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The finite sampling of k-space in MRI causes spurious image artifacts, known as Gibbs ringing, which result from signal truncation
at the border of k-space. The effect is especially visible for acquisitions at low resolution and commonly reduced by filtering at the
expense of image blurring. The present work demonstrates that the simple assumption of a piecewise-constant object can be
exploited to extrapolate the data in k-space beyond the measured part. The method allows for a significant reduction of truncation
artifacts without compromising resolution. The assumption translates into a total variation minimization problem, which can be
solved with a nonlinear optimization algorithm. In the presence of substantial noise, a modified approach offers edge-preserving
denoising by allowing for slight deviations from the measured data in addition to supplementing data. The effectiveness of these
methods is demonstrated with simulations as well as experimental data for a phantom and human brain in vivo.
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1. INTRODUCTION

In MRI, spatial information is obtained from the object using
magnetic field gradients, which link the Larmor frequency of
the excited spins to their spatial location. Thus, the received
signal is the continuous Fourier transform of the object’s
proton density

S(�k) =
∫
ρ(�x ) e−i�k·�x d�x , (1)

where the k-space position �k can be calculated from the
time course of the applied gradients. In practice, the
proton density is further modulated by spin relaxation, off-
resonance effects, and other mechanisms all neglected here.

It is well known that objects with compact support
have a Fourier transform with nonlimited support. For
example, the Fourier transform of a rectangle is composed
of sinc functions in each dimension. Because only a single
location of the Fourier space can be measured at a time,
it is impossible to fully sample such Fourier transform by
travelling the MRI k-space with magnetic field gradients.
Hence, there are two experimental restrictions for MRI.
First, the continuous Fourier transform is sampled discretely,

which can be seen as a multiplication with a comb-function
in frequency space. In image space, this corresponds to a
convolution with a reciprocally spaced comb-function and
leads to periodic object copies with a spacing inverse to the
sample distance in k-space. Second, the Fourier transform is
sampled only within a finite region around the k-space center
with all other information missing.

In the conventional case, a discrete Fourier transforma-
tion of the finitely measured data is performed to reconstruct
an image. This strategy implicitly assumes that the Fourier
transform is zero everywhere outside the sampled region.
It is clear that the assumption is not very appropriate for
finite objects, although the corresponding reconstruction
totally complies with all data measured. In fact, any solu-
tion that coincides at the sampling positions is a valid
reconstruction, because the finite sampling pattern opens
degrees of freedom from the null space of the projection
evoked by finite sampling. Setting this null space to zero is a
simple and convenient solution. Unfortunately, however, the
procedure corresponds to a multiplication of the true object’s
Fourier transform with a rect-function (in case of Cartesian
sampling) which, in image space, results in a convolution
of the true object with a sinc-function. This effect is well

mailto:tblock@gwdg.de


2 International Journal of Biomedical Imaging

known as truncation artifact or Gibbs ringing and mainly
appears as an oscillating overshoot of the image intensity
near discontinuities [1, 2]. Although the problem may be
reduced by increasing the measured k-space, many practical
applications still rely on acquisitions with a relatively low-
matrix resolution in at least one image dimension, and
therefore suffer from respective artifacts.

So far, various methods have been developed to ame-
liorate image disturbances due to finite sampling [2–5].
However, in the majority of MRI applications and, in
particular, for most commercially available MRI systems,
only a simple data filtering is routinely employed. In this
case, visual reduction of the ringing artifacts is achieved
by a smearing of the intensity oscillations, which leads to
an undesired loss of image resolution. Alternative methods
attempt to extrapolate the measured data and thereby avoid a
sharp cut-off in k-space [6–9]. A key difference to the filtering
approach is that the actually measured data is not changed
but supplemented with synthetic data—a reasonable strategy
as the measured data is not incorrect but only incomplete.
This can be achieved by exploiting a priori knowledge
about the true object and, consequently, all extrapolation
techniques rely on certain assumptions, where the existing
methods follow different strategies. In this regard, the present
work demonstrates that also the very unspecific assumption
of a piecewise-constant object can be utilized to successfully
extrapolate data in k-space and concomitantly reduce the
ringing artifacts without compromising image resolution.

2. THEORY

Figure 1 compares the one-dimensional profile of a rectangle
reconstructed by Fourier transformation from only 96
Fourier samples to that of the original function. It clearly
illustrates severe ringing artifacts, although the true function
is piecewise constant and free of any oscillations. Such
oscillations can be quantified using the total variation (TV),
which sums the modulus of jumps between all neighboring
pixels of a reconstructed image I(x, y)

TV(I) =
N∑
y=0

N∑
x=0

∣∣I(x, y)−I(x−1, y)
∣∣+
∣∣I(x, y)−I(x, y−1)

∣∣.
(2)

The TV concept was initially introduced to image processing
by Rudin et al. [10] for denoising applications because
noise patterns create a high TV value relative to that of
a noise-free image, and they become particularly reduced
when modifying the image in such a way that the TV value
is minimized. As a specific property, edges are preserved
during this procedure, and thus TV minimization emerged
as one the most popular denoising techniques. In recent
years, the TV concept is attracting strong interest in the field
of compressed sensing [11] because for specific sampling
techniques, the TV value can be utilized to identify and to
remove artifacts from undersampling, offering a remarkable
reduction of the measurement time [12]. In a similar
manner, truncation artifacts lead to an increased TV value
relative to that of the true object, so that the TV may also be

Figure 1: (Top) One-dimensional profile of a rectangle recon-
structed by Fourier transformation from 96 Fourier samples (solid
line) in comparison to the true function (dotted). While the true
function is piecewise constant, the Fourier reconstruction exhibits
severe ringing artifacts due to truncation of the Fourier coefficients,
which causes an increased total variation (TV) value. (Bottom)
Magnified view.

taken as a measure of the artifact strength for finite k-space
sampling, which has been recognized by Landi et al. as well
[13]. Therefore, the proposed idea is to add a set of synthetic
frequencies �v to the measured data �y, which is specifically
chosen such that the TV value of the image reconstructed
from the combination of the measured and synthetic data is
minimized

�v = argmin
�v

TV
(
F {�v ⊕ �y}) , (3)

where F denotes the discrete Fourier transformation. Inter-
estingly, by searching for the set of synthetic frequencies
�v, the unmeasured k-space data is recovered to a certain
degree if the assumption of a piecewise-constant object is
appropriate.

Estimation of the synthetic data can be achieved by
minimizing (3) with a nonlinear numerical optimization
technique. The present proof-of-principle implementation
used the CG-Descent algorithm [14], which is a recent
variant of the nonlinear conjugate gradient method that
allows to rather efficiently solve large-scale problems. The
algorithm can be used in a black-box manner, requiring only
the evaluation of a cost function and its gradient for given
estimate vectors �v. The cost function is needed to quantify
the goodness of a given estimate (i.e., it is small for a good
estimate and large otherwise), and for the problem defined
in (3) it simply has the form

Φ(�v) = TV
(
F {�v ⊕ �y}) . (4)

The gradient of the cost function corresponds to the
derivative of this function with respect to all components
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of the estimate vector �v. Because the discrete Fourier
transformation is a unitary operation, it can be evaluated
conveniently by calculating the gradient of the TV term in
the image domain (i.e., estimating a vector that describes
how the TV value changes for modifications of the individual
pixels), followed by an inverse Fourier transformation to the
frequency domain.

2.1. Extended TV formulation

Calculation of the TV value according to (2) uses only
the first-order derivative of the image with respect to its
x- and y-directions. This value is minimized if an image
consists of areas with constant signal intensity, so that the
extrapolation procedure yields a solution primarily with
constant areas. While desirable for truly flat objects like
numerical phantoms, it tends to create images with a
slightly blocky or patchy appearance for real-world objects.
Therefore, it is advisable to additionally include second-
order derivatives into the TV term, which then allows for
intensity gradients in the images and yields more naturally
looking solutions

TV2(I) =
N∑
y=0

N∑
x=0

σ·(∣∣I(x, y)−I(x−1, y)
∣∣+
∣∣I(x, y)−I(x, y − 1)

∣∣)

+(1−σ)·(∣∣I(x − 1, y)− 2·I(x, y) + I(x + 1, y)
∣∣

+
∣∣I(x, y−1)−2·I(x, y)+I(x, y+1)

∣∣
+
∣∣I(x, y)−I(x−1, y)−I(x, y−1)

+I(x−1, y−1)
∣∣).

(5)

Here, σ ∈ [0 1] is a weighting factor which can be used
to tune the images between a slightly more blocky looking
and a slightly smoother appearance. For the reconstructions
presented, it was set to σ = 0.77 based on the considerations
by Geman and Yang [15].

2.2. Edge-preserving denoising

In practice, experimental MRI data can be significantly
contaminated by Gaussian noise. While the aforementioned
approach is still able to reduce visible truncation artifacts
under these circumstances, it does not reduce image noise
because the measured k-space data remains unchanged. On
the other hand, an additional denoising may be achieved by
loosing the fixed bound on the measured data, that is by
introducing a data fitting term. In this case, the algorithm not
only adds synthetic frequencies to obtain a TV minimization,
but is also allowed to find a solution that slightly diverges
from the measured data, which yields an effective edge-
preserving denoising. Therefore, the estimate vector �v has
to be extended such that it contains both synthesized
frequencies as well as frequencies from the measured part of
k-space, which is indicated by writing �vd instead.

In the denoising case, the cost function takes the form

Φ(�vd) = λ·‖�vd � �y‖2
2 + TV(F {�vd}) , (6)

where � denotes an operation that calculates the residual
between the measured values and the corresponding entries
of the estimate, which are now contained in the vector
�vd. Further, λ is a weighting factor that allows to select
the desired denoising strength. While a low weight permits
considerable divergences from the measured values and,
thus, leads to an effective removal of noise, it can also cause a
loss of object detail if selected too low. Therefore, the weight
has to be adjusted with respect to the signal-to-noise ratio of
the measurement sequence, where a reasonable strategy is to
estimate a fixed value once for each protocol by computing
a set of test images with different λ values and selecting the
value yielding the desired degree of denoising.

2.3. Phase variations

Although the basic physical quantity measured by MRI, that
is, the spin-density modulated by relaxation or saturation
effects, should be real-valued and nonnegative in theory,
inherent experimental phase variations usually cause the
observed object to be complex-valued. Moreover, modern
MRI systems often use multiple receive coils with complex-
valued sensitivity profiles, yielding differently modulated
views of the object. As a consequence, spatially varying
transitions between the real and imaginary component occur
as well as local intensity changes, which conflict with the
assumption of a piecewise-constant quantity and prevent
a direct application of the TV constraint. Therefore, some
mechanism is required to cope with the phase variations and
the multicoil scenario.

In this proof-of-principle study, phase variations were
removed in a preprocessing step by performing a Fourier
transformation of the data from each coil and calculating
the sum-of-squares of all channels in the image domain.
Subsequently, an inverse Fourier transformation of the
sum-of-squares data was performed to obtain a combined
data set with real-valued and nonnegative values in the
image domain, which enables a calculation of the TV value
using only the real part of the image. While this simple
technique turned out to be sufficient for demonstrating
a removal of truncation artifacts by TV-constrained data
extrapolation, routine applications will probably require a
more sophisticated procedure, in particular when combined
with advanced techniques such as parallel imaging and
when using complex coil configurations with more localized
sensitivities of the individual receiver elements.

3. METHODS

Simulations were performed with the Shepp-Logan phan-
tom, which is composed of several ellipses. Because the
Fourier transform of a single ellipse is given by a Bessel
function, an analytical Fourier transform of the phantom is
obtained by a superposition of respective Bessel functions.
Truncation artifacts can be studied by evaluating the non-
compact analytical transform at the sampling positions along
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the trajectory, here yielding a matrix of 96 × 96 Fourier
samples. All simulations and processing of experimental data
were done offline using an in-house software package written
in C/C++.

MRI experiments were conducted at 2.9 T (Siemens
Magnetom TIM Trio, Erlangen, Germany) with use of a
receive only 12-channel head coil equipped with hardware
signal combiners, yielding four receiver channels with dif-
ferent combinations of the coil elements. Measurements
were performed for a water phantom and human brain in
vivo, where written informed consent was obtained from
all subjects prior to each examination. For demonstration
purposes, the image acquisitions were done with a simple
slice-selective spin-echo sequence at a 200 × 200 mm2 field
of view, covered by a 96 × 96 acquisition matrix. Different
sequence settings were used to obtain data sets with low and
high level of noise, where the latter was achieved by reducing
the flip angle and slice thickness while increasing the receiver
bandwidth. Further, one data set was acquired with a slice-
selective gradient-echo sequence, which allowed for the rapid
measurement of a full 288× 288 acquisition matrix.

All images were reconstructed on a 288 × 288 matrix
corresponding to an extrapolation factor of 3. The proposed
algorithm was run for a fixed number of 3000 iterations,
which takes about 2-3 minutes on a standard microprocessor.
In cases where an additional data fitting term was used,
the weighting factor λ was adjusted manually to yield a
reasonable solution as judged by visual inspection. Zero-
padded solutions with and without filtering were calculated
for comparison. Here, a simple Lanczos sigma filter, that
is, multiplication with a sinc-function, was applied, where
the window width was selected such that the sinc-function’s
first null coincides with the border of the measured k-space.
Although other filters might perform better, it serves to
demonstrate the general problem related to data filtering.
In addition, a two-dimensional version of the extrapolation
method described by Constable and Henkelman [6] was
implemented with a window width of P = 2 for the edge-
preserving sigma filter. In our implementation, the filter
parameter Δ was selected according to Δ = c · I , where I
denotes the intensity of the pixel to be filtered and c is a global
coefficient that was set to c = 0.1 based on visual inspection.
Finally, all images were magnified and cropped to improve
the visibility of the artifacts.

4. RESULTS

Figure 2 shows different reconstructions of the Shepp-Logan
phantom (left column) together with the respective Fourier
transforms (right column). It is clearly visible that the zero-
padded solution (zero) suffers from severe ringing artifacts
around all edges of the phantom. The extent of the measured
k-space can be seen in its Fourier transform. Most ringing
artifacts disappear after filtering (filter), however, at the
expense of a significant loss of image resolution. In contrast,
the image reconstructed with the proposed method (TV)
is neither affected by ringing artifacts nor by blurring,
and it presents with considerably sharper edges relative
to the zero-padded solution. Its Fourier transform reveals

zero

filter

TV

full

Figure 2: (Left) Images of the numerical Shepp-Logan phantom
(96 × 96 samples, 288 × 288 reconstruction matrix) and (right)
corresponding k-space representations reconstructed using zero-
padding (zero), filtered zero-padding (filter), and the proposed
extrapolation method (TV). For comparison, a data set with a
fully sampled 288×288 matrix is shown (full). Arrow = truncation
artifact.

that the measured data has been properly extrapolated into
the uncovered areas of k-space. For comparison, a full
reconstruction from 288 × 288 samples is shown in the
bottom row (full).

Figure 3 demonstrates the application of the method to
experimental data obtained for a phantom (left column) and
a human brain in vivo (right column) in comparison to zero-
padded (zero) and filtered zero-padded solutions (filter).
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Again, the ringing artifacts obtained for zero padding (indi-
cated by arrows) are significantly reduced when using TV-
constrained data extrapolation with only first-order (TV)
or additionally second-order derivatives (TV2). The blocky
appearance of the TV reconstruction becomes much more
smoother for the TV2 approach, although both solutions
(TV and TV2) look somewhat more blocky than the zero-
padding solution.

In Figure 4, the proposed approach (TV2) is compared
to a 2D version of the extrapolation method by Constable
and Henkelman (comp) for the Shepp-Logan phantom (left
column) and an experimental study of the human brain in
vivo (right column). It can be seen that the performance
of the proposed extrapolation method is slightly better
for the simulated data, while both approaches yield an
effective suppression of ringing artifacts for the experimental
data (note that the alternative method leads to a slight
denoising of the image). However, in our implementation,
the algorithm by Constable and Henkelman tends to be
sensitive to the parameter selection for the initial filter that
is used to detect true edges of the object, whereas a selection
of respective parameters is not needed in the TV-based
approach.

Figure 5 shows reconstructions of the Shepp-Logan
phantom from noisy data using zero-padding (zero), the
proposed extrapolation approach (TV), and its combination
with denoising (TVdns). While the basic extrapolation
approach leads to a reduction of truncation artifacts also for
noisy data, it does not reduce the noise patterns. However,
when extending the TV penalty to the measured data, the
method effectively flattens noise patterns in addition to the
suppression of ringing artifacts.

Finally, corresponding reconstructions from experimen-
tal data with a high degree of noise are shown in Figure 6.
Here, a combination of first- and second-order derivatives
was used for the TV calculation. As in the simulations, the
proposed method leads to a reduction of truncation artifacts
(TV2), while the extension to data fitting yields an additional
edge-preserving denoising (TV2dns).

5. DISCUSSION

5.1. Accuracy and limitations

Both simulations and experiments demonstrate that TV-
constrained data extrapolation effectively reduces truncation
artifacts due to finitely sampled MRI acquisitions. Usually,
the images exhibit a more blocky appearance compared to
zero-padding. However, it should be noted that the smooth-
ness observed for zero-padding originates to a significant
degree from the convolution with the sinc-function. As a
consequence, a sharp edge of the object is mapped as a
rather smooth pattern, which might appear more familiar
to the viewer than a blocky image, but strictly represents
an image artifact. Hence, the extrapolation technique may
even lead to a slight gain of resolution due to a sharpening
of the point-spread function, following from the reciprocity
property of the Fourier transformation. This effect can be
best seen in Figure 6 when comparing the borders of the

zero

filter

TV

TV2

Figure 3: Spin-echo images (96 × 96 samples, 288 × 288 recon-
struction matrix) of (left) a phantom (TR/TE = 4000/8 ms, BW
243 Hz/pixel, FA 70◦, 3 mm slice) and (right) a human brain
in vivo (TR/TE = 4000/25 ms, BW 180 Hz/pixel, FA 90◦, 2 mm
slice) using zero-padding (zero), filtered zero-padding (filter),
the proposed extrapolation method with first-order (TV), and
additionally second-order derivatives (TV2). Arrows = truncation
artifacts.

dark brain vessels obtained for zero padding (zero) with the
proposed method (TV2).

Residual image artifacts are explained by multiple rea-
sons. First, the method is based on the assumption that the
true object is piecewise constant, which is only approximately
valid for real-world objects. In the presence of additional
experimental effects like flow artifacts, the assumption
might be even less appropriate. Hence, the extrapolation



6 International Journal of Biomedical Imaging

zero

comp

TV2

full

Figure 4: (Left) Images of the Shepp-Logan phantom (96 × 96
samples, 288 × 288 reconstruction matrix) and (right) gradient-
echo images of the human brain in vivo (TR/TE = 500/8 ms, BW
80 Hz/pixel, FA 30◦, 2 mm slice) reconstructed using zero-padding
(zero), the extrapolation method by Constable and Henkelman
(comp), and the proposed method with first- and second-order
derivatives (TV2). For comparison, reconstructions from fully
sampled 288× 288 matrices are shown (full). Arrows = truncation
artifacts.

performance depends on the object’s conformance with the
assumption that it is piecewise-constant. Moreover, if the
true object contains strongly varying patterns, the algorithm
may erroneously soften such patterns by supplementing
respective high frequencies. On the other hand, in the major-
ity of cases, the assumption of a piecewise-constant object
seems to be more appropriate than that of all conventional

reconstructions, namely, a Fourier transform of the object
that is zero outside the sampled k-space area.

Second, the proposed method synthesizes only a finite
number of additional frequencies, whereas an infinite num-
ber of k-space samples would be required to completely elim-
inate all truncation effects. In practice, however, it turned
out that there is no perceivable benefit of extrapolating
by a factor of higher than three. The reason is that the
method yields an implicit filtering of the extrapolated data:
assuming that the extrapolation procedure would recover the
unmeasured k-space samples exactly, then a new truncation
effect would arise at the extended border and again lead
to ringing artifacts in image space (though with a higher
oscillation frequency). Because this would increment the TV
value, the method automatically lowers outer frequencies
during the extrapolation procedure to prevent the upcoming
of new ringing artifacts. Hence, the extrapolated values
diverge categorically from the true frequencies which, in this
case, is a rather desirable feature as the prime target is to
reduce visually annoying ringing artifacts rather than to gain
super-resolution.

Third, if a completely artifact-free reconstruction of the
object would be available, then respective frequency samples
could be calculated with a discrete Fourier transformation of
the given image. Interestingly, these samples would diverge
from the experimentally measured frequencies, because
image pixels are discrete and, thus, the Fourier transform
of the image is periodic such that outer frequencies from
neighboring copies (of the true object’s noncompact Fourier
transform) overlap. This is different from the experimental
situation where the object is continuous and the outer fre-
quencies are missing instead of overlapping. Consequently,
an artifact-free discrete reconstruction can only be obtained
if the samples used for the reconstruction specifically diverge
from the measured frequencies. A complete artifact removal,
therefore, requires to alter the measured frequencies instead
of keeping them unchanged. Unfortunately, the information
how the samples have to be adjusted is not available, so that
in practice a data fitting term might be the best solution when
a complete removal of ringing artifacts is needed. However,
this might cause a loss of object detail as described in the
theory section.

5.2. Implementation issues

The modulus function in the TV formula (2) has a fun-
damental role for the success of TV-based image process-
ing. Because subtraction of neighboring pixels—performed
before taking the modulus—can be seen as applying a
difference operator to the estimate, TV minimization yields
a solution with minimum L1-norm in the difference basis.
Due to the specific character of the modulus function, this
solution tends to be sparse in the difference basis: it has few
large jumps and most differences between neighboring pixels
are near zero, which directly translates into a piecewise-
constant image (and explains the edge preserving character
of TV-based denoising). If the modulus would be replaced
by a square function, then the optimizer would try to
find a minimum L2-norm solution with minimal jumps
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zero TV TVdns

Figure 5: Images of the numerical Shepp-Logan phantom reconstructed from noisy data (96 × 96 samples, 288 × 288 reconstruction
matrix) using zero-padding (zero), the proposed extrapolation method (TV), and the proposed method combined with denoising (TVdns).
Arrow = truncation artifact.

zero TV2 TV2dns

Figure 6: Spin-echo images of (top) a phantom (TR/TE = 4000/100 ms, BW 789 Hz/pixel, FA 50◦, 1 mm slice) and (bottom) a human
brain in vivo (TR/TE = 4000/15 ms, BW 401 Hz/pixel, FA 70◦, 1 mm slice) reconstructed from noisy data (96 × 96 samples, 288 × 288
reconstruction matrix) using zero-padding (zero), the proposed extrapolation method (TV2), and the proposed method combined with
denoising (TV2dns). Arrows = truncation artifacts.

between all neighboring pixels. This corresponds to a
globally smooth image, which is usually undesired due to
a loss of sharp edges. While it is rather simple to obtain a
minimum L2-norm solution as its cost function is strictly
convex, finding a minimum L1-norm solution is much
more challenging; and many optimization algorithms fail
if directly applied to the TV problem. One major reason
is that the derivative of the modulus function is just ±1,
which does not help to guess a reasonable step size toward
the function’s minimum. However, it turned out that the
CG-Descent algorithm is capable to handle the problem
as it comprises a powerful line-search procedure, but it is
probably not the optimal method for finding the solution. In
particular, the convergence tends to be somewhat sensitive
to the scaling of the data. In order to ensure convergence,
it was, therefore, necessary to introduce a scaling factor that
limits the modification strength for each iteration and to run

the algorithm in turn for a high number of iterations (e.g.,
3000 iterations as arbitrarily chosen here). Nevertheless, this
issue should not be seen as a drawback of the proposed
extrapolation approach itself, but rather as a technical
aspect of the optimization method utilized in this proof-
of-principle study. Employing a dedicated algorithm for TV
minimization should render a scaling factor unnecessary
and significantly improve the convergence rate. Although
such enterprise promises reconstructions in a fraction of the
current processing time, it is outside the scope of the present
study.

6. CONCLUSION

The present work demonstrates that the simple assump-
tion of a piecewise-constant object can be exploited to
extrapolate measured data in k-space. This allows for a
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significant reduction of ringing artifacts that arise from
data truncation in k-space. In contrast to commonly used
filtering approaches, the method does not degrade the spatial
resolution of the reconstructed image and rather leads to
a mild resolution enhancement due to sharpening of the
point-spread function. If the measured data is seriously
contaminated by noise, an extended approach offers edge-
preserving denoising by slightly altering the measured data
in addition to supplementing synthetic data. Both variants
can be implemented as a pure postprocessing procedure and
are also applicable for partial Fourier acquisitions. Therefore,
no modification of the MRI sequence is required. While
the current implementation suffers from a relatively high
computational load, the use of a dedicated TV optimization
algorithm promises a processing speed suitable for routine
applications.
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