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OBJECTIVES: To develop a predictive model using vital sign (heart rate and 
arterial blood pressure) variability to predict time to death after withdrawal of life-
supporting measures.

DESIGN: Retrospective analysis of observational data prospectively collected 
as part of the Death Prediction and Physiology after Removal of Therapy study 
between May 1, 2014, and May 1, 2018.

SETTING: Adult ICU.

PATIENTS: Adult patients in the ICU with a planned withdrawal of life-supporting 
measures and an expectation of imminent death.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Vital sign waveforms and clin-
ical data were prospectively collected from 429 patients enrolled from 20 ICUs 
across Canada, the Czech Republic, and the Netherlands. Vital sign variability 
metrics were calculated during the hour prior to withdrawal. Patients were ran-
domly assigned to the derivation cohort (288 patients) or the validation cohort 
(141 patients), of which 103 and 54, respectively, were eligible for organ dona-
tion after circulatory death. Random survival forest models were developed to 
predict the probability of death within 30, 60, and 120 minutes following with-
drawal using variability metrics, features from existing clinical models, and/or the 
physician’s prediction of rapid death. A model employing variability metrics alone 
performed similarly to a model employing clinical features, whereas the combina-
tion of variability, clinical features, and physician’s prediction achieved the high-
est area under the receiver operating characteristics curve of all models at 0.78 
(0.7–0.86), 0.79 (0.71–0.87), and 0.8 (0.72–0.88) for 30-, 60- and 120-minute 
predictions, respectively.

CONCLUSIONS: Machine learning models of vital sign variability data before 
withdrawal of life-sustaining measures, combined with clinical features and the 
physician’s prediction, are useful to predict time to death. The impact of pro-
viding this information for decision support for organ donation merits further 
investigation.

KEY WORDS: clinical decision support systems; donor selection; machine 
learning; organ donation; organ transplantation; vital signs

Circulatory arrest following the withdrawal of life-sustaining measures 
(WLSM) is the most common mode of death in patients with a dismal 
prognosis and irrecoverable injury (1), and organ donation after cir-

culatory death (DCD) has the potential to vastly improve the number of de-
ceased organ donations (2). To minimize the potential for ischemic damage of 
recovered organs, transplant teams impose strict limits on the allowable time 
between WLSM and the determination of death, after which the transplant 
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team would “stand down.” These limits are specified 
by organ type, for example, 20–30 minutes for liver, 60 
minutes for lungs and pancreas, and 1.5–2 hours for 
kidneys (3), and vary by jurisdiction (4–6).

Predicting which patients will die within these 
timelines is often difficult (3, 7), and this uncertainty 
causes anxiety among healthcare professionals (8, 9) 
and distress among family members (10–14). The 
fraction of patients dying within these limits var-
ies by jurisdiction, ranging from 57% to 88% for 2 
hours (4, 6, 15–17). Failed donation can lead to dis-
appointment for families (11, 12) and be costly for 
the medical system due to unnecessary reservation 
of operating rooms and transportation of transplant 
teams (18, 19).

The clinician’s prediction of time to death has had 
mixed success (20–22). Several authors have inves-
tigated potential predictors of a rapid time to death 
(7, 15, 23). Most prediction models only considered 
death within 1 hour of WLSM, a few have been vali-
dated (6, 7, 20, 24, 25), and none have seen widespread 
deployment. Some models, such as the University of 
Wisconsin tool (26), require a brief trial with reduced 
ventilation support, which is controversial in some 
regions and may be a barrier to implementation  
(20, 22, 27).

Continuous monitoring of cardiovascular variability 
can enable earlier detection of critical illness (28, 29).  
Cardiovascular variability includes heart rate and 
blood pressure variability, which quantifies the fluc-
tuations of beat-by-beat measurements over time. As 
healthy biological systems possess innate variability, a 
decrease in variability can be indicative of a stressed 
system. A variety of variability metrics have been used 
to predict clinical outcomes such as multiple organ 
dysfunction syndrome (30), sepsis (31, 32), extubation 
failure (33), and mortality (34, 35).

As potential DCD patients generally have cat-
astrophic brain injuries and/or severe illness, we 
hypothesized that vital sign variability could predict 
rapidity of death after WLSM. We performed a sec-
ondary analysis of prospectively collected waveform 
data from the Death Prediction and Physiology after 
the Removal of Therapy (DePPaRT) study (36) to de-
rive and validate a random survival forest (RSF) model 
using heart rate and blood pressure variability to pre-
dict the probability of dying within 30, 60, and 120 
minutes after WLSM.

MATERIALS AND METHODS

Inclusion/Exclusion

This study was an analysis of data collected prospec-
tively from patients enrolled in the DePPaRT study 
(36), from 20 adult ICUs in Canada (16 sites), the 
Czech Republic (3 sites), and the Netherlands (1 site) 
between May 1, 2014, and May 1, 2018. Patients were 
eligible if there was a planned WLSM with the expec-
tation of imminent death, had at least 15 minutes of 
high-quality electrocardiogram (ECG) and arterial 
blood pressure waveform data prior to WLSM, and 
had a confirmed time of death. Both DCD eligible 
and noneligible patients were included. Patients were 
excluded if they had an active pacemaker, a neuro-
logic determination of death, or if WLSM was stag-
gered (i.e., life-sustaining measures modified greater 
than 10 minutes after the first act of WLSM [37, 
38]). The research protocol was approved by the rel-
evant institutional review board or ethics committee 
at each site (coordinating site: Children’s Hospital of 
Eastern Ontario Research Ethics Board, No. 14/08E, 
see Supplemental Information, http://links.lww.com/
CCX/A964, for full list). All patients’ surrogate deci-
sion makers provided written informed consent for 
participation in the study. Consent for organ donation 
was obtained independently from this study, according 
to local practice.

Data Collection

The time of death was confirmed through waveform 
data adjudicated using custom software (36) or by 
chart data for successful DCD patients without wave-
form data after withdrawal. Basic demographic infor-
mation, clinical characteristics, and details of WLSM 
were collected. Vital sign waveform data were captured 
from bedside monitors beginning from up to 1 hour 
prior to WLSM until up to 30 minutes after the decla-
ration of death. Capture used a variety of methods that 
depended on the type of bedside monitor and central 
stations. Only waveform data collected prior to WLSM 
was used in this analysis.

Model Features

We randomly assigned 2/3 of patients to the deriva-
tion cohort, and 1/3 of patients to the validation co-
hort, ensuring that the fraction of patients from each 
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country remained the same. To assess the performance 
of variability features relative to traditional features, 
we developed four different prediction models: 1) 
employing waveform variability features only, 2) clin-
ical features only, 3) the physician’s prediction of time 
to death alone, and 4) all features combined.

Waveform Variability Features. The ECG and arte-
rial blood pressure waveform data from 60 to 5 minutes 
prior to WLSM were processed to obtain beat-to-beat 
event times series (R peak interval, systolic, diastolic, 
mean, and pulse blood pressures), using previously 
reported software (31, 33, 36, 39). A comprehensive 
suite of 14 variability measures for each blood pres-
sure event time series and 15 for the R peak interval 
series was calculated for each patient using custom 
software (39), for a total of 71 variability measures 
(Supplemental Table E1, http://links.lww.com/CCX/
A964). We used the average of each variability measure 
in the hour prior to WLSM as input features for our 
predictive model. In 15 DCD attempts, measurements 
were taken in the hour prior to transport out of the 
ICU. For more details, see Supplemental Information 
(http://links.lww.com/CCX/A964).

Clinical Features. Six clinical variables (Glasgow 
Coma Scale [GCS], positive end-expiratory pressure, 
pH, systolic blood pressure, spontaneous respiration 
rate, and use of analgesia) identified by previous stud-
ies (20, 22) were used as clinical features, taken from 
the patient’s chart at the time of WLSM.

Physician Prediction of Time to Death. Prior to 
WLSM for each patient, the most responsible physi-
cian was asked if they expected the time to death to 
be within 1, 2, 3, or 6 hours after WLSM and to rate 
the confidence of their prediction (low, moderate, and 
high). A binary prediction of “timely death” was de-
fined as a physician’s prediction of death within 1 hour 
of WLSM with moderate or high confidence, and was 
assessed as a predictor for outcomes at 30, 60, and 120 
minutes after WLSM.

Predictive Model

Model Development. We used RSF (40) to develop 
our predictive models for all models except the model 
employing the physician’s prediction alone, using the 
“ranger” (41) package in R Foundation for Statistical 
Computing (Vienna, Austria) (42) (see Supplemental 
Information, http://links.lww.com/CCX/A964). RSF 

employ an ensemble of decision trees, with patients 
and features randomly allocated per tree, providing a 
form of internal validation. RSFs are capable of hand-
ling a large number of features without overfitting (43, 
44), fully nonparametric, and capable of detecting non-
linear effects and multiple interactions in predictors, 
while permitting correlation between predictors (40).

Each survival model yielded a probability of sur-
vival S(t) for each 15-minute interval up until 24 hours 
after WLSM, for each patient (Supplemental Fig. E1, 
http://links.lww.com/CCX/A964). We calculated the 
probability of dying at each time as D(t) = 1 – S(t). The 
probability of dying at a specific time (t = 30, 60, or 
120 min) was then used as a score to predict if a patient 
would die within this time. Model performance at each 
time was assessed using the area under the receiver op-
erating characteristic curve (ROC AUC, or AUC).

We optimized the set of available features used in 
each model by ranking features based on their impor-
tance values (43, 45), using a 10-fold cross validation 
of the derivation set, and employed a feature removal 
step to remove redundant features (see Supplemental 
Information, http://links.lww.com/CCX/A964). 
Finally, for each feature set, we combined all patients 
from the derivation cohort and the optimized features 
in a final model, which we tested on the validation set.

Model Validation. Each derived model (employ-
ing variability features, clinical features, physician pre-
diction of timely death, or all features combined) was 
tested on the validation cohort. We used 5,000 boot-
strap iterations to calculate CIs in the validation cohort.

Sensitivity Analysis. We performed a sensitivity 
analysis for the AUC using the probability scores for 
each model by combining all patients from both the 
derivation and the validation cohorts and separating 
them by DCD eligibility status or by country of origin.

Model Calibration. Model calibration was assessed 
at the population level by comparing the occurrence 
rate of rapid death with the mean predicted probabili-
ties at each time for all patients. Calibration curves 
were generated by calculating the fraction of patients 
assigned a probability of dying that died within the 
given time frame, grouping the probabilities into 
deciles over 5,000 bootstrap iterations.

A recalibration step was included in the model 
pipeline to ensure probability estimates were accurate. 
For each cross-validation fold of the combined model 
for the derivation cohort, model probabilities were 
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recalibrated using equal mass bins (deciles) (46, 47). 
The calibration histogram learned from the derivation 
cohort was used to adjust the model probabilities of 
the validation cohort. See Supplemental Information 
(http://links.lww.com/CCX/A964) for more details.

RESULTS

Out of 654 patients enrolled in the DePPaRT study (36), 
429 were included in our secondary analysis (Fig. 1). We 
randomly assigned 288 patients (2/3) to the derivation 
cohort, and 141 patients (1/3) to the validation cohort, 
keeping the fraction of patients from each country the 
same (Canada [48%], the Czech Republic [44%], and 
the Netherlands [8%]). The median time to death was 56 
and 54 minutes in the derivation and validation cohorts, 
respectively (Table 1). In the derivation and validation 
cohorts, respectively, 103 (36%) and 54 (38%) were con-
sidered DCD eligible by their organ donor organiza-
tions, 47 (16%) and 26 (18%) had DCD attempted, and 
30 (10%) and 18 (13%) became successful organ donors.

Model Derivation

We compare the performance of the derivation set 
(using 10-fold cross-validation) for the four different 
models in Supplemental Table E2 (http://links.lww.
com/CCX/A964). The waveform variability model 
performed similarly to the clinical model, although 
many variability features showed a higher Spearman 
correlation with time to death than the clinical fea-
tures (Supplemental Table E3, http://links.lww.com/
CCX/A964). The physician’s prediction of timely death 
achieved slightly higher AUCs than the variability or 
clinical models. The combined model achieved the 
highest AUC scores at all three times, with AUC values 
of 0.79, 0.81, and 0.84 for death within 30, 60, and 120 
minutes, respectively. During feature optimization, 
all clinical features were removed from the combined 
model, with only variability features and the physi-
cian’s prediction of timely death remaining in the final 
model (Supplemental Information, http://links.lww.
com/CCX/A964).

Figure 1. Flow diagram outlining inclusion/exclusion criteria for model development. DePPaRT = Death Prediction and Physiology after 
the Removal of Therapy.
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TABLE 1. 
Characteristics of Enrolled Patients in the Derivation and Validation Cohorts, As Well As 
Patients Excluded From Analysis.

Demographic Characteristics
Derivation Cohort  

(n = 288)
Validation Cohort  

(n = 141)
Excluded Patients  

(n = 225a)

Average age (sd, range) 63 (16, 18–94) 63 (15, 22–95) 65 (15, 24–93)
Female gender 114 (40%) 55 (39%) 75 (35%)
Chronic condition 230 (80%) 113 (80%) 187 (87%)
Primary reason for ICU admission
  Neurologic 152 (53%) 75 (53%) 83 (38%)
  Cardiac 9 (3%) 7 (5%) 11 (5%) 
  Respiratory 37 (13%) 20 (14%) 43 (20%)
  Sepsis/infection 42 (15%) 16 (11%) 38 (18%)
  Trauma 13 (5%) 6 (4%) 8 (4%) 
  Otherb 35 (12%) 17 (12%) 33 (15%)
Median Glasgow Coma Scale at ICU  

  admission (IQR)
4 (3–9) 3 (3–10) 7 (3–14)

Avg. Acute Physiology and Chronic Health  
  Evaluation II Score (IQR, range)

28 (23–33, 7–55),  
n = 286

27  
(21–34, 6–47)

27 (21–32, 8–48)  
n = 214

Reported traumatic brain injury 31 (11%) 10 (7%) 21 (10%)
Median length of stay in ICU, d (range) 4 (0–32) 4 (0–34), n = 140 3 (0–61)
DCD organ donation organization eligible 103 (36%) 54 (38%) 49 (23%)
DCD attempted 47 (16%) 26 (18%) 14 (6%)
DCD successful donors 30 (10%) 18 (13%) 12 (6%)
Median time to death, min (range) 56 (4 min to 270 hr) 54 (7 min to 110 hr) 66 (0 min to 159 hr) n = 214c

Death within 30, 60, and 120 min 39%, 51%, and 63% 38%, 51%, and 65% 29%, 47%, and 61%
Patients from Canada 138 (48%) 68 (48%) 163 (75%)
Patients from the Czech Republic 127 (44%) 62 (44%) 44 (20%)
Patients from the Netherlands 23 (8%) 11 (8%) 9 (4%)
Life-Sustaining Measures
Receiving invasive mechanical ventilation,  

  with a mandatory ventilation mode
253 (88%) 126 (89%) 184 (85%)

Extubated as part of withdrawal  
  of life-sustaining measures

184 (64%) 91 (65%) 119 (55%)

Vasopressors/inotropes: 0 130 (45%) 76 (54%) 68 (31%)
Vasopressors/inotropes: 1 111 (39%) 49 (35%) 76 (35%)
Vasopressors/inotropes: 2 32 (11%) 12 (9%) 38 (18%)
Vasopressors/inotropes: ≥ 3 15 (5%) 4 (3%) 34 (16%)
Receiving sedation 194 (67%) 107 (76%) 172 (80%)
Receiving analgesia 267 (93%) 130 (92%) 202 (94%)

DCD = donation after circulatory death, IQR = interquartile range.
bOther reasons for admission include gastrointestinal bleeding, abdominal aortic aneurysm, multiple causes, hypovolemic shock, and 
multiorgan failure.
aData from seven pediatric patients and two patients with missing data were not included, so values are reported for 216/225 unless 
indicated otherwise. See Supplementary Table E6 (http://links.lww.com/CCX/A964) for demographics of the excluded population.
cOnly 178 excluded patients had adjudicated times of death, so the clinically reported time of death was analyzed for this group instead.
Glasgow Coma Scale scores range from 3 to 15, with lower scores indicating a reduced level of consciousness. Scores on the Acute 
Physiology and Chronic Health Evaluation range from 0 to 71, with higher scores indicating more severe disease. The number of 
available data points (n) is indicated for each field with missing values.
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Model Validation

In the validation cohort, the variability model achieved 
higher AUCs than the clinical model at all times 
(AUCs of 0.7–0.72 for variability vs 0.63–0.68 for the 
clinical model) (Table 2), whereas the physician’s pre-
diction ranged from 0.72 to 0.76. The combined model 
achieved the highest AUC scores, with values of 0.78, 
0.79, and 0.80 for the 30-, 60-, and 120-minute predic-
tions, respectively.

Sensitivity Analysis

As the model’s primary use case is for DCD eligible 
patients, we performed a sensitivity analysis of DCD 
eligible versus DCD ineligible patients (Supplemental 
Tables E4 and E5 http://links.lww.com/CCX/A964). 
The DCD eligible population was younger, less likely to 
have preexisting conditions or require vasopressors/ino-
tropes, and had lower GCS and Acute Physiology and 
Chronic Health Evaluation II scores, while more likely to 

TABLE 2. 
Model Performance in the Validation Cohort, for Predictions of Time to Death Within 
30 min, 1 hr, or 2 hr From Withdrawal of Life-Sustaining Measures

Validation Cohort

Prediction Predictors
Sensitivity 
(95% CI)

Specificity 
(95% CI)

Positive 
Predictive 

Value (95% CI)

Negative 
Predictive 

Value  
(95% CI)

Area Under 
the Receiver 

Operating 
Characteristic 
Curve (95% CI)

30 min Waveform variability alone 0.66  
(0.43–0.96)

0.74  
(0.39–0.9)

0.6  
(0.47–0.76)

0.79  
(0.72–0.94)

0.72  
(0.64–0.81)

Brieva clinical features  
(20, 22)

0.67  
(0.42–0.96)

0.67  
(0.3–0.89)

0.56  
(0.46–0.72)

0.77  
(0.69–0.95)

0.67  
(0.58–0.76)

Physician prediction  
of timely death

0.73  
(0.61–0.82)

0.79  
(0.69–0.87)

0.71  
(0.63–0.8)

0.8  
(0.73–0.87)

0.76  
(0.69–0.83)

Variability, clinical features, 
and physician prediction

0.86  
(0.67–0.98)

0.66  
(0.45–0.8)

0.58  
(0.49–0.69)

0.9  
(0.8–0.98)

0.78  
(0.7–0.86)

1 hr Waveform variability alone 0.67  
(0.49–0.86)

0.75  
(0.51–0.9)

0.73  
(0.63–0.84)

0.69  
(0.6–0.81)

0.72  
(0.64–0.8)

Brieva clinical features 0.75  
(0.52–0.96)

0.61  
(0.32–0.83)

0.66  
(0.59–0.77)

0.7  
(0.6–0.89)

0.68  
(0.59–0.77)

Physician prediction  
of timely death

0.62  
(0.51–0.72)

0.82  
(0.72–0.91)

0.81  
(0.73–0.9)

0.63  
(0.57–0.71)

0.72  
(0.65–0.79)

Variability, clinical features, 
and physician prediction

0.87  
(0.71–0.97)

0.7  
(0.53–0.85)

0.75  
(0.67–0.84)

0.83  
(0.71–0.95)

0.79  
(0.71–0.87)

2 hr Waveform variability alone 0.68  
(0.36–0.82)

0.72  
(0.52–0.96)

0.82  
(0.74–0.95)

0.54  
(0.44–0.67)

0.7  
(0.61–0.79)

Brieva clinical features 0.68  
(0.53–0.89)

0.65  
(0.4–0.82)

0.76  
(0.68–0.85)

0.57  
(0.48–0.73)

0.63  
(0.54–0.73)

Physician prediction  
of timely death

0.55  
(0.46–0.64)

0.9  
(0.8–0.97)

0.94  
(0.87–0.99)

0.43  
(0.38–0.49)

0.73  
(0.66–0.79)

Variability, clinical features, 
and physician prediction

0.78  
(0.64–0.91)

0.77  
(0.58–0.9)

0.86  
(0.79–0.93)

0.66  
(0.55–0.81)

0.8  
(0.72–0.88)

Death within the given time limit was defined as positive, and death outside the time interval was defined as negative. The median value 
over 5,000 bootstrap iterations is shown (95% confidence interval in brackets).
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have traumatic brain injury, invasive mechanical ventila-
tion, or be extubated as part of the WLSM. Despite these 
differences, DCD eligible and ineligible patients had 
similar times to death. We assessed the performance of 
our predictive models in DCD eligible patients only and 
found the combined model performed well at all three 
times (AUCs of 0.83, 0.80, and 0.81; see Supplemental 
Table E5, http://links.lww.com/CCX/A964).

We also assessed model performance by country 
and found that the combined model achieved higher 
AUC values in the Czech Republic compared with 
Canada at 60 and 120 minutes (0.85 and 0.84 vs 0.80 
and 0.79). Of note, the physician’s prediction of timely 
death performed poorly in Canada (16 sites, AUCs of 
0.67–0.71) compared with the Czech Republic (three 
sites, AUCs of 0.81–0.84), with no overlap in the CIs.

Model Calibration

The mean predicted probabilities at each time, calcu-
lated using the raw RSF probabilities, were undercon-
fident compared with the empirical occurrence rate 
of rapid death, and a calibration step was included in 
the model pipeline. After recalibration, the mean pre-
dicted probability of the combined model was very 
close to the observed occurrence rate of death within 
30, 60, and 120 minutes (Table  3), indicating that 
the model is well calibrated at the population level. 
Calibration curves calculated at these times, using 
deciles of the probability scores, demonstrate that 
the line of identity falls within the 95% CI for nearly 
all predicted probabilities (Supplemental Fig. E2,  
http://links.lww.com/CCX/A964).

Once probabilities are calibrated, the occurrence rate of 
predicted probabilities in the population will determine 
model utility. We show the cumulative distribution func-
tions for the predicted probabilities and the occurrence 
rate of rapid death for each probability score tertile for the 
30-, 60-, and 120-minute predictions in Supplemental 
Figures E3 and E4 (http://links.lww.com/CCX/A964). 
Selecting the proper probability cutoffs for a low versus 
a high risk of a rapid death will depend on the center, the 
organ time limit, and the current burden of DCD on the 
healthcare system. A lower cutoff of 38% at 30 minutes 
would classify 40% of the validation cohort as low risk, 
and only 11% of these low-risk patients would die within 
this time frame (4% of all patients and 12% of all patients 
that die in this time frame). At 2 hours, this cutoff would 
classify 16% of patients in the validation cohort as low-
risk, with only 32% of that group dying within time limits 
(5% of patients and 8% of all patients with rapid death). 
An upper cutoff of 67% at 2 hours would classify 64% of 
patients in the validation cohort as high risk, of which 82% 
would die within time limits (52% of patients and 81% of 
all patients with rapid death) (Fig. 2; and Supplemental 
Table E7, http://links.lww.com/CCX/A964).

DISCUSSION

This is the first study employing heart rate and blood 
pressure variability to predict the time to death after 
WLSM. A model combining vital sign variability and 
the physician’s prediction of time to death achieved an 
ROC AUC of 0.80 for time to death within 2 hours.

Although we cannot claim superiority of the 
combined model due to the overlapping CIs for the 

TABLE 3. 
Model Calibration at the Population Level at the Three Selected Time Points for the 
Combined Model, Comparing the Observed Proportion of Rapid Death With the Mean 
Predicted Probability at That Time Point

Combined 
Model

Derivation (95% CI) Validation (95% CI)

Observed 
Proportion of 
Rapid Death

Mean Predicted 
Probability 
(Raw RSF)

Mean Predicted 
Probability 

(Recalibrated)

Observed 
Proportion of 
Rapid Death

Mean Predicted 
Probability 
(Raw RSF)

Mean Predicted 
Probability 

(Recalibrated)

30 min 40 (35–46) 34 (32–36) 40 (37–42) 36 (28–44) 36 (33–39) 43 (38–47)

60 min 51 (46–58) 44 (41–46) 51 (48–54) 51 (43–60) 46 (43–49) 55 (51–60)

120 min 64 (59–70) 54 (52–56) 64 (60–67) 65 (57–73) 56 (53–59) 67 (63–71)

RSF = random survival forest.
95% confidence intervals were calculated over 5,000 bootstrap iterations.
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http://links.lww.com/CCX/A964
http://links.lww.com/CCX/A964
http://links.lww.com/CCX/A964
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different models, the most responsible physician’s pre-
diction performed significantly poorer in Canada, 
which enrolled patients from many sites (n = 16), 

compared with the Czech Republic (three sites). The 
physician’s prediction of time to death has had variable 
success in other work (21, 22), and our data suggest 

A

B

Figure 2. Occurrence rate of rapid death, for patients stratified into low, medium, or high-risk categories. Plots of the occurrence rate 
of rapid death as a function of time, for patients with probability scores in a low-risk (probability score < 0.38), medium-risk (038 < 
probability score < 0.67), or high-risk category (probability score > 0.67) at each time point, for the derivation (A) and validation (B) 
cohorts, using the recalibrated combined model. The shaded areas indicate the 95% CI of the occurrence rate for each risk group at 
each time point. The histograms below each plot show the proportion of patients that fall in each risk category at each time point.
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that performance can deteriorate when a diverse range 
of sites are included. We hypothesize that physicians 
at lower volume sites that withdraw life-supporting 
measures or that perform DCD less frequently will be 
less experienced at predicting time to death. The com-
bined model, however, performed well in all countries 
(Supplemental Table E5, http://links.lww.com/CCX/
A964), suggesting that combining the physician’s pre-
diction with variability makes for a more reliable pre-
dictor. The clinical features used in this work added 
no additional benefit and were removed during fea-
ture optimization for the combined model. We chose 
to use clinical features from the models of Brieva et 
al (20, 22) because these features were easily available, 
were shown to have good performance, and did not re-
quire a pause in mechanical ventilation, which may be 
a barrier to implementation (27) in some jurisdictions 
and would not have been possible in this observational 
study. Future work may consider the inclusion of addi-
tional clinical features and investigate the use of vari-
ability analysis during a period of reduced mechanical 
ventilation support.

Altered heart rate variability is closely associated with 
altered autonomic function. Our findings complement 
those of Nijhoff et al (6), who recently validated the pre-
dictive score for cardiac death in patients in neurocritical 
state (DCD-N), employing three brainstem reflexes and 
an oxygenation index (24), in DCD eligible patients. The 
authors used the DCD-N score to predict death within 
30, 60, and 120 minutes, with AUC values of 0.71 (0.66–
0.77), 0.77 (0.71–0.83), and 0.80 (0.74–0.86), compa-
rable with the performance of the combined model in 
our validation cohort (Table 2, and Supplemental Table 
E5, http://links.lww.com/CCX/A964). The authors 
noted that although the DCD-N model had good dis-
crimination, it could not be calibrated as it did not pro-
vide a probability; a linear prediction model based on 
the DCD-N model achieved similar discrimination but 
was poorly calibrated. Our model provides a calibrated 
probability that death occurs within a given timeframe, 
rather than providing a Boolean prediction; we envi-
sion these probabilities better informing clinical deci-
sion-making within the context of each patient. In this 
use case, proper calibration of a model will be impera-
tive for its successful uptake. The combination of vital 
sign variability and brainstem reflexes should be consid-
ered in future models.

Different organs are more sensitive to ischemia and 
have different time constraints for donation, which 

have gradually increased over the years in some loca-
tions (5) and may be further increased using reperfu-
sion techniques (3). As RSFs provide a probability of 
survival versus time curve for each patient, it is not 
necessary to develop new models whenever these time 
constraints change. Our combined model shows high 
sensitivity and negative predictive values at early times 
after WLSM, whereas the specificity and positive pre-
dictive values improve as time increases. Ideally, all po-
tential DCD candidates would have DCD attempted, 
and model probabilities would inform the surgeons 
and families of the likelihood of success. However, 
the severe acute respiratory syndrome coronavirus 
2 pandemic has demonstrated that transplantation 
rates can be significantly reduced when resources are 
constrained, and marginal candidates are less likely to 
have DCD attempted (48); a model with a high pos-
itive predictive value would better identify cases that 
are likely to proceed when resources are limited.

As vital sign monitoring is continuous, predic-
tion models employing waveform variability can be 
updated as the patient’s condition changes prior to 
WLSM. It can take hours to complete assessment and 
tissue matching of DCD candidates (3), and repeat-
able prediction is likely to be useful. An initial predic-
tion could be generated at the time of DCD consent to 
assess a patient’s eligibility for DCD and an updated 
prediction closer to WLSM to provide an expectation 
for both the family and the DCD team, using the most 
recent data available. Ultimately, we envision wave-
form variability-based predictions being incorporated 
into bedside/central monitors and/or electronic health 
record systems, which would require further feasi-
bility studies, randomized controlled trials, commer-
cialization, and regulatory approval. We are currently 
assessing the feasibility of implementing real-time 
waveform capture for prediction of time to death in 
DCD patients in an observational study in multiple 
centers in Ontario, Canada.

This study has several limitations. This was a sec-
ondary analysis of the DePPaRT study (36), which did 
not prescribe a specific pattern of WLSM, and patients 
likely experienced a variety of withdrawal patterns that 
could vary by center or region. Patients with a staggered 
withdrawal process (vasopressors and ventilator settings 
gradually reduced after WLSM) were excluded. This stag-
gered process likely results in a longer dying process (49)  
and would need to be considered explicitly in any pre-
diction model (37, 38). Some prediction tools, such 

http://links.lww.com/CCX/A964
http://links.lww.com/CCX/A964
http://links.lww.com/CCX/A964
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as the United Network for Organ Sharing (37) and 
University of Wisconsin (26) prediction tools, em-
ploy a brief period with reduced ventilation support 
to assess respiratory drive. Due to the observational 
nature of this study, this was not possible, but future 
studies might investigate the use of vital sign waveform 
variability during such a period to improve prediction. 
Mechanical ventilation, sedatives, pressors, and inotro-
pes have all been shown to impact variability and/or be 
useful in predicting time to death (7, 50) and should be 
considered in future work. Many clinical features that 
describe the degree of life support or assess neurologic 
function were not considered. Only ~1/3 of the patients 
in this study were eligible for DCD, and this model may 
perform differently when used on DCD patients.

The RSF method, while less prone to overfitting and 
designed to estimate survival probabilities over time, 
generates models that are more difficult to interpret and 
share. It is possible that other machine learning algo-
rithms may show similar or improved performance. 
Although the data from three different countries were 
used to derive and validate our models, our model may 
perform differently in other regions. Further studies 
assessing the feasibility of implementation of a model 
employing waveform variability and the associated 
clinical decision support tool are required.

CONCLUSIONS

For the first time, a predictive model incorporating 
vital sign variability, clinical features, and the physi-
cian’s prediction of a rapid death was developed and 
validated in patients from three different countries. 
This combined model achieved ROC AUC values of 
0.78, 0.79, and 0.80 for a prediction of time to death 
within 30 minutes, 1 hour, or 2 hours, respectively. 
The inclusion of a diverse range of sites from mul-
tiple countries improves the likelihood that this model 
will perform well at new sites. Future work will assess 
model performance with additional clinical features as 
well as the feasibility of real-time variability analysis 
within the context of DCD.
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