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Consumer species richness and 
nutrients interact in determining 
producer diversity
Sophie Groendahl & Patrick Fink†

While it is crucial to understand the factors that determine the biodiversity of primary producer 
communities, the relative importance of bottom-up and top-down control factors is still poorly 
understood. Using freshwater benthic algal communities in the laboratory as a model system, we find 
an unimodal relationship between nutrient availability and producer diversity, and that increasing 
number of consumer species increases producer diversity, but overall grazing decreases algal 
biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as 
an increase in nutrient supply diminishes the positive effect of consumer species richness on producer 
biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control 
mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have 
repercussions for the fields of biodiversity conservation and restoration.

Biodiversity is frequently reported to strengthen ecosystem stability, ecosystem services and productivity1–3. An 
unprecedented worldwide decline in biodiversity, caused by anthropogenic factors, has been observed4,5. Despite 
their importance, our knowledge of the specific mechanisms that control biodiversity is limited6. Bottom-up 
regulation by nutrients is acknowledged to be one of the main factors which impact biodiversity and ecosystem 
functions7. Multiple studies have investigated the effect of nutrient enrichment on the biodiversity of primary 
producers8–10, but the question as to how biodiversity changes over a nutrient gradient, whether the relationship 
is unimodal or not, is still under hot debate11–13. Top-down regulation by consumers may also control biodiversity, 
in particular for primary producers14,15. However, most of the research on the effects of consumers on producer 
diversity has focused on grazing intensity rather than on consumer diversity10,16,17. As consumer species often 
vary in their feeding modes and selectivity, it is surprising that the potential effects of consumer diversity on 
prey diversity have been largely neglected. It is well known that a loss of a consumer species can radically change 
entire ecosystems18, but we can only guess what the consequences of losing multiple consumer species would 
be. Furthermore, it is acknowledged that the mechanisms that regulate biodiversity are manifold. Nevertheless, 
researchers tend to focus on single factors, disregarding potential interactions and feedback loops which may 
even accelerate the loss of biodiversity. There has been a long debate whether producer diversity is controlled 
by the presence of consumers (top-down regulation) or by the availability of resources (bottom-up regulation). 
Recent studies however indicate that rather than being exclusive, these two control mechanisms interact with 
each other10,15. In marine and freshwater systems, consumer presence and nutrient supply were both found to 
affect the diversity of primary producers10,15,19. Still no study has to our knowledge investigated the effect of 
nutrient enrichment and consumer species richness on the biodiversity of primary producers simultaneously, 
therefore their potential interactions have remained elusive. We believe that at low nutrient levels, an increase 
in consumer species richness could lead to a more balanced nutrient regeneration and thereby increase the bio-
diversity of the producers. At high nutrient levels, the impact of consumer species richness might not be strong 
enough to counteract competitive exclusion among primary producers. This could result in a strong interaction 
of both bottom-up (nutrient supply) and top-down (consumer species richness) control mechanisms on primary 
producer biodiversity.

We here test three specific hypotheses (Fig. 1): H1) The relation between nutrient availability and primary 
producer diversity, species richness and evenness should follow an unimodal relationship, frequently called the 

University of Cologne, Cologne Biocenter, Workgroup Aquatic Chemical Ecology, Zuelpicher Strasse 47b, 50674 
Cologne, Germany. †Present address: Heinrich-Heine University of Duesseldorf, Institute for Zoomorphology and 
Cell Biology, Universitaetsstrasse 1, 40225 Duesseldorf, Germany. Correspondence and requests for materials should 
be addressed to S.G. (email: sgroenda@uni-koeln.de)

received: 03 August 2016

accepted: 15 February 2017

Published: 17 March 2017

OPEN

mailto:sgroenda@uni-koeln.de


www.nature.com/scientificreports/

2Scientific Reports | 7:44869 | DOI: 10.1038/srep44869

“Hump-Backed Model” (HBM14,15), as nutrients are insufficient to support a diverse primary producer commu-
nity at low nutrient levels, whereas a few highly competitive species dominate at high nutrient levels. H2) The 
biodiversity of primary producers, species richness and evenness should increase linearly with consumer species 
richness. This could be explained by a diversification of resources through nutrient regeneration and/or reduced 
competition between producers14. H3) The positive effect of consumer species richness and nutrient regeneration 
on producer diversity, species richness and evenness should diminish with increasing amounts of nutrients. An 
increase in nutrients might increase the productivity of the algal community and thereby limit the consum-
ers’ ability to reduce competitive exclusion among the algal species. We conducted three consecutive laboratory 
experiments in a model system consisting of freshwater benthic algal communities and herbivorous invertebrate 
grazers to test these three specific hypotheses. Our findings matched those theoretical considerations strikingly 
well.

Results
Nutrient effects on primary producers (H1).  First, we investigated the relationship between nutrient 
(phosphorus, P) supply and algal biodiversity. The response variables were the Shannon diversity index based on 
algal biovolumes (HB′​) and cell numbers (HN′​) and Pielou’s index of evenness based on algal biovolumes (JB′​) 
and cell numbers (JN′​). All parameters followed the HBM as predicted by our first hypothesis (Fig. 2): We found 
that the dependence of algae biodiversity on P availability showed a highly significant unimodal relationship, in 
terms of HB′​ (nonlinear regression, y =​ 1.69/(1 +​ ((x −​ 1.00)/1.74)2); Fig. 2a), HN′​ (nonlinear regression, y =​ 2.18/
(1 +​ ((x −​ 1.63)/1.52)2); Fig. 2b), JB (Supplementary Fig. S1a), JN (Supplementary Fig. S1b) and primary producer 
species richness (Supplementary Fig. S1c). Furthermore, an increase in P availability had pronounced effects 
on the algal community composition (Fig. 2c,d). Filamentous green algae tended to dominate the communities 
at higher P levels, whereas diatoms were more common at lower P levels (Fig. 2c,d). Moreover, the biovolume 
of the primary producers followed a sigmoidal pattern with increasing amounts of P and reached a plateau at 
approximately 40 μ​mol P l−1 (Supplementary Fig. S2), at which point light probably became the limiting factor 
for primary production.

Consumer species richness effects on primary producers (H2).  Second, we investigated the effect 
of consumer species richness on the biodiversity of algal communities. The highest diversity was found in the 
control treatment. To separate the effect of grazer diversity from the overall effect of grazing pressure, the con-
trol treatment as excluded from the subsequent analyses We found a highly significant, positive linear rela-
tionship between consumer species richness and primary producer diversity, both in terms of HB′​ (Fig. 3a) 
and for HN′​ (Fig. 3b). Moreover, we found a significant positive relationship between consumer species rich-
ness and JB′​ (Supplementary Fig. S3a), JN′​ (Supplementary Fig. S3b) and primary producer species richness 
(Supplementary Fig. S3c, Table S2). The consumer species varied significantly in their preferences for specific 
algal taxa (Fig. 3c,d, Supplementary Fig. S4). In the one consumer species treatments we found that all consumer 
species significantly reduced the biovolume of Aphanochaete repens, Oedogonium stellatum and Roya obtusa 
(Supplementary Fig. S4). Cloeon dipterum did not decrease the biovolume of Microthamnion kuetzingianum, 
whereas the two other consumer species did (Supplementary Fig. S4). However, C. dipterum significantly reduced 
the biovolume of Stigeoclonium amoenum compared to the two other consumer species (Supplementary Fig. S4). 
Neocaridina davidi on the other hand preferred feeding upon Closterium moniliferum (Supplementary Fig. S4). 
The total algal biomass was significantly higher in the control treatment than in the three consumer species treat-
ment (T-test, T1,14 =​ 4.38, P <​ 0.001, N =​ 8).

Nutrients and consumer species simultaneous effects on primary producers (H3).  In the final 
experiment, the two factors previously tested separately were combined in order to investigate whether or not 
interactions between bottom-up and top-down control mechanisms on primary producer diversity occur. The 

Figure 1.  Conceptual diagram of the hypothesized effects of nutrients and consumer species richness on 
primary producer diversity. Producer diversity is highest at intermediate phosphorus levels (H1), modified 
from Worm et al.15; producer diversity has a positive correlation towards consumer species richness (H2), 
modified from Hillebrand and Shurin14; an increase in nutrient loading (P+​) would weaken the positive 
correlation between producer diversity and consumer species richness (H3).
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control treatment was not included in the following linear regressions. We found a highly significant interaction 
between nutrient enrichment and grazer species richness (Supplementary Table S1, Fig. 4).

However, this pattern was only present at low (Fig. 4a,e) and intermediate (Fig. 4b,f) levels of dissolved P 
(Supplementary Table S1). Similarly, we found a significant positive relationship between consumer species 
richness and JB′​, JN′​ and primary producer species richness at low (Supplementary Fig. S5a,d,g) and medium 
phosphorus levels (Supplementary Fig. S5b,e,h), but not at high phosphorus levels (Supplementary Fig. S5c,f,i, 
Table S3). Again, HB′​ and HN′​ displayed a unimodal relationship with the P supply (Fig. 4d,h). The algal com-
munity structures were strongly affected by the P supply levels (Fig. 5), the filamentous green algae increased in 
dominance with phosphorus supply. Moreover, the algal biovolumes were significantly higher in the high P treat-
ment than in the other treatments (two-way ANOVA, F6,60 =​ 27, P <​ 0.001, N =​ 6; Fig. 5).

Discussion
As predicted by our hypothesis, our first laboratory experiment yielded an unimodal (humpbacked) relation-
ship between nutrient availability and the biodiversity of the primary producer community. Evenness as well 
as species richness of the primary producer community showed almost identical patterns. Earlier experiments 
which attempted to link the diversity of primary producers to nutrient enrichment reported conflicting results: 
Biodiversity has been found to increase8 or decrease20,21 with nutrient loading. The most probable cause for these 
inconsistent findings of those previous studies is the rather narrow range of nutrient concentrations applied. This 
has previously been demonstrated in richness-productivity relationships12. Additionally, it may be inappropriate 
to apply the same nutrient gradient to different types of organisms (autotrophs and heterotrophs), as their capac-
ity for physiological responses may vary strongly21,22. Previous studies demonstrated that N:P ratios may have 

Figure 2.  Impact of phosphorus availability on algal biodiversity and community composition. The 
Shannon diversity index based on algae biovolume HB′​ (a) and cell number HN′​ (b); the relative algal 
community composition based on biovolume (c) and cell number (d) was determined after three weeks in 
relation to a gradient of phosphorus (15 concentrations in triplicate). The results of the nonlinear regressions are 
represented as a solid line with 95% confidence intervals (dashed lines); the theoretical predictions are depicted 
in blue and are displayed in the insets in the upper right corners of panels a and b.
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pronounced effects upon primary producer diversity23. As we manipulated only the P supply in our experiment 
which caused a concomitant variation in the N:P supply ratio, we cannot entirely rule out that those changes in 
N:P also affected the primary producer diversity.

We hypothesized that primary producer diversity would increase linearly with consumer species richness. 
We found however that the presence of consumers decreased algal diversity in the second experiment. Still, an 
increase in consumer species richness sustained a higher level of biodiversity in the primary producers as the 
three consumer species treatment exhibited an algal biodiversity in the same range as the control treatment. In 
contrast to grazing pressure, which have been found to decrease primary producer species richness, but increase 
primary producer evenness in freshwater ecosystems10, consumer species richness did not induce different 
responses in the algae community in terms of evenness and primary producer species richness. Both evenness 
and species richness of the primary producer community decreased in the presence of grazers. However, an 
increasing number of consumer species sustained a higher primary producer evenness and species richness. 
Only a few studies have explicitly addressed the effects of consumer diversity on prey diversity24–27. Some of them 
observed either no effect or negative effects of consumer species richness on primary producer diversity26,27. These 
results might be explained by the similar feeding preferences of the consumer species utilized in those studies. 
Other studies (including ours) indicated an increase in the diversity of primary producers due to complementary 
feeding among the consumer species24,25. We found that complementary feeding resulted in a more even grazing 
pressure upon the algae species; the biodiversity of the algae community was thus conserved. Moreover, when 
the consumer species had an overlap in their feeding preferences, the consumption of the preferred algae (A. 
repens and R. obtusa) was decreased, possibly due to competition. This resulted in an increase in the biodiversity 
of the algal community. A more diverse consumer species community may also lead to a more balanced nutrient 
regeneration28 and hence to a feedback loop which could further promote the biodiversity of primary producers.

Figure 3.  Impact of consumer species richness on algal biodiversity and community composition. Shannon 
diversity index based on algae biovolume HB′​ (a, one consumer treatment N =​ 21; two consumer treatment 
N =​ 21; three consumer treatment N =​ 7) and cell number HN′​ (b, one consumer treatment N =​ 21; two 
consumer treatment N =​ 21; three consumer treatment N =​ 7); the relative algal community composition (bars) 
based upon biovolumes (c) and cell numbers (d) and the absolute biovolume (c) (circles ±​ SD) (N =​ 6–8), for 
each consumer species (CON =​ control, ASE =​ Asellus aquaticus, CLO =​ Cloeon dipterum, NEO =​ Neocaridina 
davidi), was determined after three days. The results of the linear regression are represented as a solid line 
with 95% confidence intervals (dashed lines) in panels a,b. The consumer-free control treatment is depicted 
as 0 consumer species in panels a,b and is not included in the linear regression. The theoretical predictions are 
depicted in blue and displayed in the insets on the upper left corner of panels a,b.
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As predicted by our third hypothesis, eutrophication (i.e. nutrient addition) diminished the effects of increas-
ing consumer species richness on primary producer diversity, evenness and species richness. Probably, the nutri-
ent enrichment increased the productivity of the primary producer community and thereby limited the grazers’ 
ability to counteract the growth of more competitive algal species. Previous studies have demonstrated that an 
increase in grazing pressure reduces the biodiversity/species richness of primary producers, but this effect was 
weakened when nutrient availability was higher10,15,29 (but see ref. 30). The decline in biodiversity with increasing 
grazing pressure observed in previous experiments, may be caused by a higher likelihood of rare species being 
consumed31. This suggests that an increase in grazing pressure may have reduced the biodiversity in the low phos-
phorus treatment, were productivity was lower, but might have enhanced the biodiversity at high phosphorus 
levels.

We excluded the control treatment from the regression analysis in the second and third experiment as the 
duration of the experiments was too short for competitive exclusion to have a strong effect onto the algal commu-
nities in the absence of consumers. We believe that if the duration of the experiment would have been extended, 
the lack of disturbance in the control treatments would have resulted in a few competitive algae species dom-
inating the community. Yet, we decided not prolong the experiments any further in order to avoid light from 
becoming the limiting factor for primary production. The control treatment was very much similar to the three 
consumer species treatment in terms of species richness and diversity. However, a reduction in consumption 
(e.g. due to territorial behaviour) in the three consumer species treatment cannot explain the similarities, since 
the total algal biovolume was significantly higher in the grazer-free controls than in the three consumer species 
treatment.

Obviously our experimental system with a mixture of pure cultures of benthic algae that were kept 
semi-suspended is somewhat artificial. We chose this strategy to avoid differential access to the dissolved nutrient 
pool for the different algal taxa which may have occurred in a structured substrate-attached biofilm. Nevertheless, 
our model system provided insights into the mechanisms which govern biodiversity that can be generalized to 
some degree to primary producer communities in general.

Our data strongly suggest that increasing nutrient levels lead to additive species losses by countervailing the 
potential for consumer species to sustain the biodiversity of primary producers. A decrease in producer diversity 
caused by eutrophication may result in reduced consumer diversity32, giving rise to a feedback loop of extinction 
across various trophic levels which may compromise the ability of these systems to retain their biodiversity. Thus, 
interactions between consumer species richness and resources have severe implications for ecosystems’ function-
ing and for conservation planning.

Figure 4.  Impact of phosphorus concentration and consumer species richness on algal biodiversity. 
Shannon diversity index based on algae biovolume (HB′​, a–c, N =​ 6) and cell numbers (HN′​, e–g, N =​ 6) 
determined after one week in relation to low (a,e), medium (b,f) and high (c,g) initial phosphorus levels. 
Results of the linear regression are represented as a solid line with 95% confidence intervals (dashed lines). 
The consumer-free control treatment is depicted as 0 consumer species in panels a–c and e–g. The 3D plots 
(d,h) (N =​ 6) visualize the interactive effects of the number of consumer species and initial phosphorus levels 
on the mean Shannon diversity based on algal biovolumes HB′​ (d) and cell numbers HN′​ (h). The theoretical 
predictions are depicted in blue and are displayed in the insets in the upper left corners in the panels a–c and 
e–g.
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Material and Methods
Nutrient effects on primary producers (H1).  In the first laboratory experiment, 14 benthic algae species 
from the two dominant functional groups in biofilms (diatoms and chlorophytes) were selected from culture 
collections (Supplementary Table S2). Each strain was pre-cultured for five weeks in a climate chamber at 20 °C 
in WC medium33. The light-dark regime was set to 16:8 h at a light (PAR) intensity of 100 μ​mol photons m−2 s−1 
(OSRAM L36W/830 and L36W/965), measured in air. The two other experiments were conducted under the 
same culture conditions. The experimental units consisted of Erlenmeyer flasks (300 ml), which were filled with 
200 ml of modified sterile WC medium. Each flask received a different concentration of dissolved phosphate 
(K2HPO4 ×​ 3H2O) as a source of phosphorus. Altogether, 15 levels of dissolved phosphorus (replicated three 
times along an exponential gradient) were added (Supplementary Table S3). KCl was added to compensate for 
osmotic differences between the experimental units after K2HPO4 addition (Supplementary Table S3). The flasks 
were inoculated with equal biovolumes of each of the 14 algal species at a total algal biomass of 3 ×​ 106 μ​m3 ml−1. 
Conversion factors from the literature34,35 were used for biovolume estimates. A mean of 50–100 cell measure-
ments of the respective species were taken to convert cell sizes into biovolumes for the different algal species 
(Supplementary Table S2). The Erlenmeyer flasks were gently shaken three times a week in order to achieve a 
homogeneous distribution of algae and nutrients within the flasks. The experiment was terminated after three 
weeks. Three 1 ml samples were taken from each unit, fixed with 150 μ​l of Lugol’s iodine solution and counted 
under an inverted microscope.

Shannon’s diversity index (H′​) was calculated as (1):

∑′ = −
=

H p p( ln )
(1)i

s

i i
1

in which pi is the proportion of individuals belonging to the ith species36.
Pielou’s index of evenness was calculated as (2):

=
′J H

lnS (2)

in which H′ is the Shannon’s diversity index and S is the number of species37.

Figure 5.  Impact of phosphorus concentration and consumer species richness on algal community 
composition. Graphs depict the relative algal community composition (bars) and the absolute biovolume 
(circles ±​ SD) (N =​ 2–6) after one week based upon algae biovolumes (a–c) and cell numbers (d–f) for each 
consumer species (CON =​ control, ASE =​ A. aquaticus, CLO =​ C. dipterum, NEO =​ N. davidi) at either low 
(a,d), medium (b,e) or high (c,f) initial phosphorus levels.
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Consumer species richness effects on primary producers (H2).  In the second laboratory experi-
ment, six green algal species were used (Supplementary Table S2). The algae were pre-cultured in batch cultures 
for three weeks in WC medium. 150 ml of water were added to the units used in the experiments (Erlenmeyer 
flasks, 300 ml) together with 15.8 mm3 of each pre-cultured algal species. One to three species of invertebrate 
grazers (Supplementary Table S4) were added to the flasks. The guidelines for the use of animal behaviour for 
research and teaching (Animal Behaviour 83: 301–309) were followed in order to avoid any animal suffering. To 
ensure equal grazing pressure in all units, consumer species were added in a 1: 3: 4 ratio of N. davidi: C. dipterum: 
A. aquaticus, based upon their previously determined specific ingestion rates (unpublished data). A full facto-
rial design was setup (Supplementary Table S5). The experiment was terminated after three days, to avoid total 
removal of biomass. Samples were taken and counted as described above. A few replicates could not be counted 
for technical reasons and thus were excluded from the diversity estimates.

Nutrients and consumer species simultaneous effects on primary producers (H3).  In the third 
laboratory experiment, six green algal species (Supplementary Table S2) were pre-cultured in WC-medium for two 
weeks. 150 ml of modified WC-medium were added to the Erlenmeyer flasks (300 ml) used for the experiments. 
The concentration of dissolved phosphate was adjusted to three phosphorus levels (Supplementary Table S6). 
KCl was added to compensate for osmotic differences between the experimental units after K2HPO4 addition 
(Supplementary Table S6). 34.6 mm3 of each of the pre-cultured algal species were inoculated into the flasks. One 
to three species of invertebrate grazers (Supplementary Table S4) were added in the same ratios as in the previous 
experiment. To investigate the combined effect of nutrient and consumer species richness on algal biodiversity, 
a full-factorial design was set up (Supplementary Table S7). After one week, the experiment was terminated and 
samples were taken and counted as described above.

Statistical Analysis.  All regressions were conducted using SigmaPlot (v. 11, SYSTAT). The relationship 
between phosphorus availability and biodiversity of primary producers was tested via a nonlinear regression 
(Lorentzian 3-parameter curve). To test for the relationship between phosphorous availability and productiv-
ity (biovolume), a nonlinear regression was conducted (Sigmoid 3-parameter curve). Linear regressions were 
conducted to investigate the relationship between consumer species richness and primary producer diversity/
primary producer species richness. One-way ANOVAs (factor grazer) using SPSS v. 23 (IBM, 2015) were con-
ducted for each algal species, followed by a Tamhane T2 post-hoc test, which does not require homoscedasticity, 
to compare the specific feeding preferences between grazers. A t-test was performed using SigmaPlot in order to 
test for significant differences of the total algal biovolumes between the control treatment and the three consumer 
species treatment. To analyse the differences between algal biovolumes in the low, medium and high phosphorus 
treatments, a two-way ANOVA was conducted using SigmaPlot, followed by post-hoc comparisons with Tukey’s 
HSD. An ANCOVA was conducted in Statistica v. 10 to test for interactive effects between nutrient enrichment 
and consumer species richness on primary producer diversity, followed by post-hoc comparisons with Tukey’s 
HSD. The tests conducted were two-tailed and statistical significance was defined as P <​ 0.05. Prior to the statis-
tical tests, all data were checked for homoscedasticity using Levene’s test.
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