for Thyroid Nodules Classification Using Ultrasound Images. IEEE Access 2020, 8, 52010–52017. [CrossRef]

67. Peng, S.; Liu, Y.; Lv, W.; Liu, L.; Zhou, Q.; Yang, H.; Ren, J.; Liu, G.; Wang, X.; Zhang, X.; et al. Deep learning-based artificial
intelligence model to assist thyroid nodule diagnosis and management: A multicentre diagnostic study. Lancet Digit. Health 2021,
3, e250–e259. [CrossRef]

68. Trimboli, P.; Bini, F.; Andrioli, M.; Giovanella, L.; Thorel, M.F.; Ceriani, L.; Valabrega, S.; Lenzi, A.; Drudi, F.M.; Marinozzi, F.; et al.
Analysis of tissue surrounding thyroid nodules by ultrasound digital images. Endocrine 2015, 48, 434–438. [CrossRef] [PubMed]

69. Wu, E.; Wu, K.; Daneshjou, R.; Ouyang, D.; Ho, D.E.; Zou, J. How medical AI devices are evaluated: Limitations and recommen-
dations from an analysis of FDA approvals. Nat. Med. 2021, 27, 582–584. [CrossRef] [PubMed]

70. Verburg, F.; Reiners, C. Sonographic diagnosis of thyroid cancer with support of AI. Nat. Rev. Endocrinol. 2019, 15, 319–321.
[CrossRef]

71. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez,
C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef]

72. Bini, F.; Trimboli, P.; Marinozzi, F.; Giovanella, L. Treatment of benign thyroid nodules by high intensity focused ultrasound
(HIFU) at different acoustic powers: A study on in-silico phantom. Endocrine 2018, 59, 506–509. [CrossRef]

73. Trimboli, P.; Bini, F.; Baek, J.H.; Marinozzi, F.; Giovanella, L. High intensity focused ultrasounds (HIFU) therapy for benign
thyroid nodules without anesthesia or sedation. Endocrine 2018, 61, 210–215. [CrossRef]

74. Giovanella, L.; Piccardo, A.; Pezzoli, C.; Bini, F.; Ricci, R.; Ruberto, T.; Trimboli, P. Comparison of High Intensity Focused
Ultrasound and radioiodine for treating toxic Thyroid nodules. Clin. Endocrinol. 2018, 89, 219–225. [CrossRef]

75. Benjamens, S.; Dhunnoo, P.; Mesko, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms:
An online database. NPJ Digit. Med. 2020, 3, 118. [CrossRef]

76. Ben-Israel, D.; Jacobs, W.B.; Casha, S.; Lang, S.; Ryu, W.H.A.; de Lotbiniere-Bassett, M.; Cadotte, D.W. The impact of machine
learning on patient care: A systematic review. Artif. Intell. Med. 2020, 103, 101785. [CrossRef]

77. Russ, G.; Trimboli, P.; Buffet, C. The New Era of TIRADSs to Stratify the Risk of Malignancy of Thyroid Nodules: Strengths,
Weaknesses and Pitfalls. Cancers 2021, 13, 4316. [CrossRef] [PubMed]

78. Trimboli, P. Ultrasound: The Extension of Our Hands to Improve the Management of Thyroid Patients. Cancers 2021, 13, 567.
[CrossRef] [PubMed]

79. Scappaticcio, L.; Piccardo, A.; Treglia, G.; Poller, D.N.; Trimboli, P. The dilemma of 18F-FDG PET/CT thyroid incidentaloma:
What we should expect from FNA. A systematic review and meta-analysis. Endocrine 2021, 73, 540–549. [CrossRef] [PubMed]

http://doi.org/10.1007/s00330-020-07365-9
http://www.ncbi.nlm.nih.gov/pubmed/33034748
http://doi.org/10.1186/s12880-021-00553-z
http://www.ncbi.nlm.nih.gov/pubmed/33563233
http://doi.org/10.3174/ajnr.A6505
http://doi.org/10.2214/AJR.19.21626
http://doi.org/10.1186/s40644-020-00359-2
http://doi.org/10.1038/s41598-018-37748-4
http://doi.org/10.1109/ACCESS.2020.2980290
http://doi.org/10.1016/S2589-7500(21)00041-8
http://doi.org/10.1007/s12020-014-0344-5
http://www.ncbi.nlm.nih.gov/pubmed/24997646
http://doi.org/10.1038/s41591-021-01312-x
http://www.ncbi.nlm.nih.gov/pubmed/33820998
http://doi.org/10.1038/s41574-019-0204-8
http://doi.org/10.1016/j.media.2017.07.005
http://doi.org/10.1007/s12020-017-1350-1
http://doi.org/10.1007/s12020-018-1560-1
http://doi.org/10.1111/cen.13738
http://doi.org/10.1038/s41746-020-00324-0
http://doi.org/10.1016/j.artmed.2019.101785
http://doi.org/10.3390/cancers13174316
http://www.ncbi.nlm.nih.gov/pubmed/34503125
http://doi.org/10.3390/cancers13030567
http://www.ncbi.nlm.nih.gov/pubmed/33540591
http://doi.org/10.1007/s12020-021-02683-4
http://www.ncbi.nlm.nih.gov/pubmed/33761104

	Introduction 
	Artificial Intelligence in Medical Imaging 
	Machine Learning 
	Deep Learning 

	Radiomics 
	AI and Radiomics in Thyroid Diseases 
	Discussion 
	Conclusions 
	References

