
R E S E A R CH A R T I C L E

Putamen volume predicts real-time fMRI neurofeedback
learning success across paradigms and neurofeedback target
regions

Zhiying Zhao1,2 | Shuxia Yao2 | Jana Zweerings3 | Xinqi Zhou2 |

Feng Zhou2 | Keith M Kendrick2 | Huafu Chen2 | Klaus Mathiak3 |

Benjamin Becker2

1Department of Radiology and Biomedical

Imaging, Yale University School of Medicine,

New Haven, Connecticut

2The Clinical Hospital of Chengdu Brain

Science Institute, MOE Key Laboratory for

Neuroinformation, High-Field Magnetic

Resonance Brain Imaging Key Laboratory of

Sichuan Province, University of Electronic

Science and Technology of China, Chengdu,

China

3Department of Psychiatry, Psychotherapy

and Psychosomatics, Medical School, RWTH

Aachen University, Aachen, Germany

Correspondence

Klaus Mathiak, Department of Psychiatry,

Psychotherapy and Psychosomatics, Medical

School, RWTH Aachen University, Pauwelsstr

30, 52074 Aachen, Germany.

Email: kmathiak@ukaachen.de

Benjamin Becker, The Clinical Hospital of

Chengdu Brain Science Institute, MOE Key

Laboratory for Neuroinformation, High-Field

Magnetic Resonance Brain Imaging Key

Laboratory of Sichuan Province, University of

Electronic Science and Technology of China,

Xiyuan Avenue, 2006, 611731 Chengdu,

China.

Email: ben_becker@gmx.de

Funding information

Bundesministerium für Bildung und Forschung,

Grant/Award Number: 01EE1405A-C;

Deutsche Forschungsgemeinschaft, Grant/

Award Number: IRTG 2150; National Key

Research and Development Program of China,

Grant/Award Number: 2018YFA0701400;

National Natural Science Foundation of China,

Grant/Award Numbers: 31700998, U1808204

Abstract

Real-time fMRI guided neurofeedback training has gained increasing interest as a

noninvasive brain regulation technique with the potential to modulate functional

brain alterations in therapeutic contexts. Individual variations in learning success and

treatment response have been observed, yet the neural substrates underlying the

learning of self-regulation remain unclear. Against this background, we explored

potential brain structural predictors for learning success with pooled data from three

real-time fMRI data sets. Our analysis revealed that gray matter volume of the right

putamen could predict neurofeedback learning success across the three data sets

(n = 66 in total). Importantly, the original studies employed different neurofeedback

paradigms during which different brain regions were trained pointing to a general

association with learning success independent of specific aspects of the experimental

design. Given the role of the putamen in associative learning this finding may reflect

an important role of instrumental learning processes and brain structural variations in

associated brain regions for successful acquisition of fMRI neurofeedback-guided

self-regulation.
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1 | INTRODUCTION

Real-time fMRI-based neurofeedback (rt-fMRI NF) is a brain modula-

tion technique that can non-invasively modulate functional brain

activity by allowing individuals to gain control over the neural signal

(i.e., Blood Oxygenation Level Dependent, BOLD, activation). An

increasing number of studies demonstrated that the successful self-

regulation of specific regions or networks can induce behavioral

changes in domains associated with the trained neural systems in

healthy subjects. Based on these promising findings, an increasing

number of rt-fMRI NF studies focused on clinical populations. These

investigations demonstrated some promising therapeutic effects after

single or repeated sessions of training in patients with mental disor-

ders including anxiety disorder (Scheinost et al., 2013; Zilverstand,

Sorger, Sarkheil, & Goebel, 2015), depression (Young et al., 2014;

Young et al., 2017), attention deficit disorder (Alegria et al., 2017;

Zilverstand et al., 2017), substance use disorder (Hanlon et al., 2013;

Hartwell et al., 2016; Kirsch, Gruber, Ruf, Kiefer, & Kirsch, 2016; Li

et al., 2013) and schizophrenia (Dyck et al., 2016; Okano et al., 2020;

Orlov et al., 2018; Zweerings et al., 2019).

While these studies demonstrate that healthy subjects and

patients can learn volitional control over brain activation and initial

clinical studies reported beneficial effects on symptom improvement,

the precise behavioral and neural mechanisms that underlie the acqui-

sition of rt-fMRI NF-guided self-regulation remain unclear. Within this

context recent reviews in the field have proposed key questions that

need to be addressed to promote a more conceptually-based account

to rt-fMRI NF, such as to clarify which neural substrates support the

acquisition of neural self-regulation (Emmert et al., 2016) and how the

regulation success can be translated into changes in specific behav-

ioral domains and ultimately clinical responses (Hampson, 2017). A

recent meta-analysis aggregated results reported by 99 rt-fMRI NF

studies and found that only 57 of the 99 studies observed increased

regulation in comparison to baseline, and less than half of the studies

found overall improvements on the behavioral level (Thibault, Mac-

Pherson, Lifshitz, Roth, & Raz, 2018). A similar issue has been previ-

ously raised for electroencephalogram-based neurofeedback (EEG NF)

(Alkoby, Abu-Rmileh, Shriki, & Todder, 2018). According to this

review, 38% of the participants across the 11 EEG NF studies

included were not able to gain regulatory control over their brain

activity during training. Accordingly, a better understanding of critical

aspects that determine regulation success is essential for the progres-

sion of the field.

Recent debates on optimizing rt-fMRI NF training efficacy have

been mostly focused on methodological aspects such as the number

of training sessions, target region selection (Karch et al., 2015), novel

brain-computer interfaces (Lorenzetti et al., 2018; Mathiak et al.,

2015), instructions and learning strategies (Sitaram et al., 2017;

Stoeckel et al., 2014) or the specific form of feedback presentation

(e.g., intermittent vs. continuous or implicit vs. explicit, see [Emmert

et al., 2017; Stoeckel et al., 2014]). In addition to optimizing the effi-

cacy of the training per se recently emerging frameworks conceptual-

izing a precision medicine approach for mental disorders (Insel, 2014)

proposed that accounting for individual differences in the patients

may represent a promising strategy to optimize treatment selection

for specific patient populations or on the individual level. Extending

this approach to neurofeedback training by determining factors that

modulate or predict learning success could help to identify patients

with the highest potential to benefit from the training and thus

increase the training efficacy regarding symptom improvement. More-

over, the determination of neural predictors may generally help to fur-

ther determine the complex processes underlying neurofeedback

learning.

With the aim to determine the neural basis that underlies

neurofeedback acquisition a recent meta-analysis encompassing data

from 12 rt-fMRI NF studies revealed a brain network commonly

engaged during training. The major nodes of this network included

the dorsolateral and ventrolateral areas of the prefrontal cortex

(dlPFC and vlPFC), basal ganglia, anterior insula cortex (AIC), anterior

cingulate cortex (ACC), thalamus and visual associative areas (Emmert

et al., 2016). A review by Sitaram et al. additionally proposed func-

tional domains and associated brain systems that mediate

neurofeedback learning. The authors proposed a network similar to

that determined in the aforementioned meta-analysis which supports

the involvement of different cognitive systems including executive

control, salience detection and reward processing during

neurofeedback learning (Sitaram et al., 2017). In particular, the authors

emphasized a key role of the dorsal and ventral striatum because of

their central roles in instrumental and associative learning which are

highly related to the acquisition of feedback-dependent behavioral

modification (Christoffersen & Schachtman, 2016; Gruart, Leal-Camp-

anario, Lopez-Ramos, & Delgado-Garcia, 2015; Yin et al., 2009).

NF training shares a strong learning-related component with

other forms of treatments that aim at modifying behavioral

maladaptations, such as cognitive training elements of behavioral

therapy. Cognitive-behavioral therapy (CBT) for instance applies

learning-based strategies and has been shown efficient to attenuate

behavioral and neural dysregulations in a range of mental disorders.

Previous studies that combined the personalized medicine approach

with neuroimaging in this context have reported that neural recruit-

ment during baseline (Klumpp, Fitzgerald, & Phan, 2013) as well as

individual variations in brain morphometry—in particular gray matter

volumes (Bryant et al., 2008) in the dysregulated pathways—are pre-

dictive for the subsequent treatment response to CBT. When

targeting patient populations, rt-fMRI NF training is commonly

focused on restoring the control over emotions using mental strate-

gies which share similar components to CBT training (Linhartova

et al., 2019). Results from previous EEG-neurofeedback learning stud-

ies suggest that in particular brain structural variations may represent

a promising candidate index for predicting learning success. These

studies reported for instance that volumes of the cingulate cortex,

AIC and putamen as measured by voxel-based morphometry (VBM)

were predictive for learning outcomes (Enriquez-Geppert et al., 2013;

Ninaus et al., 2015).

Given that highly similar cognitive processes may underlie the

acquisition of self-regulation by neurofeedback from EEG and fMRI
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modalities it is thus conceivable that brain structural indices may pre-

dict learning success in rt-fMRI NF experiments. A previous meta-

analysis of NF studies aimed at determining whether pre-training acti-

vation within the target regions of the training collected from more

than 400 participants could predict subsequent learning success.

However, this study did not find a common functional MRI-based pre-

dictor for neurofeedback efficacy, suggesting an examination of more

stable alternative predictors of neurofeedback learning success

(Haugg et al., 2020). Against this background, the current study

explored whether regional brain volume could predict learning success

during rt-fMRI NF training in healthy subjects. Based on the role of

the dlPFC, ACC, AIC, and striatum in neurofeedback training as

suggested by the previous literature (Emmert et al., 2016; Sitaram

et al., 2017), we hypothesized that gray matter volumes (GMV) in

these regions are associated with neurofeedback learning success in

healthy individuals. Furthermore, to increase statistical power and

generalize the association across different target regions our hypothe-

sis was tested in data pooled from three data sets targeting different

brain regions or pathways with NF. Given that the structural data in

these data sets were collected prior to the completion of NF training,

associations between individual variations in brain structure and sub-

sequent learning success were considered as predictive relationships.

2 | METHODS

2.1 | Data sets and participants

The data sets reported in the current study were collected in healthy

samples and were previously published in peer-reviewed journals

(Mathiak et al., 2015; Yao et al., 2016; Zhao et al., 2019; Zweerings

et al., 2018). Only data from the experimental neurofeedback runs

was included in our analysis (i.e., given the lack of learning success

during the sham/control conditions the corresponding data was

excluded from the current analyses; see Table 1 for demographics).

The data sets are distinct from each other by the experimental design

and the targeted training regions.

Two out of the three data setswere collected on a3-TeslaMRI system

(MR750, General Electric Medical System, Milwaukee, WI) in China. One

of them trained upregulation of AIC activity (Yao et al., 2016) and the other

study trained participants to up-regulate functional connectivity between

amygdala and ventrolateral prefrontal cortex (vlPFC) (Zhao et al., 2019).

Both studies found significant changes in the trained neural activity after

four runs of training. T1-weighted brain structural images were collected

immediately before the neurofeedback training. The third data set was col-

lected on a 3-Tesla Siemens MRI system (Magnetom TRIO, Siemens

Medical Systems, Erlangen, Germany) at RWTH Aachen University in

Germany. Participants in this data set were collected in two different stud-

ies (Mathiak et al., 2015; Zweerings et al., 2018) that shared the same train-

ing procedure during which participants received three sessions of

neurofeedback training to increase brain activity in the anatomically

defined ACC. The imaging parameters and further details of the data sets

are provided in the Supporting Information.

2.2 | Measurement of neurofeedback learning
success

Significant training effects on neural indices on the group-level have been

previously demonstrated in all three upregulation training data sets. In the

current study, we further explored whether variations in brain structure is

linked to variations in the subsequent NF learning success on the individ-

ual level. Learning success was defined as changes in brain activity in the

desired direction (as determined in the original studies) by subtracting the

measurements in the early training runs/sessions from the ones in the late

stages of the training. To this end, beta-estimates within the trained

regions of interest (ROI) were extracted from the generalized linear

models provided by the authors of the original studies. For the Chinese

data sets, learning success was previously determined by comparing dif-

ferences in the targeted brain activity between the first two and last two

neurofeedback runs (Yao et al., 2016; Zhao et al., 2019). This measure-

ment was directly adopted in the current study. For the ACC regulation

data, the learning success was calculated as the difference in mean ACC

activation during regulation between the third and the first training ses-

sions, a measure that approximates the approach in the other two data

sets (Yao et al., 2016; Zhao et al., 2019). The data were extracted with

the tailored ACC anatomical mask used during the original neurofeedback

training (Mathiak et al., 2015; Zweerings et al., 2018). A previous study

used z-standardization to successfully explore a shared pattern of symp-

tom improvements across neurofeedback studies (Rance et al., 2018). In

line with this approach, we adopted standardization of the learning suc-

cess by means of computing z-scores within each sample using the zscore

function incorporated in MATLAB (R2020a. Natick, Massachusetts: The

MathWorks Inc.).

2.3 | Preprocessing of the imaging data

The brain structural images were preprocessed with the VBM8 tool-

box (http://dbm.neuro.uni-jena.de/wordpress/vbm/). Individual brain

images were first segmented into gray matter, white matter and cere-

brospinal fluid tissue probability maps by unified segmentation as

implemented in SPM12 (“New Segment Toolbox”). After segmenta-

tion, the gray matter images were non-linearly normalized to the MNI

TABLE 1 Demographic information of the data sets

Paradigm
Number of
participants

Age (SD) in
years

AIC NF 18 (9 females) 22.22 (1.17)

vlPFC-amygdala FC

NF

23 males 22.74 (2.07)

ACC NF 25 (18 females) 30.80 (10.51)

Abbreviations: ACC, anterior cingulate cortex; AIC, anterior insula cortex;

FC, functional connectivity; NF, neurofeedback; vlPFC, ventrolateral

prefrontal cortex.
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standard space with the DARTEL algorithm (Ashburner, 2007) while

accounting for individual whole brain volume sizes (“Modulated nor-

malization” in VBM8) to generate the gray matter volume (GMV)

maps. Finally, these gray matter images were smoothed with a 4 mm

full width at half maximum (FWHM) kernel. Total intracranial volume

(TIV) was calculated and subsequently included as a covariate in the

regression model. Before being subjected to further analysis, the qual-

ity of the GMV data were examined by visual inspection of the seg-

mented and registered images. Additionally, the data quality tool in

VBM8 was used to identify unsmoothed GMV maps with low covari-

ance (below 2 SD) within each data set. Based on these quality assess-

ments no data were excluded.

2.4 | Structural predictors for neurofeedback
learning

Associations between brain volume and neural learning success were

examined by multiple regressions in SPM12 (www.fil.ion.ucl.ac.uk/

spm/software/spm12/) using the gray matter images generated in the

last step of the proprocessing as described above. In addition to the

learning success measurement, data set, scanner, age, gender, and TIV

were included in the regression model as control variables.

Our goal was to examine which brain structures proposed in the

previous literature might contribute to individual differences in

neurofeedback learning. To this end, the correlation between gray mat-

ter volume and learning success was separately tested for the core sys-

tems of the previously described neurofeedback network, specifically

the bilateral dlPFC, ACC, AIC, and striatum (both dorsal and ventral divi-

sion, details of the masks used for the region of interest, ROI, analysis

are provided in SI) with a small volume correction (SVC) approach. Clus-

ters that survived p < .05 while correcting for family-wise errors (FWE)

were considered significant. In order to further describe the determined

regions associated with subsequent NF success on the functional net-

work level, we additionally explored the intrinsic functional profile of

the cluster that survived the correction. To this end we performed a

resting-state functional connectivity (rs-FC) analysis in an independent

sample of N = 252 healthy young adults. Briefly, the rs-FC data were

initially subjected to standard preprocessing steps including slice timing

and head movement corrections, normalization to MNI space, removal

of physiological noise and global signal intensity and finally, band-pass

filtering. The functional connectivity analysis employed the identified

cluster associated with NF learning success from the VBM analysis as

seed region to calculate whole brain resting state FC (details of the sam-

ple, preprocessing and analysis are additionally provided in the SI; for

the further sample description see also [Liu et al., 2020]).

3 | RESULTS

3.1 | Demographics

During screening for data availability and quality, one subject from

the ACC training sample was excluded due to missing age data. This

resulted in a total of 66 participants included in the final analysis.

The demographic information of these participants is reported in

Table 1. None of them received control/sham feedback during the

training.

3.2 | Associations between brain structure and
learning success

Applying region-wise SVC on the statistical map revealed a significant

positive correlation between the volume of a cluster located in the

striatum and learning success in the pooled data (t = 4.56, pFWE = .039,

voxels = 62). No significant associations within the other ROIs

emerged. The cluster was located in the dorsal division of the right

striatum, primarily in the putamen (x-y-z MNI-coordinates of the peak:

27, 9, 8). No negative correlation between GMV and learning success

was observed at the same threshold. Of note, because of the explor-

atory nature of the current work, no correction for multiple compari-

sons was performed for the number of tests/masks (N = 4 ROIs

tested, see Discussion). The whole-brain map of the structural corre-

lation with learning success is shown in Figure 1, further suggesting

an association between learning success and structural variations

in the bilateral dorsal striatum at an uncorrected display level

(p < .001, k > 20).

F IGURE 1 Brain clusters with a positive
association between gray matter volume and
neurofeedback learning success (uncorrected
p < .001 with a cluster threshold of k > 20, whole
brain level). The circle indicates the putamen
region which survived small volume correction in
the multiple regression analysis. Other clusters
shown in this map are reported in Table S1
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To separately explore the GMV-learning success association pat-

tern in each data set, regional volume was extracted from the puta-

men cluster within a 4 mm-radius sphere centered at the peak

coordinate. Extracted estimates were visualized with a scatter plot

(Figure 2). Pearson correlation analysis revealed a consistent pattern

of positive associations between larger gray matter volume in this

region with better learning success across samples. Interestingly how-

ever the GMV estimates varied between the cohorts which may be

explained by differences in the different gender ratios between the

original studies. Such sex-differences in the morphology of the basal

ganglia have been reported previously (Ahsan et al., 2007). Together

our results suggest an association between larger putamen volume

with better neurofeedback learning success on the neural level across

the studies.

3.3 | Network level characterization of the
identified region

To facilitate a functional characterization of the identified puta-

men region we further examined rs-FC of the putamen region

(cluster after SVC correction) in a large independent sample

(N = 252). The analysis revealed that the identified putamen region

exhibited widespread positive intrinsic connectivity with a bilateral

network encompassing supplementary motor regions, dlPFC, ACC,

AIC, parietal lobe, thalamus, and cerebellum (Figure 3, see also

Figure S2 for brain regions that exhibited negative connectivity

with the putamen seed region). This network overlapped with the

neurofeedback network proposed in the previous literature

(Emmert et al., 2016).

4 | DISCUSSION

In the current study, we investigated whether gray matter volume

within the previously proposed neurofeedback training-related brain

network could be linked to individual variations in neural regulation

success acquired during fMRI-guided neurofeedback training. In our

exploratory analyses, we separately examined brain regions previously

suggested to underlie neurofeedback learning success, we found that

in three independent samples, better neurofeedback learning success

was associated with larger volumes of the dorsal striatum, despite dif-

ferences in experimental designs and target regions employed in the

original studies. Individual structural variations in this region before

training prospectively associated with the changes in the targeted

brain activity during training, suggesting that individual GM variations

in this region may have the potential to predict subsequent learning

success. Moreover, further functional characterization of the identi-

fied region by means of determining resting-state functional connec-

tivity between this region and the rest of the brain in an independent

sample revealed strong intrinsic functional coupling between the iden-

tified dorsal striatum region and other major nodes of the

neurofeedback network proposed in the literature (Emmert

et al., 2016; Sitaram et al., 2017), which further reflects that the dorsal

striatum may represent a core node within the networks that support

the acquisition of neural self-regulation via fMRI-guided

neurofeedback.

The underlying mechanisms and factors that contribute to individ-

ual differences in NF learning success have been rarely examined. A

F IGURE 2 Association between gray matter volume in the
putamen area and learning success in each data set with data points
from each sample coded in different colors. The learning success (Y-
axis) was calculated as the z-standardized changes (late vs. early-stage
training) in brain activity within each study sample. R2 of the linear
regressions were denoted. FC, functional connectivity training study;
AIC, anterior insula cortex training study; ACC, anterior cingulate
cortex training study

F IGURE 3 Rs-FC network discovered in the independent sample
(N = 252) with the putamen region that predicted neurofeedback
learning as seed. The map is corrected at cluster level for family-wise
errors (pFWE < .05, cluster forming with height threshold at
p < .001, k > 68)
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recent meta-analysis that aimed at identifying functional brain

markers has failed to find one that could reliably predict

neurofeedback learning success across studies (Haugg et al., 2020). In

the light of these efforts, we asked whether individual variations in

brain structure could predict NF learning outcome in three samples

and found a positive association between volume of the dorsal stria-

tum, specifically the putamen, and learning success. The findings align

with findings from initial studies that learning during rt-fMRI NF has

been linked to the recruitment of the striatal system (Mathiak

et al., 2015), probably reflecting a feedback- and reward-related

teaching signal (Bray, Shimojo, & O'Doherty, 2007). A previous study

further demonstrated that the failure to acquire fMRI-guided neural

self-regulation in patients with schizophrenia was mediated by dys-

functional feedback-related responses in the striatum (Dyck

et al., 2016) and reduced putamen volumes have been repeatedly

reported in this population (Gaser, Nenadic, Buchsbaum, Hazlett, &

Buchsbaum, 2004). Additional support for an association between

individual variations in brain structure and neurofeedback learning

success comes from EEG-neurofeedback studies which may share key

mechanisms of the acquisition of neural self-regulation with fMRI-

guided NF protocols. Using machine learning approaches a previous

EEG-neurofeedback study demonstrated that the fractional anisot-

ropy (FA) value in local fiber structures including cingulum fibers was

highly correlated with neurofeedback performance in a sample of

20 healthy participants (Halder et al., 2013). Two other studies

reported that brain volumes of the cingulate area and the putamen

along with regions including AIC and prefrontal cortex could predict

participants' self-regulation performance during EEG rhythm training

(Enriquez-Geppert et al., 2013; Ninaus et al., 2015). Partly resembling

the previous findings our results suggest that the structural integrity

of the putamen, a brain structure involved in feedback-based and

instrumental learning, is associated with neurofeedback learning suc-

cess during fMRI-guided NF in healthy individuals.

During a typical neurofeedback training setting, subjects gain reg-

ulatory control based on feedback that reflects the neural signal of

the targeted region or network. The process of gaining control itself

may be considered as intrinsically rewarding process. As such increas-

ing regulatory control is followed by the presence of a reinforcing out-

come (i.e., the provision of a rewarding feedback signal upon

successful regulation efforts in the desired direction) which resembles

a form of instrumental learning (Sitaram et al., 2017). Evidence from

animal studies indicate a crucial role of the dorsal striatum in instru-

mental, associative, and procedural learning. This is especially

supported by neuromodulatory effects observed on synapses in dorsal

striatal regions during both skill learning and instrumental learning

processes (Gruart et al., 2015; Lovinger, 2010). The dorsal striatum

encompasses the caudate and putamen, and facilitates the integration

of information input from the associative cortices (Haber, 2016). Fur-

thermore, this region is strongly involved in the tracking of action-

outcome contingency during associative learning (Brovelli, Nazarian,

Meunier, & Boussaoud, 2011; Yin & Knowlton, 2006). In humans,

focal lesions of the putamen have found to be associated with

impaired performance in punishment-based avoidance learning which

is in line with a large body of evidence showing the recruitment of this

region during encoding of the outcome (Delgado, Nystrom, Fissell,

Noll, & Fiez, 2000; O'Doherty et al., 2004; Palminteri et al., 2012; Sey-

mour, Daw, Dayan, Singer, & Dolan, 2007). In line with recent over-

arching conceptualizations proposing the importance of instrumental

and procedural learning mechanisms in NF learning, responses to NF-

guided neural signals reliably engage this region (Emmert et al., 2016;

Shibata et al., 2019). In a study which trained upregulation of the right

inferior frontal cortex in adolescents with attention deficit disorder,

error-monitoring related activity in the putamen region was increased

in a stop signal task in the experimental group compared with the

active control group. Additionally, this pre-post change had trend-

level correlations with neurofeedback learning performance as well as

the improvements in symptoms (Criaud et al., 2020; Lam et al., 2020).

On the brain structural level, VBM studies have found that the gray

matter volume of the putamen could be related to both the skill level

of piano playing (Granert, Peller, Jabusch, Altenmuller, & Siebner,

2011) and the performance of neurofeedback learning in sensorimo-

tor rhythm regulation (Ninaus et al., 2015), suggesting an association

with procedural learning success. Taken together, our results may

reflect that during neurofeedback learning, individuals with larger

putamen volume might benefit from a better ability in adjusting men-

tal strategies based on perceived feedback contingency or a better

procedural learning ability which in turn may have promoted increased

learning success.

The present exploratory data provides the first evidence that indi-

vidual variations in the morphology of the dorsal striatum may predict

NF learning success. The findings are based on three independent

data sets with variation in the experimental design and the selected

target regions, and hence suggest generalizability of the findings.

However, the role of the putamen during neurofeedback training

remains speculative due to the lack of direct support from behavioral

data. As we have discussed previously, an overarching neurobiological

model of neurofeedback learning is yet to be established. In this con-

text, the exact mechanism of action needs to be further examined

with tailored experimental designs and validated in larger samples. As

a complex cognitive process, neurofeedback learning is presumably

underpinned by the involvement of several brain structures or net-

works in addition to the region discovered in the current study. For

instance, dlPFC and ACC are central for sustaining attention to the

stimuli and error monitoring during feedback learning (van

Duijvenvoorde, Zanolie, Rombouts, Raijmakers, & Crone, 2008). Find-

ings from a recent closed-loop training study indicated a role of the

frontostriatal circuitry in learning to regulate high-dimensional brain

activity by bridging metacognition (prefrontal) and reinforcement

learning (striatum) substrates which further suggested that

neurofeedback learning relies on an integrated brain network rather

than a single brain structure alone (Cortese, Lau, & Kawato, 2020). On

the behavioral level, a meta-analysis examining psychological factors

for neurofeedback efficacy has highlighted the influence of attention,

motivation, and mood on training outcome (Kadosh & Staunton,

2019). Therefore, it is worth examining whether the volume of

the brain structures supporting these functions can be linked to
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neurofeedback efficacy in a similar way as demonstrated in the cur-

rent study. Moreover, in the present study we focused on gray matter

volume as a potential predictor of learning success in a sample of

healthy subjects. Based on findings from a previous EEG-NF study on

a similar topic (Enriquez-Geppert et al., 2013), it is likely that other

brain structural measurements such as white matter volume or tracts

also contribute to fMRI neurofeedback learning, which need to be

examined by future studies. More importantly, since striatal gray mat-

ter volume reduction has been reported in a number of disorders such

as addiction (Xiao et al., 2015) and attention deficit hyperactivity dis-

order (ADHD) (Ellison-Wright, Ellison-Wright, & Bullmore, 2008), the

impact of the striatal structural deficit on the learning outcome needs

to be assessed in patient populations. In clinical contexts, self-efficacy

has received increasing interest as another specific factor involved in

the outcome of neurofeedback training, including in depression, eat-

ing disorders, ADHD and addiction (Mehler et al., 2018; Schmidt &

Martin, 2016; Strehl et al., 2017; Weiss et al., 2020). Findings in the

current study linked individual brain structural variations in the basal

ganglia with neurofeedback learning. Of interest, in a healthy sample

self-efficacy scores were associated with lower mean diffusivity

values in the right putamen (Nakagawa et al., 2017), a measurement

that has been closely linked to the dopaminergic system which plays a

central role in feedback-guided learning processes (Takeuchi &

Kawashima, 2018). Together with the current findings these previous

studies suggest that future studies may explore associations between

other brain structural indices, self-efficacy and neurofeedback learning

success in healthy individuals and patient populations. Finally, due to

the substantial number of brain regions that may contribute to

neurofeedback learning, four separate ROIs were tested with separate

small volume correction. However, the multiple-testing issues could

not be resolved by simply applying Bonferroni correction on the num-

ber of tests as it would also inflate the false negatives rate. Due to this

methodological limitation the present findings need to be interpreted

as exploratory in nature, and associations between learning success

and regional gray matter volume need to be interpreted cautiously.

Replication studies and investigations of the aforementioned potential

brain or behavioral factors are needed for further validating the pre-

sent findings.

5 | CONCLUSIONS

To the best of our knowledge, this is the first investigation showing

that brain structure factor is predictive for rt-fMRI neurofeedback

learning success. The association between putamen volume and learn-

ing success may reflect the key role of instrumental learning processes

during neurofeedback training. These findings await examination in

further studies providing more comprehensive evidence.
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