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Abstract: Periodontitis is a chronic inflammatory oral disease that affects approximately 42% of adults
30 years of age or older in the United States. In response to microbial dysbiosis within the periodontal
pockets surrounding teeth, the host immune system generates an inflammatory environment in which
soft tissue and alveolar bone destruction occur. The objective of this study was to identify diagnostic
biomarkers and the mechanistic drivers of inflammation in periodontitis to identify drugs that may
be repurposed to treat chronic inflammation. A meta-analysis comprised of two independent RNA-
seq datasets was performed. RNA-seq analysis, signal pathway impact analysis, protein-protein
interaction analysis, and drug target analysis were performed to identify the critical pathways
and key players that initiate inflammation in periodontitis as well as to predict potential drug
targets. Seventy-eight differentially expressed genes, 10 significantly impacted signaling pathways,
and 10 hub proteins in periodontal gingival tissue were identified. The top 10 drugs that may be
repurposed for treating periodontitis were then predicted from the gene expression and pathway data.
The efficacy of these drugs in treating periodontitis has yet to be investigated. However, this analysis
indicates that these drugs may serve as potential therapeutics to treat inflammation in gingival tissue
affected by periodontitis.

Keywords: periodontitis; RNA-seq; diagnostic; biomarker; chronic; inflammation; drug; target;
SPIA; gingiva

1. Introduction

Periodontitis is a chronic inflammatory oral disease that affects approximately 42%
of adults 30 years of age or older in the United States [1]. In 2016, periodontitis was deter-
mined to be the eleventh most common health condition globally [2], and in 2018 the direct
and indirect economic burdens of periodontal disease within the U.S. were estimated to
be about $154.06 billion and about €158.64B in Europe (sum of 32 European countries) [3].
Periodontitis is characterized by the recession of gums, alveolar bone loss, destruction of
periodontal ligaments, and tooth decay in addition to swollen and bleeding gums. The
cause of periodontitis is microbial dysbiosis within the periodontal pockets surrounding
teeth, typically a result of improper oral hygiene. Interactions between pathogenic bacteria
(primarily gram-negative Porphyromonas gingivalis, Tannerella forsythia, and Treponema denti-
cola [4,5]) and the host immune system initiate an inflammatory environment that leads to
the observed pathology [6,7]. If left untreated, the continued destruction of periodontal liga-
ments and alveolar bone may result in reduced tooth support and, eventually, tooth loss [8].
Although the prevention of this disease is possible through proper oral hygiene practices,
such as brushing and flossing teeth daily, periodontal disease remains an important health
issue globally due to its high prevalence and high economic burden [9,10].
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Medical interventions that are required during severe periodontitis include the deep
cleaning of tooth root surfaces to remove bacterial biofilms, antibiotics to kill pathogenic
bacteria that are present, and corrective surgeries [11]. Medications directed at treating
bacterial dysbiosis, such as antibiotics, just address a portion of the problem in periodontitis
as they only reduce or temporarily reduce the bacterial burden associated with periodon-
titis [12]. In addition, the host immune response plays a critical role in the production
of inflammatory mediators that results in the observed soft tissue damage [8]. Exam-
ples of inflammatory mediators are proteolytic enzymes and cytokines, which promote
the differentiation of osteoclasts and are driving factors for soft tissue destruction in pe-
riodontal disease [8,13–15]. In a recent study, Reis et al. observed increased levels of
inflammatory cytokines in periodontitis vs. healthy sites (pg/site), including interleukin
6 (IL-6) (0.13 vs 0.00), tumor necrosis factor-alpha (TNF-α) (0.06 vs. 0.01), interleukin 1α
(IL-1α) (72.03 vs. 11.55), and interleukin 1β (IL-1β) (0.57 vs. 0.01) in the gingival crevicular
fluid (GCF) of patients with chronic periodontitis who did not have any other underlying
chronic systemic disorder [16]. Increased levels of pro-inflammatory C-reactive protein
(80% increase) and fibrinogen (1.45 mg/L in generalized periodontitis and 1.30 mg/L in
localized periodontitis versus 0.90 mg/L in healthy controls) have also been measured in
periodontitis patients [17–19]. IL-1 and TNF-α can stimulate bone resorption by promoting
the differentiation of osteoclasts in vitro [20]. Studies have shown that CD4+ helper T cells
(Th), which release cytokines that recruit and activate other immune cells, play a major
role in alveolar bone destruction during periodontitis [21,22]. Evidence suggests that T
helper 17 (Th17) cells are drivers of periodontitis pathogenesis and that they are recruited to
periodontal lesions by IL-6 and interleukin 23 (IL-23) [23]. T cells and granulocytes, such as
neutrophils, make up more than 70% of immune cells present in periodontitis lesions [24].
The severity of periodontitis has been shown to correlate with the number of neutrophils
that are present as well as the collagenase activity of these cells [24–26].

The impact of periodontitis on other systemic conditions highlights the importance of
treating this illness and reducing chronic inflammation. Periodontitis has been associated
with systemic diseases and disorders, such as adverse pregnancy outcomes, cardiovascular
disease, pulmonary disease, rheumatoid arthritis, inflammatory bowel disease (IBD), and
type 2 diabetes mellitus [27–29]. Studies in mice have demonstrated that microbial dys-
biosis in periodontitis contributes to gut microbial dysbiosis and inflammation by ectopic
colonization of pathogenic oral bacteria in the gut, which promotes inflammation in the
colon [30–32]. A study conducted by Kitamoto et al. demonstrated how periodontitis could
aggravate intestinal inflammation in mice with experimental colitis [31]. They observed
that the increased colitis was associated with increased levels of Th17 and Th1 cells, as
well as interleukin 17 A (IL-17A) and interferon-gamma (IFN-γ), in the colonic mucosa of
mice that have experimentally induced periodontitis when compared to control animals.
They also provide evidence that Th17 effector cells first arise in the oral cavity and then
migrate to the colonic mucosa, where they contribute to the inflammation in the gut of the
experimental colitis mice [31].

The development of RNA sequencing (RNA-seq) technology and bioinformatic tools
have made it possible to investigate the changes in gene expression between healthy and
diseased individuals to better elucidate the underlying mechanisms of observed patholo-
gies. Transcriptomic analysis has also been used to identify biomarkers in cancer, chronic
inflammatory diseases, and infectious diseases [33–35]. The public availability of transcrip-
tomic datasets in the NCBI Gene Expression Omnibus (GEO) database enables researchers
to perform meta-analyses on two or more datasets at a time [34,36,37]. The processing
of multiple datasets as part of a meta-analysis increases the number of samples in order
to achieve higher statistical power and reduce biases that may be present in individual
datasets [38]. The lack of large-scale knowledge on the underlying transcriptomic mecha-
nisms in periodontitis impedes the ability to effectively treat this disease.
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Specifically, the underlying mechanistic drivers of inflammation in gingival epithelial
cells and/or resident and recruited immune cells may serve as potential drug targets to
mitigate the inflammatory response and consequently reduce tissue destruction in peri-
odontitis. The objective of this study was to identify relevant inflammatory markers and
potential drug targets that could be modulated to reduce the inflammatory response in
human periodontitis. To identify these potential inflammatory markers and targets, RNA
analysis [39–41], signaling pathway enrichment analysis (SPIA) [42], protein-protein inter-
actions network [43–45], and drug target analysis [46,47] were used on two independent
RNA-seq datasets. Here, the identification of 22 diagnostic biomarker candidates and 10
potential drug targets that may serve as potential therapeutics to reduce inflammation and
tissue destruction in periodontitis are reported.

2. Results
2.1. RNA-seq Identification of Differentially Expressed Genes in Periodontal Gingival
Epithelial Cells

Samples from two separate human periodontitis RNA-seq datasets, which are publicly
available in the NCBI Gene Expression Omnibus (GEO) database, were processed (Table 1).
Our meta-analysis detected a total of 15,699 genes (Supplementary Table S1), with 78 of
these being differentially expressed genes (DEGs) at our defined threshold for statistical sig-
nificance (FDR-corrected p-value < 0.05), without regard for the magnitude of fold-change
values (Figure 1). A comparison of differentially expressed genes (DEGs) between the cur-
rent study and the previously published study by Kim et al. identified that approximately
half (42) of the significant DEGs from the current study overlapped with the results from
the prior work (Supplementary Figure S1) [48]. The study by Kim et al. used a different
filtering strategy (cutoffs at adjusted p-value < 0.05 and a log2 fold-change value > ±2
compared to only an adjusted p-value < 0.05 cutoff). In addition, the data processing
pipeline for the previously published study did not incorporate the same algorithms that
were used in the current meta-analysis [48]. The number of DEGs overlapping between the
current meta-analysis and the prior published study may be a result of differences in data
processing and tissue sample processing between the two studies used in the meta-analysis.
This phenomenon has been observed in previous studies [49]. An independent analysis of
the RNA-seq data analyzed by Kim et al. using the ARMOR workflow was not performed
since the data were pooled into one periodontitis SRA file and one healthy SRA file, which
does not allow statistical analysis to be performed. No comparison of DEGs was made
between the current study and the unpublished RNA-seq dataset (GSE173082) since no
results or analysis were published.

Fifty-two of the 78 significant DEGs in our current study were immunoglobulin do-
mains, and four DEGs were predicted as transcribed pseudogenes (Supplementary Table S2).
The remaining 22 of the 78 significant DEGs included Bone Morphogenic Protein 6 (BMP6),
Complement C3d Receptor 2 (CR2), Interferon Regulatory Factor 4 (IRF4), and others
(Table 2). These genes function in gene transcription, metabolite transport, toll-like receptor
signaling, chemokine secretion, inflammation, and endoplasmic reticulum stress. All but
one of these 22 significant DEGs were upregulated in the gingiva of periodontal disease
patients, with the exception being the downregulation of chromosome 1 open reading
frame 68 (C1orf68), which had a log2 fold change (log2FC) of −3.78.
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Table 1. Summary of two individual public datasets of periodontitis.

GEO Gene Set ID GSE173082 GSE80715

Title
Differential DNA methylation and mRNA

expression in gingival tissues in periodontal
health and disease

Transcriptome analysis of chronic periodontitis
patients’ gingival tissue

Platform Illumina HiSeq 4000 Illumina HiSeq 2000

Library Construction Protocol

Gingival tissue samples were harvested in
conjunction with an invasive oral surgical

procedure required for the participant’s oral
care after administration of local anesthesia.
Poly-A pull-down was carried out to enrich

mRNAs from total RNA samples (200 ng–1 g
per sample) followed by library preparation

using the Illumina TruSeq RNA prep kit.

Frozen tissues were disrupted in the lysis
solution of mirVana RNA isolation kit (Thermo

Fisher Scientific) using disposable pestle
grinder system (Thermo Fisher Scientific).
After purification of mRNA molecules by

poly-T oligo-attached magnetic beads followed
by fragmentation, the RNA of approximately

300 bp size was isolated using gel
electrophoresis. The cDNA synthesis and

library construction were performed using the
Illumina Truseq RNA sample preparation kit
(Illumina, San Diego, CA, USA) following the

manufacturer’s protocol.
Sample Type Single End Paired End

Diagnostic criteria Not recorded

On the basis of clinical and radiographic
criteria, periodontitis-affected site had a

probing depth of ≥4 mm, clinical attachment
level of ≥4 mm, and bleeding on probing.

Sample Prep Not recorded

The size of 3 mm2 gingival biopsies were
obtained from the marginal gingiva during
periodontal flap surgery and immediately

stored in RNAlater solution (Thermo Fisher
Scientific, Waltham, MA, USA) at −70 ◦C after

removal of blood by brief washing in
phosphate-buffered saline.

Number of healthy samples
vs. periodontitis samples 12 vs. 12 10 vs. 10

Number of healthy patients Not recorded nine periodontal healthy patients with pocket
depth < 4 mm

Number of periodontitis
patients Not recorded

four periodontitis patients with pocket depth
of 4–6 mm; three severe periodontitis patients

with pocket depth of 7 mm or deeper
PubMed ID Not published 27531006 [48]

2.2. Signaling Pathway Impact Analysis Identified 10 Significantly Impacted Pathways

The Signaling Pathway Impact Analysis (SPIA) algorithm was used to determine
whether any known intracellular signaling pathways were enriched in DEGs. This robust
approach uses a permutation-based analysis to generate a null distribution for each path-
way, which yielded 10 pathways that were significantly affected in periodontitis gingival
tissues (Table 3). Several relevant pathways, including “osteoclast differentiation” and “the
innate immune system”, were observed, as well as several more generic pathways such as
“cytokine–cytokine receptor interaction” and “leukocyte transendothelial migration”.
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Figure 1. Volcano Plot of all differentially expressed genes (DEGs). The x-axis shows the log2 fold-
change value for each gene, with positive and negative values representing up- and downregulation,
respectively. The y-axis shows the −log10 adjusted p-value for each gene, with more significant values
located higher on the y-axis. Base log2 and log10 were used on the x- and y-axis, respectively, to help
visualize DEGs with very large or small fold changes and adjusted p-values. Significant DEGs are
labeled as either red (downregulated genes; Down) or blue (upregulated genes; Up) dots and were
determined according to the criteria adjusted FDR-adjusted p-value < 0.05. The horizontal red line
shows the 0.05 adjusted p-value cutoff. All fold-change values were considered if the adjusted p-value
was below 0.05. Seventy-seven DEGs were upregulated, and one gene (C1orf68) was downregulated
in periodontal disease gingiva.

2.3. Drug Target Analysis Identified 500 Drugs That May Be Repurposed to Treat Periodontitis

The next analysis step consisted of determining whether any of the affected signaling
pathways contained proteins that are known targets of existing small molecules, monoclonal
antibodies, and/or peptides that could be repurposed as potential therapeutics. Using the
output from SPIA, 335 proteins in significant pathways were identified that are targets for
500 known drugs (Supplementary Table S2). It was observed that several drugs targeted
known inflammatory mediators such as interleukins and toll-like receptors.
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Table 2. Top 22 DEGs identified in periodontal disease gingival tissue.

Ensembl Gene ID Symbol Description logFC * logCPM ** p-Value FDR ***

1 ENSG00000099958 DERL3 Derlin 3 3.92 4.40 3.45 × 10−5 2.92 × 10−2

2 ENSG00000170476 MZB1 Marginal zone B and B1 cell specific protein 3.98 5.29 4.48 × 10−5 2.92 × 10−2

3 ENSG00000153208 MERTK MER proto-oncogene, tyrosine kinase 1.58 1.32 4.56 × 10−5 2.92 × 10−2

4 ENSG00000183508 TENT5C Terminal nucleotidyltransferase 5C 3.11 5.28 6.44 × 10−5 2.98 × 10−2

5 ENSG00000198794 SCAMP5 Secretory carrier membrane protein 5 2.67 2.54 6.79 × 10−5 3.03 × 10−2

6 ENSG00000137265 IRF4 Interferon regulatory factor 4 3.14 4.02 7.33 × 10−5 3.03 × 10−2

7 ENSG00000061656 SPAG4 Sperm associated antigen 4 3.28 1.63 7.87 × 10−5 3.03 × 10−2

8 ENSG00000112936 C7 Complement C7 2.46 −0.06 8.31 × 10−5 3.03 × 10−2

9 ENSG00000100219 XBP1 X-box binding protein 1 1.81 7.87 8.99 × 10−5 3.05 × 10−2

10 ENSG00000065413 ANKRD44 Ankyrin repeat domain 44 1.41 3.31 9.72 × 10−5 3.05 × 10−2

11 ENSG00000117322 CR2 Complement C3d receptor 2 5.14 0.83 1.19 × 10−4 3.39 × 10−2

12 ENSG00000189233 NUGGC Nuclear GTPase, germinal center associated 2.02 0.63 1.25 × 10−4 3.48 × 10−2

13 ENSG00000134285 FKBP11 FKBP prolyl isomerase 11 2.02 4.53 1.34 × 10−4 3.57 × 10−2

14 ENSG00000102096 PIM2 Pim-2 proto-oncogene, serine/threonine kinase 2.60 4.33 1.58 × 10−4 3.94 × 10−2

15 ENSG00000198018 ENTPD7 Ectonucleoside triphosphate diphosphohydrolase 7 0.70 4.47 1.70 × 10−4 4.15 × 10−2

16 ENSG00000130768 SMPDL3B Sphingomyelin phosphodiesterase acid like 3B 1.99 1.39 1.76 × 10−4 4.20 × 10−2

17 ENSG00000101194 SLC17A9 Solute carrier family 17 member 9 2.46 1.75 1.84 × 10−4 4.25 × 10−2

18 ENSG00000153162 BMP6 Bone morphogenetic protein 6 1.89 2.26 1.95 × 10−4 4.30 × 10−2

19 ENSG00000073849 ST6GAL1 ST6 beta-galactoside alpha-2,6-sialyltransferase 1 2.12 5.13 1.97 × 10−4 4.30 × 10−2

20 ENSG00000198854 C1orf68 Chromosome 1 open reading frame 68 −3.78 1.50 2.03 × 10−4 4.36 × 10−2

21 ENSG00000122188 LAX1 Lymphocyte transmembrane adaptor 1 2.77 2.44 2.33 × 10−4 4.81 × 10−2

22 ENSG00000091490 SEL1L3 SEL1L family member 3 2.15 4.70 2.45 × 10−4 4.92 × 10−2

* logFC: Log2 fold change (log2FC); metric used to quantify the magnitude and direction of gene expression change (i.e., a gene is up- or downregulated in periodontitis samples
compared to healthy samples). Positive values indicate upregulated genes and negative values indicate downregulated genes. ** logCPM: log counts per million; metric used to
normalize read counts per gene after the read mapping process to enable the identification of significant changes in gene expression. *** FDR: false discovery rate-adjusted p-value.
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Table 3. Signaling pathways identified as significantly impacted in periodontal diseased gingival tissue by SPIA.

Name pSize NDE pNDE tA pPERT pG pGFdr pGFWER Status SourceDB

1 Cytokine–cytokine receptor
interaction 177 39 1.27 × 10−5 13.49 1.20 × 10−3 2.90 × 10−7 5.01 × 10−5 5.01 × 10−5 Activated KEGG

2 Staphylococcus aureus infection 29 13 3.66 × 10−6 9.22 1.55 × 10−1 8.72 × 10−6 7.55 × 10−4 1.51 × 10−3 Activated KEGG

3 Natural killer cell-mediated
cytotoxicity 95 23 1.70 × 10−4 47.51 1.28 × 10−2 3.06 × 10−5 1.47 × 10−3 5.29 × 10−3 Activated KEGG

4 Chemokine signaling pathway 157 30 1.52 × 10−3 31.64 1.60 × 10−3 3.39 × 10−5 1.47 × 10−3 5.87 × 10−3 Activated KEGG
5 Osteoclast differentiation 108 25 1.94 × 10−4 13.41 6.88 × 10−2 1.63 × 10−4 5.65 × 10−3 2.83 × 10−2 Activated KEGG

6 Leukocyte transendothelial
migration 76 19 3.94 × 10−4 19.35 4.92 × 10−2 2.30 × 10−4 6.63 × 10−3 3.98 × 10−2 Activated KEGG

7 Keratinization 90 27 6.00 × 10−7 −1.90 2.00 × 10−1 2.03 × 10−6 1.43 × 10−3 1.43 × 10−3 Inhibited Reactome
8 Innate Immune System 633 101 4.65 × 10−5 67.93 7.80 × 10−2 4.90 × 10−5 1.01 × 10−2 3.47 × 10−2 Activated Reactome

9 Assembly of collagen fibrils and
other multimeric structures 45 12 2.51 × 10−3 7.31 1.60 × 10−3 5.38 × 10−5 1.01 × 10−2 3.80 × 10−2 Activated Reactome

10 Formation of the cornified envelope 62 19 1.96 × 10−5 −1.89 2.18 × 10−1 5.71 × 10−5 1.01 × 10−2 4.03 × 10−2 Inhibited Reactome

pSize: the number of nodes in the pathway. NDE: number of differentially expressed genes based on unadjusted p-value. PNDE: hypergeometric p-value for enriched DEGs in pathway.
tA: total net accumulated perturbation (tA). pPERT: bootstrap p-value. pG: unadjusted global probability. pGFdr: FDR correction of pG p < 0.05. pGFWER: Bonferroni-corrected pG.
Activated/Inhibited: predicted effect on signaling pathway based on the direction of the tA value.
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2.4. Protein-Protein Interaction Identification of Candidate Drug Targets against Top 10 Hub Proteins

An unbiased approach was then applied to identify the drug targets that would be
most likely to reverse the observed signaling pathway phenotype. Such a therapeutic
approach could reduce or reverse some of the clinical signs and symptoms associated with
the disease phenotype. To do so, the protein–protein interaction (PPI) network of drug
targets that mapped back to all the statistically significant signaling pathways identified
as playing a role in periodontitis gingival tissue were visualized. The initial PPI network,
which was constructed using the online STRING database, consisted of 7462 edges and
304 nodes. CytoHubba was then used to reduce this initial network to the top 10 “central
hub” proteins based on degrees (i.e., number of interacting neighbors) (Figure 2).
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DEGs were identified as central hubs using cytoHubba based on their degrees of interactions with
other genes/proteins. (a) Hub genes mapped back to five significantly impacted pathways, and the
number of protein–protein interactions (PPI) for each are listed in blue circles. The proteins and
their rank-by-degree scores are represented by a red-yellow color gradient. Red indicates the highest
degree score, orange is intermediate, and yellow indicates the lowest; (b) Table of hub genes ranked
by their degree score (PPI) using the same color gradient.

Out of 500 drug candidates identified, 10 drugs that targeted the central hub proteins
were identified as top candidates since they would be most likely to reverse the observed
periodontitis phenotype (Table 4). A drug that targeted IL17RAwas also included. It was
not one of the hub genes, but it was one of the top drug targets identified in the analysis,
and its production by Th17 cells has been associated with bone resorption in periodontitis.
This drug repurposing analysis also identified the IL-6 receptor (IL6R) and IL17RA proteins
as targets for the FDA-approved drugs Satralizumab and Brodalumab that are approved to
treat autoimmune diseases such as neuromyelitis optica spectrum disorder (NMOSD) and
severe plaque psoriasis, respectively.



Int. J. Mol. Sci. 2022, 23, 5580 9 of 17

Table 4. List of top 10 drug targets.

Target Symbol Target Name(s) Drug ID Drug Name Approved
by FDA

Highest Clinical
Trial Phase Health Condition Investigated

1 IL6R; IL6ST

Interleukin 6
receptor; Interleukin

6 cytokine family
signal transducer

CHEMBL3833307 Satralizumab TRUE 4 AQP4 antibody-positive Neuromyelitis optica
spectrum disorder (NMOSD)

2 TNFSF11 TNF superfamily
member 11 (RANKL) CHEMBL1237023 Denosumab TRUE 4 Postmenopausal osteoporosis

3 IFNAR2
Interferon alpha and

beta receptor
subunit 2

CHEMBL1201563 Interferon Beta-1B TRUE 4 Relapsing-remitting forms of multiple sclerosis

4 IL17RA Interleukin 17
receptor A CHEMBL1742996 Brodalumab TRUE 4 Moderate to severe plaque psoriasis

5 TLR4 Toll-like receptor 4 CHEMBL225157 Resatorvid FALSE 3 Severe sepsis

6 IL6 Interleukin 6 CHEMBL2108589 Clazakizumab FALSE 3
Kidney failure, antibody-mediated rejection of

kidney transplants, rheumatoid arthritis, asthma,
Crohn’s disease, psoriatic arthritis, and COVID-19.

7 IL1B Interleukin 1 beta CHEMBL1743026 Gevokizumab FALSE 3

Scleritis, colon cancer, osteoarthritis, chronic
uveitis, Pyoderma Gangrenosum,

gastroesophageal cancer, renal cell carcinoma,
rheumatoid arthritis, Muckle–Wells syndrome,

Behcet’s disease, and Type I and Type II Diabetes

8 TGFBR1 Transforming growth
factor beta receptor 1 CHEMBL2364611 Galunisertib FALSE 2

Metastatic pancreatic cancer, colorectal cancer,
advanced hepatocellular carcinoma, prostate

cancer, ovarian carcinosarcoma, rectal
adenocarcinoma, breast cancer, nasopharyngeal

cancer, and glioblastoma

9 CSF2RB
Colony stimulating

factor 2 receptor
subunit beta

CHEMBL1743039 Mavrilimumab FALSE 2 Rheumatoid arthritis; acute respiratory failure and
hyperinflammation in COVID-19

10 CSF2 Colony stimulating
factor 2 CHEMBL2109430 Gimsilumab FALSE 2 Ankylosing spondylitis; COVID-19
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3. Discussion

The aim of this study was to identify inflammatory biomarkers and the mechanistic
drivers of inflammation, as well as to predict potential therapeutics for various aspects
of periodontal disease. For this purpose, two independent RNA-seq datasets were re-
trieved from NCBI Gene Expression Omnibus (GEO) for RNA-seq meta-analysis. Dataset
GSE80715 was previously analyzed in a published study that identified novel gene expres-
sion and splicing patterns in periodontitis gingival biopsies [48], whereas study GSE173082
is deposited in the GEO database but has not been published. RNA-seq meta-analysis
identified 78 significant DEGs (FDR < 0.05) with 22 genes functioning in gene transcription,
metabolite transport, toll-like receptor signaling, chemokine secretion, and endoplasmic
reticulum stress. These 22 genes represent the top candidates as biomarkers to diagnose
periodontitis, with 11 of these potential biomarkers found either extracellularly or on the
surface of host cells (MZB1, MERTK, SCAMP5, C7, CR2, SMPDL3B, SLC17A9, BMP6,
ST6GAL1, C1orf68, and LAX1). Future experiments could be designed to optimize a flow
cytometry approach that could quantify these surface protein biomarkers as part of a
periodontal disease diagnosis. The remaining 11 proteins (DERL, TENT5C, IRF4, SPAG4,
XBP1, ANKRD44, NUGGC, FKBP11, PIM2, ENTPD7, and SEL1L3) are localized within
the cytosol, Golgi apparatus, endoplasmic reticulum, or the nucleus of host cells. In the
latter case, RT-qPCR may be useful in diagnosing severe periodontitis by measuring the
transcripts of these genes from material collected from the affected site(s).

The signaling pathway impact analysis provided a higher level of analysis of how
these differentially expressed genes contribute to the pathogenesis of periodontitis. For
instance, the osteoclast differentiation pathway was significantly impacted and activated in
periodontal gingival tissue. This is noteworthy since alveolar bone loss is a characteristic of
severe periodontitis. Bone-resorbing osteoclasts work in conjunction with bone-forming
osteoblasts during bone remodeling through cell–cell interactions and the secretion of
signaling proteins (e.g., TNF superfamily member 11, or RANKL, and bone morphogenic
protein 2, BMP2) to influence the activation and differentiation of each other [50,51]. Dys-
regulation in osteoclast or osteoblast activity can lead to excessive bone resorption (os-
teoporosis) or formation (osteopetrosis), respectively [52]. Overexpression of RANKL,
osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF) can lead to
excessive osteoclast activity [53]. Inflammatory cytokines and hormones, such as IL-1α/β,
TNF-α, IL-6, IL-17, and Prostaglandin E2 (PGE2), may also promote osteoclast activity [53].
In a ligature-induced periodontitis rat model, mRNA levels of inflammatory cytokines such
as IL-6, IL-1β, TNF-α, RANKL, and OPG were increased within the first week of inducing
the disease [54]. However, this study found that mRNA levels of these cytokines were
not significantly different two weeks post-induction [54]. This coincided with significant
bone resorption up to two weeks post-induction [54]. The synergistic effects of T helper
cells, B cells, macrophages, and neutrophils may also stimulate osteoclast activity during
periodontitis [54].

Using transcriptomics to identify central hubs in protein–protein interaction networks
is a novel approach in the field of periodontitis. The best 10 scoring results from this anal-
ysis included proteins such as IL-6, toll-like receptor 4 (TLR4), tumor growth factor-beta
(TGF-β), and others. IL-6 and IL-1β are pro-inflammatory cytokines that are associated
with chronic inflammation, periodontitis, and osteoclast bone resorption [20,23,53–55].
They were both identified as hub genes in the gingiva of periodontitis patients, making
them potential candidates for therapeutic targets in treating inflammation in periodontitis.
Interestingly, CD4 (cluster of differentiation 4) was found to be another hub gene. CD4
is a co-receptor/surface marker found on T helper cells, and it can also be found on the
surface of macrophages, B cells, neutrophils, eosinophils, and mast cells [56]. Although
there are currently no drugs that target CD4 to reduce inflammation or the function of
CD4+ T cells, the identification of CD4 as a hub gene marks the importance of T helper cells
in the inflammatory response during periodontitis. Signal transducer and activator of tran-
scription 3 (STAT3), a transcription factor belonging to the STAT protein family, and AKT
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Serine/Threonine Kinase 1 (AKT1), a protein kinase that regulates cell growth and apopto-
sis [57–59] and acts as a signaling enzyme within the PI3 kinase signaling pathway [60],
were also identified as hub genes. STAT3 plays important roles in the differentiation and
function of several immune cells, including: dendritic cells [61–64], neutrophils [65], B
cells [66], Th17 cells via IL-6 signaling [67,68], T follicular helper cells [69,70], and CD8+
cytotoxic T cells [65,71,72]. PI3K/AKT signaling promotes macrophage polarization [73]
and T cell development and function [74,75]. This signaling pathway also regulates cell
survival and glucose metabolism [76]. Interleukin 10 (IL-10), interleukin 4 (IL-4), and
IFN-γ are other cytokines identified as hub genes with differing roles in inflammation.
IL-10 is an anti-inflammatory cytokine that plays a protective role in mucosal surfaces
against hyperinflammation, and the inhibition of IL-10 signaling has been found to promote
the onset of colitis and irritable bowel syndrome (IBD) [77]. IL-4 is expressed by several
lymphoid and myeloid cells, including T cells (primarily Th2), natural killer (NK) cells,
eosinophils, basophils, and mast cells [78,79]. It plays important roles as a growth factor
for B cells [80], IgE class switching in B cells [81], Th2 differentiation and response [82],
and tissue repair [80]. IFN-γ is a pleiotropic cytokine that is primarily secreted by T cells
and NK cells, and it plays major roles in the priming and activation of innate and adaptive
immune cells, including dendritic cells and macrophages, as well as other NK cells and
CD4+ and CD8+ T cells [83,84]. Lastly, TLR4 is a pattern recognition receptor that recog-
nizes lipopolysaccharide (LPS) found on the outer membrane of gram-negative bacteria.
Evidence also suggests that fragments of hyaluronan released during tissue damage may
bind to TLR4 and initiate an inflammatory response [85]. Since gram-negative bacteria,
such as P. gingivalis, are major contributors to microbial dysbiosis and inflammation in
periodontitis, inhibiting the LPS-induced activation of TLR4 may be a potential mechanism
to reduce inflammation in periodontitis.

When identifying the top 10 drug targets to treat inflammation in periodontitis, drugs
that target hub genes and those drugs which have been FDA-approved were prioritized.
Although one prior clinical study has evaluated the post-surgical use of systemic Doxycy-
cline, we are not aware of other studies that have sought to investigate potential therapeutic
treatments for periodontal disease. All of the drugs that are reported have been inves-
tigated for at least one indication, and some of them are approved for the treatment
of chronic inflammatory (Satralizumab, Interferon beta-1b, Brodalumab), autoimmune
(Satralizumab, Interferon beta-1b, Brodalumab), and dysregulated bone resorption dis-
eases (Denosumab). Seven of the 10 drug candidates are monoclonal antibodies used to
inhibit the signaling pathways of inflammatory cytokines. Satralizumab, Denosumab,
and Brodalumab (Siliq) are monoclonal antibodies FDA-approved to treat anti-aquaporin-
4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD) [86,87],
postmenopausal osteoporosis [88], and moderate to severe plaque psoriasis in adult pa-
tients [89], respectively. Cases of medication-related osteonecrosis of the jaw (MRONJ) were
reported in clinical trials investigating the safety and efficacy of denosumab in treating
metastatic bone cancer, multiple myeloma, and post-menopausal osteoporosis [90–92].
Multiple studies report a low incidence of MRONJ in osteoporosis patients treated with
Denosumab [92–94]. However, the dosage of Denosumab for the treatment of periodontitis
must be carefully considered, and the development of MRONJ monitored closely. Risk
factors for MRONJ caused by bisphosphonates, anti-angiogenic drugs, and Denosumab,
include invasive dental procedures (i.e., tooth extractions or other procedures that require
bone exposure), smoking, chemotherapy, use of corticosteroids, and periodontitis [95–97].

Clazakizumab (NCT03744910), Gevokizumab (NCT00998699, NCT01788033), Mavrili-
mumab (NCT01706926), and Gimsilumab (NCT04205851) are monoclonal antibodies that
have not been FDA-approved to treat any conditions, but they either have been or are
currently being investigated to treat kidney transplant rejection, type I and II diabetes,
rheumatoid arthritis, and ankylosing spondylitis, respectively. The three remaining drugs
are inhibitors that block cytokine signaling. Interferon beta-1b (Betaseron/Extavia) is
a recombinant human interferon that binds to type I interferon receptors (IFNAR1 and
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IFNAR2) and is FDA-approved as an immunosuppressant to treat relapsing-remitting
forms of multiple sclerosis [98,99]. It promotes the expression of anti-inflammatory cy-
tokines, including IL-10 [100,101], and reduces the expression of inflammatory cytokines,
including IL-17 [101,102]. TAK-242 (resatorvid) inhibits TLR4 signaling by binding to
the intracellular domain of TLR4 and interfering with the interactions between adaptor
proteins and the receptor, thus inhibiting the expression of inflammatory cytokines [103].
Resatorvid was investigated as a potential therapeutic to reduce mortality rates in patients
with severe sepsis. However, it failed to reduce cytokine levels in treated patients with
sepsis or reduce mortality rates significantly [104]. Though this drug failed to treat systemic
sepsis, the administration of resatorvid in the periodontal pockets, which are colonized by
pathogenic, gram-negative bacteria, may serve as a potential therapeutic to reduce chronic
inflammation. Galunisertib is an oral small inhibitor molecule that blocks TGF-β receptor
1 kinase activity. In humans, Galunisertib has been investigated as a potential treatment for
several cancers, including metastatic pancreatic cancer, colorectal cancer, prostate cancer,
ovarian carcinosarcoma, breast cancer, and glioblastoma (clinicaltrials.org, accessed on
10 March 2022). Galunisertib is not FDA-approved, but its inhibition of TGF-β signaling
may be effective in reducing inflammation in periodontal pockets.

The efficacy of these drugs in treating periodontitis has yet to be investigated. How-
ever, this analysis indicates that these drugs may serve as potential therapeutics, either
individually or in combination, to treat inflammation in periodontitis gingival tissue. All of
these drugs in some way mitigate the inflammatory response or bone resorption via their
mechanism of action. As noted above, reducing the inflammation induced by periodontitis
may also reduce the severity of other systemic diseases by reducing the number of inflam-
matory cytokines and activated immune cells that circulate or migrate to other tissues
throughout the body. Thus, additional experimentation is justified to further investigate
the efficacy of these drugs in reducing the inflammation in the oral cavity of animal models
for periodontitis, such as ligature-induced periodontitis in mice.

4. Materials and Methods
4.1. RNA-seq Analysis

A total of 26 periodontal disease SRA files, which were comprised of 22 periodontitis
RNA samples, as well as 22 healthy RNA samples, were downloaded from two series
(GSE173082 and GSE80715) retrieved from NCBI Gene Expression Omnibus (GEO). The
RNA samples from the GSE80715 series were isolated from nine periodontal-healthy
patients (one patient donating two samples for a total of 10 healthy samples), four moderate-
periodontitis patients (one patient donating two samples), and three severe-periodontitis
patients (two patients donating two samples each for a sum of 10 periodontitis samples).
Patient information about the RNA samples from the GSE173082 series was not provided
by the investigators on NCBI GEO. Information on the titles of each series, platforms used,
library construction, sample type, diagnostic criteria, sample prep, and PubMed ID are
provided in Table 1. Periodontitis and healthy RNA samples were analyzed using the
Snakemake-based ARMOR workflow within a dedicated Conda environment, as described
by Orjuela [39]. Briefly, quality control was performed on all RNA reads using fastQC.
Reads with sufficient quality scores were trimmed using TrimGalore prior to mapping and
quantification to the human GRCh38 reference transcriptome using Salmon [40]. Transcript
quantifications from Salmon were then summarized at the gene level quantifications prior
to performing differential gene analysis using edgeR [41].

4.2. Signaling Pathway Analysis

All of the Ensembl Gene IDs from edgeR were converted into their corresponding
NCBI Gene identifiers utilizing the BioMart database [105]. The NCBI Gene IDs with
significant p-values (p < 0.05) as calculated by edgeR, together with their fold-change
values, were then used as the input for the signaling pathway impact analysis (SPIA)
algorithm [42].
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4.3. Drug Target Analysis

The SPIA output file was used as the input for drug target analysis which was per-
formed using the Pathways2Targets R script that had previously been developed [46].
Briefly, identifiers from each of the pathways identified in the SPIA output file were re-
trieved and converted into UniProt identifiers. These protein identifiers were then used to
query the public OpenTargets.org database for known human drug targets and the drugs
that affect those targets [47].

4.4. Protein-Protein Interactions Analysis

Drug targets were used to construct the PPI network using the Search Tool for the
Retrieval of Interacting Genes (STRING) [43] database (Version 11.5, http://string-db.org/,
accessed on 7 March 2022). The PPI network was visualized in the Cytoscape [44] software
(Version 3.9.0), and cytoHubba (a Cytoscape plugin for ranking nodes in a network by their
network features) (Version 0.1; Chung-Yen Lin et al., Taipei, Taiwan) [45], and MCODE
plugins were used to calculate the degrees of nodes and to identify significant modules.
The top 10 transcripts with the highest degrees were identified as hub genes.
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