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Abstract

Schizophrenia is a debilitating psychiatric disorder, leading to both physical and social mor-

bidity. Worldwide 1% of the population is struggling with the disease, with 100,000 new

cases annually only in the United States. Despite its importance, the goal of finding effective

treatments for schizophrenia remains a challenging task, and previous work conducted

expensive large-scale phenotypic screens. This work investigates the benefits of Machine

Learning for graphs to optimize drug phenotypic screens and predict compounds that miti-

gate abnormal brain reduction induced by excessive glial phagocytic activity in schizophre-

nia subjects. Given a compound and its concentration as input, we propose a method that

predicts a score associated with three possible compound effects, i.e., reduce, increase, or

not influence phagocytosis. We leverage a high-throughput screening to prove experimen-

tally that our method achieves good generalization capabilities. The screening involves

2218 compounds at five different concentrations. Then, we analyze the usability of our

approach in a practical setting, i.e., prioritizing the selection of compounds in the SWEET-

LEAD library. We provide a list of 64 compounds from the library that have the most potential

clinical utility for glial phagocytosis mitigation. Lastly, we propose a novel approach to com-

putationally validate their utility as possible therapies for schizophrenia.

Author summary

Phagocytosis is a fundamental biological process to protect biological organisms from

exogenous infectious particles as well as to preserve equilibrium and efficiency of the host

by removing its unwanted cells. A dysregulation of the phagocytic activity can lead to

severe consequences for the host. In this study, we focus on a recent theory that relates an

excessive phagocytic activity in brain cells, and a consequent abnormal reduction in brain

volume, to the development of schizophrenia. Our working hypothesis is that pharmaceu-

tical compounds that can reduce excessive of phagocytic activity might prove effective as a

schizophrenia treatment. Rather than attempting to develop ex-novo such a chemical

compound, we rely on a more cost-effective and efficient approach that seeks candidate
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therapies in a set of approved chemical compounds. To achieve this, we train a machine

learning model capable of predicting, with good accuracy, the ability of a molecular com-

pound to increase or decrease phagocytosis in the target brain cells. Our approach lever-

ages learning models capable of directly processing the molecular graph of the compound,

leading to the identification of 64 candidate drugs of potential clinical utility.

This is a PLOS Computational Biology Methods paper.

Introduction

Schizophrenia is a chronic and severe mental disorder that affects how a person thinks, feels,

and behaves. It is expressed as a combination of symptoms, such as recurrent psychosis, social

withdrawal, anhedonia, and cognitive dysfunctions. Worldwide about 1% of the population is

diagnosed with schizophrenia, with 100,000 new cases annually only in the United States [1].

A recent study [2] states that brain volumes, measured on Magnetic Resonance Imaging

(MRI) scans, are abnormal in patients with schizophrenia compared to unaffected individuals,

with a reduction in both grey and white matter. In particular, the decreased density of den-

dritic spines in schizophrenia subjects has been supposed by MacDonald et al. [3] as the result

of an excessive pruning activity against synapses. This action is assumed to be performed by

glial cells, which are non-neuronal cells with multiple functions in the central nervous system

to support and remove neurons. This assumption is supported by the evidence that glial

phagocytic activity may be directly associated with the prevalence of various neurodegenera-

tive diseases due to hyperactivation of phagocytic pathways [4, 5]. In addition, the novel PET

tracer binds to synaptic vesicle glycoprotein 2A (SV2A) and shows diminished uptake in the

frontal and anterior cingulate cortex in individuals with schizophrenia [6].

Towards the goal of discovering novel treatments for schizophrenia, previous work con-

ducted a large-scale phenotypic screen to discover compounds with the ability to alter glial cell

phagocytosis. However, understanding structure activity relationships is a challenge in these

screens. Further, generating accurate models is difficult because it is not known what chemical

information is most associated with predicting chemical function and how to best represent

this information for predictive models. Additionally, further experiments remain the gold

standard for validating model predictions. Yet, it is not always possible to conduct additional

high-throughput screens and we require alternative methods for testing the utility of model

predictions.

The compound property/activity prediction problem is a task faced by pharmaceutical

companies and academia to improve the comprehension of diseases, discover new drugs, or

identify new indications of existing drugs. It is standard practice to scan large libraries of com-

pounds to test their biological activity. However, this operation can be costly and time-con-

suming, and Machine Learning (ML) methods can be helpful to reduce the effort needed to

run experiments. For that reason, in the last decades, several computational approaches have

been proposed to determine compound properties, or as filter to select the most promising

compounds for clinical and biological experiments [7, 8]. A pioneering work is that by Bia-

nucci et al. [9], where the authors employed Cascade Correlation Networks for structures to

predict the boiling point of Alkenes and to predict the affinity towards the Benzodiazepine/
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GABAA receptor by a group of Benzodiazepines. More recently, Banerjee et al. [10] have devel-

oped a ML model to discriminate between sweet and bitter taste of molecules. Specifically, the

model leverages a static fingerprint of the molecule to predict the property through a Random

Forest. Similarly, Lind et al. [11] feed a static fingerprint and oncogene mutation status to a

Random Forest to predict the activity versus inactivity of drugs against cancer cell lines. These

results demonstrate that it is possible to associate chemical information to biological outcomes.

Yet, static fingerprints are not sufficient in all applications.

Explicitly for schizophrenia, Zhao et al. [12] explored five different ML approaches to

repurpose drugs for schizophrenia, depression, and anxiety disorders. In particular, they con-

sidered Deep Neural Networks, Support Vector Machines, Elastic Net regression, Random

Forest, and Gradient Boosted Trees. Models were trained to predict whether a drug is a known

treatment for the disease or not, using drug expression profiles as inputs. Those profiles cap-

ture transcriptomic changes when HL60, PC3, and MCF7 cell lines were treated with a chemi-

cal. Xu et al. [13] proposed PhenoPredict, a ranking algorithm for schizophrenia drug

repurposing. PhenoPredict infers drug treatments from diseases that are phenotypically related

to schizophrenia. These models demonstrate the ability to connect chemical information to

biological information, yet they are limited to predicting molecular changes (such as gene

expression) and are not suited to predicting phagocytic activity from phenotypic screens.

This work studies the use of ML techniques to predict the effects of compounds on glial

phagocytic activity that cause abnormal brain reduction in schizophrenia subjects. This work

has been done in collaboration with SPARK at Stanford University [14, 15], the main node of

a partnership network between university and industry experts in chemistry, biology, and

medicine to advance academic biomedical research discoveries into promising new treatments

for patients. The objective of this work is to propose a ML method apt to optimize drug pheno-

typic screens. Specifically, our method identify compounds that reduce glial phagocytic activity

for the treatment of schizophrenia, which, to the best of our knowledge, has not been proposed

before. Our contribution can be summarized as follows. First, we introduce a ML method

based on Deep Graph Networks to predict if a compound can influence the glial phagocytic

activity in the brain tissue. Then, we evaluate our method on a real high-throughput screening

experiment provided by SPARK. The proposed model achieves a macro Area Under the ROC

curve (AUROC) of 0.68 when predicting if a compound inhibits, intensifies, or does not affect

the phagocytic activity. Afterwards, we perform an analysis to understand the potential bene-

fits of our approach in a practical scenario. Specifically, we leverage our method to prioritize

the selection of a new set of compounds in the SWEETLEAD library, leading to the identifica-

tion of 64 potential candidates. Lastly, we propose a novel approach to understand the rele-

vance of compounds to biological use case. That approach allows us to compare our results

with the more than 287,000 references in the literature. With this analysis we highlight the

effectiveness of the model in identify compounds that are already studied in relation to brain-

related diseases.

Results and discussion

Compound dissimilarity analysis

Before constructing the ML model, we measured the dissimilarity between compounds in the

dataset to better understand how much molecular structures differ from each other in our

data. A library of highly similar compounds would prevent the model from sufficiently dis-

criminating drug effects. For this analysis, we computed the Extended-Connectivity Fingerprint
(ECFP) for each compound, using standard parameters (i.e., radius equal to 3 and length equal

to 1024); then, we measured the dissimilarity for each pair of fingerprints. Note that the ECFP

PLOS COMPUTATIONAL BIOLOGY Deep Graph Networks for schizophrenia drug repurposing

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009531 May 4, 2022 3 / 19

https://doi.org/10.1371/journal.pcbi.1009531


fingerprint is a non-adaptive vectorial representation that encodes the structure of a molecule

(please refer to the Model section for a detailed description). For this analysis we leveraged two

different metrics: Cosine distance, and Jaccard dissimilarity. Given A and B two vectors, the

cosine distance is defined as

CosineðA;BÞ ¼ 1 �
AB

k A k2k B k2

while the Jaccard dissimilarity is

JaccardðA; BÞ ¼ 1 �
jA \ Bj
jA [ Bj

as usual. Let’s consider d 2 Rn�n
the squared upper triangular matrix where the element di,j

represents the dissimilarity between fingerprints i and j, measured with one of the two metrics

defined before. The final dissimilarity score is computed as

dissimilarity ¼
1

m

Xn

i¼0

Xn

j>i

di;j

where m = n2/2.

Table 1 reports the final scores computed with the two metrics. Both scores are close to 1,

highlighting that the compounds have distinct fingerprints, and therefore can be considered

strongly dissimilar.

Afterward, we measured the scaffold diversity in our data with the same strategy proposed

for the compound dissimilarity analysis. It is clear from Table 2 that there is a rich diversity

even between scaffolds. Fig 1 emphasizes such dissimilarity by showing that only a few mole-

cules in our data share the same scaffold. Indeed, there are 863 scaffolds associated with one

molecule in the data, while only 26 are shared among 8 and 232 molecules. Such results high-

light that the scaffold distribution is long-tailed. Lastly, Fig 2 shows through the Principal

Component Analysis (PCA) that there is no evidence of any natural cluster neither in molecule

or scaffold fingerprints. Thus, it is reasonable to assume that the compounds’ uniqueness in

the dataset represents an index of the strong complexity of the task.

Model selection and risk assessment

The best model used in our experiments has been selected by an empirical analysis on the

SPARK’s high-throughput screening results (please refer to the Dataset section for details). We

tested multiple models to understand which best predicted effects from our phenotypic screen.

Each model used different information about the chemical structures in making predictions.

Table 1. Cosine distance and Jaccard dissimilarity between dataset’s compounds.

Name Avg ± Std 25 Perc. 50 Perc. 75 Perc. Max Min

Cosine 0.8189 ± 0.0281 0.7976 0.8162 0.8374 0.9476 0.7464

Jaccard 0.9026 ± 0.0173 0.8897 0.9017 0.9135 0.9877 0.8571

https://doi.org/10.1371/journal.pcbi.1009531.t001

Table 2. Cosine distance and Jaccard dissimilarity between dataset’s compound scaffolds.

Name Avg ± Std 25 Perc. 50 Perc. 75 Perc. Max Min

Cosine 0.8234 ± 0.0750 0.7805 0.8092 0.8635 0.9999 0.7050

Jaccard 0.8990 ± 0.0341 0.8838 0.9033 0.9182 0.9772 0.8243

https://doi.org/10.1371/journal.pcbi.1009531.t002
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These models include: MoRF, MoNN, LinNN, SAGENN, GaNN, ENN, and NeFPNN. The

first two exploit static compound fingerprints by leveraging the ECFP technique. LinNN lever-

ages adapting fingerprints computed by a MLP using only atom information. The latter

employ several deep graph network based fingerprints, which exploit atom and topological

information, with ENN and NeFPNN including also bond features. Please refer to the Model

section for details.

Table 3 reports the predictive performance achieved in the 3-fold cross-validation on the

development set, using the standard stratification schema that divides the compounds main-

tain the distribution of the target variable. All configurations outperform the baseline LinNN,

whose performance is very close to a random guesser. However, ENN and NeFPNN resulted

in a validation score that is substantially inferior with respect to the best performing models.

These results suggest that bond information is not helpful in solving this task. The top four

models have overlapping validation scores, but highly different training scores. This situation

hints at the use of alternative stratification strategies.

Given the neat performance discrepancy between models, we ran a more articulated stratifi-

cation only for the top four configurations, i.e., MoNN, MoRF, SAGENN, GaNN. The

Fig 1. The distribution of the number of shared scaffolds within molecules in the dataset.

https://doi.org/10.1371/journal.pcbi.1009531.g001

Fig 2. (a) The PCA plot of the molecule ECFPs. (b) The PCA plot of the scaffold ECFPs.

https://doi.org/10.1371/journal.pcbi.1009531.g002
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complex strategy separates compounds into groups by maintaining high compound diversity

in each split of the data (details discussed in the Experimental setting section). Table 4 shows

that nearly all models have better (or overlapping) validation performances with respect to the

simple cross-validation strategy discussed above. Training scores are 1 to 5 points smaller than

in Table 3 and the validation scores have overlapping value ranges, but the training scores have

less optimistic values. MoRF and GaNN are the configurations with the highest gain in valida-

tion with the complex stratification setting, while MoNN shows a reduction of approximately

2 points.

After the model selection phase, where we selected the best hyper-parameters configuration

for each model, we performed the risk assessment step by evaluating the models on the hold-

out test set. Also in this case we considered only MoNN, MoRF, GaNN, and SAGENN. Table 5

shows that the configurations selected with the simple cross-validation often obtained a better

performance than those selected with the complex stratification strategy. MoRF is the only

model achieving an higher score in the latter case. With both methods, each model reached a

performance in line with that obtained during model selection.

By analyzing the confusion matrices in Fig 3, we observe that a higher performance corre-

sponds to an increased ability to correctly predict both increase phagocytosis and decrease
phagocytosis classes. This result suggests that DGN-based models are more capable than the

Morgan-based counterpart to recognize significant patterns to tackle this central task in our

study.

Table 3. Macro-AUROC scores achieved with simple cross-validation.

Model Train Valid

MoNN 0.9018±0.0192 0.6759±0.0020

SAGENN 0.8999±0.0134 0.6688±0.0118

MoRF 0.9361±0.0031 0.6674±0.0082

GaNN 0.8418±0.0052 0.6548±0.0148

NeFPNN 0.7102±0.0058 0.6334±0.0086

ENN 0.6840±0.0121 0.6021±0.0093

LinNN 0.5007±0.0008 0.5016±0.0011

https://doi.org/10.1371/journal.pcbi.1009531.t003

Table 4. Macro-AUROC scores achieved with complex cross-validation.

Model Train Valid

MoRF 0.9062±0.0051 0.6764±0.0046

GaNN 0.8301±0.0068 0.6680±0.0039

SAGENN 0.8751±0.0111 0.6547±0.0031

MoNN 0.8580±0.0182 0.6520±0.0038

https://doi.org/10.1371/journal.pcbi.1009531.t004

Table 5. Comparison of macro-AUROC scores computed during risk assessment.

Model Simple Complex

Train Test Train Test

GaNN 0.8397 0.6877 0.8397 0.6632

SAGENN 0.8466 0.6767 0.8466 0.6679

MoNN 0.8991 0.6705 0.8991 0.6386

MoRF 0.8786 0.6676 0.8833 0.6701

https://doi.org/10.1371/journal.pcbi.1009531.t005
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Upon investigation of the confusion matrices, models have relatively high prediction accu-

racy for predicting drugs with no effect on phagocytosis (center square on all matrices). All

models performed well in predicting drugs that would decrease phagocytosis (bottom right of

each matrix) with the GaNN having the highest accuracy for this compound effect. All models

had relatively low prediction accuracy for compounds that increase phagocytosis (upper left

square of each matrix) and erred on the side of predicting no effect for these drugs (upper mid-

dle square of each matrix). For our dataset, we were prioritizing compounds that decreased

phagocytosis, and so relatively high prediction for these compounds relative to the increase

phagocytosis group was suitable. Ultimately, we selected the GaNN as the best model for both

its performance on the hold-out test set and its capacity to distinguish between the three

classes.

Problem relaxation

To prove the complexity of the task, we relaxed the problem to predict whether a compound

has a positive or negative impact on phagocytosis. We considered no change and increase
phagocytosis classes as the negative label. Each model takes as input a compound and its con-

centration to predict the impact on phagocytosis. Thus, we shifted from multi-label to a binary

classification problem.

We followed the same experimental procedure as in the Model selection and risk assess-

ment section. We first performed a model selection phase by running a 3-fold cross-validation

on the development set using the standard stratification schema. Given the strong discrepancy

Fig 3. Normalized confusion matrices of GaNN, SAGENN, MoNN, and MoRF on test set.

https://doi.org/10.1371/journal.pcbi.1009531.g003
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between validation and training scores obtained in this phase, we selected the top four model

configurations and we run the more articulated stratification. Table 6 reports the results of

both experiments. As it shows, relaxing the problem to binary classification helps improve the

final performances. Indeed, the validation scores with the standard stratification are more than

10 points higher on average if compared to multi-label classification. When the more sophisti-

cated stratification schema is employed, the difference increases to over 11 points. Particularly

interesting is the improvement of LinNN, which performance is on par with NeFPNN. This

result remarks the fact that bond information is not strictly helpful in solving this task.

After the model selection, we proceeded with the risk assessment phase only for the most

performing configurations. Table 7 shows the results obtained during this step. The scores

exhibit similar behavior to the validation scores with respect to the original problem. However,

they are below the confidence interval discovered in the model selection phase. We believe that

this is the consequence of some labeling noise introduced during class aggregation. Indeed, the

class no change is a borderline class that may contain noise itself. For such reasons, we believe

that the three-class splitting leads to better performances that are less prone to errors.

These findings show that by relaxing the problem it is possible to achieve higher perfor-

mances. Therefore, it is reasonable to assume these results as proof of the complexity of the

original problem. Indeed, in this case, the computational task of structure-function prediction

is really hard because phagocytosis is a multi-protein biological process. This suggests that

multiple molecules could bind proteins in this pathway and that there might not be one ideal

structure for influencing this process. Moreover, this situation, followed by the high dissimilar-

ity between molecule structures, indicates that our method learns good compound representa-

tions and is not overfitting molecular sub-structures for making predictions.

SWEETLEAD library repurposing

The main goal of our analysis is understanding the usability of our approach in a practical set-

ting, i.e., prioritizing the selection of compounds to be tested in a biomedical experiment. We

Table 6. Comparison of macro-AUROC scores achieved with simple and complex cross-validation when only 2 classes are considered.

Model Simple Complex

Train Valid Train Valid

SAGENN 0.9313±0.0015 0.7898±0.0106 0.9090±0.0004 0.7825±0.0044

MoNN 0.9364±0.0260 0.7791±0.0150 0.9405±0.0013 0.7895±0.0013

GaNN 0.9094±0.0076 0.7770±0.0034 0.8995±0.0137 0.7776±0.0104

MoRF 0.9522±0.0380 0.7702±0.0170 0.9588±0.0016 0.7731±0.0049

ENN 0.9065±0.0283 0.7662±0.0035 − −
LinNN 0.9212±0.0088 0.7251±0.0085 − −
NeFPNN 0.8350±0.0822 0.7205±0.0191 − −

https://doi.org/10.1371/journal.pcbi.1009531.t006

Table 7. Comparison of macro-AUROC scores computed during risk assessment when only 2 classes are

considered.

Model Simple Complex

Train Test Train Test

SAGENN 0.8687 0.7694 0.8684 0.7533

MoNN 0.9348 0.7676 0.9345 0.7634

MoRF 0.9262 0.7445 0.9372 0.7500

GaNN 0.8457 0.7368 0.8852 0.7376

https://doi.org/10.1371/journal.pcbi.1009531.t007
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focus on the GaNN model which has emerged as the best configuration according to our

model selection and risk assessment analysis. We leveraged the model to predict the impact, at

different dosages, of a new set of compounds on astrocyte-mediated synaptic pruning in

schizophrenia. We considered the compounds in the SWEETLEAD library [16], an in silico

database of approved drugs, regulated chemicals, and herbals designed for drug discovery. The

library contains 4314 compounds with 1391 of them marked as FDA approved.

We simulated with the GaNN model the impact of each compound in SWEETLEAD on the

phagocytic activity at five different concentrations, i.e., 1.39, 2.78, 5.56, 11.11, 22.22 μM, to par-

allel the dose ranges used in the initial phenotypic screen and to mirror those typically used in

literature.

Table 8 shows how many compounds in SWEETLEAD are predicted to belong to each of

the three phagocytosis classes by our GaNN model. The GaNN generates different outcomes

for different doses only in 29.49% of the compounds, so the model can be considered highly

confident on the other predictions.

We analyzed predicted compound effects by Anatomical Therapeutic Chemical (ATC)

codes to understand the therapeutic use classification of these drugs. Additionally, ATC codes

related to the neurological system would provide further evidence that a predicted drug could

modify phagocytosis in the brain. ATC codes are part of a classification system, controlled by

World Health Organization, that classifies drugs according to the organ or system on which

they act and their therapeutic, pharmacological and chemical properties. ATC codes are hier-

archically organized in five levels, where the first one is the more general and refers to the ana-

tomical main group, while the latter are the more specific and indicates the chemical

substance. Note that a drug can be associated with more than one ATC code.

We focused on FDA-approved compounds that have a match in DrugBank [17]. Fig 4

shows the first level of ATC codes with respect to each class. The decrease phagocytosis class is

mostly characterized by the category N (nervous systems), confirming that the model can

identify compounds that are already used to treat nervous system diseases. Intriguinly, the

next highest category for decrease phagocitosys class is C (cardiovascular system). There is

some literature evidence supporting the repurposing of cardiovascular system drugs for neuro-

logical conditions. Specifically, beta-blockers can reduce severity of migraines, and statins can

reduce contrast-induced neuropathy [18]. This preliminary evidence suggests that the model

may be predicting viable applications of these drugs to affect phagocytosis. The Cardiovascular

system class drugs also contained the highest number of predicted increase phagocytosis drugs

suggesting that we cannot predict new drug effects from ATC codes alone, and that even

within-class drugs can have distinct effects.

We selected 64 compounds that have most potential clinical utility. The selection was

among compounds marked as FDA approved and that have been predicted to decrease phago-

cytosis with high confidence. The complete list is reported in Table 9.

Table 8. The number of predicted compounds in SWEETLEAD library for each class.

FDA approved Complete library

no change 585 1647

decrease phagocytosis 309 964

increase phagocytosis 143 431

mixed� 354 1272

� model’s outcome change with different dosage.

https://doi.org/10.1371/journal.pcbi.1009531.t008
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We sought to computationally validate the utility of the selected compounds as possible

therapies for schizophrenia. We exploited SciFinder [19], which is a database for chemical lit-

erature, to extract the 15 topics with highest frequencies per compound. We hypothesized that

biological terms co-mentioned with drug names in the literature could represent a reasonable

measure of the goodness of candidates. We recall that a topic is a term used by the Chemical

Abstracts database to identify the general topic of a reference. We conducted the analysis over

more than 287,000 references. Chemical compounds are associated with an average of 914

terms, and frequency of chemical-term co-mentions are in the tens to hundreds of mentions.

We retain the top 15 topics with highest frequencies for further analysis. For our 64-chemicals,

the frequencies for the 15 topics ranged from 6992 to 1. This level of co-mention was sufficient

for us to analyze whether these compounds had utility for our repurposing goal.

We clustered the compounds into three main groups based on topics:

• Brain (B), which contains all compounds with at least a brain-related topic in the top-15.

We considered as brain-related topics the terms: Antidepressants, Antipsychotics, Bipolar

disorder, Brain, Cognitive disorders, Depression, Epilepsy, Mental and behavioral disorders,

Mood disorder, Multiple sclerosis, Obsessive-compulsive disorder, Parkinson disease, Psy-

chosis, Schizophrenia;

• Antibiotics (A), which contains all compounds with the topic Antibiotic in the top-15;

• Miscellaneous (M), which contains all compounds with no brain or antibiotic related topics

in the top-15.

We selected brain-related topics because this could suggest applications to neurological dis-

eases. We also selected antibiotics because these compounds are generally well-tolerated and

have known safety profiles. Moreover, some literature evidence suggest that antibiotics can

Fig 4. First level ATC codes matched with each predicted class. The multiple vertical bars chart the first level ATC

codes with respect to the predicted class for each analysed compound. The letters on the x-axis refer to the ATC codes;

A = alimentary tract and metabolism, B = blood and blood forming organs, C = cardiovascular system,

D = dermatologicals, G = genito-urinary system and sex hormones, H = systemic hormonal preparations, excluding

sex hormones and insulins, J = antiinfectives for systemic use, L = antineoplastic and immunomodulating agents,

M = musculo-skeletal system, N = nervous system, P = antiparasitic products, insecticides and repellents,

R = respiratory system, S = sensory organs, and V = various. We used the label mixed� to indicate those cases where the

model prediction changes with different doses. We recall also that each compound may be associated with multiple

ATC codes.

https://doi.org/10.1371/journal.pcbi.1009531.g004
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directly affect schizophrenia [20] and there is mounting evidence that the gut microbiome

affects brain health [21, 22]. Lastly, we kept a miscellaneous category to capture drugs without

a clear alignment to either of these hypotheses.

We report the associations between compounds and clusters in Table 9. It appears that

compounds with brain-related topics have a higher ranked probability predicted by the GaNN

model with respect to others. Indeed, 20 of the first 30 compounds belong to the B cluster.

These additional results reinforce the idea that the model is effective in identifying compounds

that are already studied in relation to brain-related diseases. Three of the top five compounds

ranked by the GaNN model are antibiotics suggesting that repurposing for schizophrenia

could leverage the human gut microbiome-brain connection.

Lastly, we found evidence of the utility of some of our 64 candidates (i.e., Loxapine, Dextro-

methorphan, Thioridazine, Trifluoperazine, and Cetirizine) in the work of So et al. [23]. In

their analysis, they leveraged GWAS data, and gene imputation to identify drug repurposing

Table 9. The list of selected compounds ranked by model confidence.

DrugBank ID Name Cluster DrugBank ID Name Cluster

1 DB00822 Disulfiram B 33 DB00485 Dicloxacillin A

2 DB01163 Amdinocillin A 34 DB01061 Azlocillin A

3 DB00739 Hetacillin A 35 DB00377 Palonosetron M

4 DB01000 Cyclacillin A 36 DB00283 Clemastine A

5 DB00937 Diethylpropion M 37 DB00481 Raloxifene M

6 DB00363 Clozapine B 38 DB00713 Oxacillin A

7 DB00408 Loxapine B 39 DB00883 Isosorbide dinitrate M

8 DB06209 Prasugrel M 40 DB00319 Piperacillin A

9 DB00334 Olanzapine B 41 DB01078 Deslanoside B

10 DB00462 Methscopolamine bromide B 42 DB00208 Ticlopidine M

11 DB05271 Rotigotine B 43 DB00572 Atropine B

12 DB00354 Buclizine B 44 DB01147 Cloxacillin A

13 DB01224 Quetiapine B 45 DB01104 Sertraline B

14 DB13996 Magnesium acetate B 46 DB01221 Ketamine B

15 DB00514 Dextromethorphan M 47 DB00219 Oxyphenonium B

16 DB00857 Terbinafine A 48 DB06787 Hexocyclium M

17 DB00245 Benzatropine B 49 DB00938 Salmeterol M

18 DB06718 Stanozolol M 50 DB00539 Toremifene M

19 DB00882 Clomifene M 51 DB00831 Trifluoperazine B

20 DB00758 Clopidogrel M 52 DB01160 Dinoprost tromethamine M

21 DB00561 Doxapram M 53 DB00341 Cetirizine M

22 DB00496 Darifenacin B 54 DB00390 Digoxin M

23 DB06230 Nalmefene M 55 DB00419 Miglustat M

24 DB00392 Profenamine B 56 DB01328 Cefonicid A

25 DB00925 Phenoxybenzamine B 57 DB00474 Methohexital B

26 DB00679 Thioridazine B 58 DB09346 Metrizoic acid B

27 DB00920 Ketotifen A 59 DB09363 Rauwolfia serpentina root M

28 DB01186 Pergolide B 60 DB06335 Saxagliptin M

29 DB00543 Amoxapine B 61 DB00355 Aztreonam A

30 DB01238 Aripiprazole B 62 DB00088 Alglucerase M

31 DB00865 Benzphetamine B 63 DB01180 Rescinnamine B

32 DB04844 Tetrabenazine B 64 DB06282 Levocetirizine M

https://doi.org/10.1371/journal.pcbi.1009531.t009
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candidates for multiple psychiatric diseases. Their work presents a complimentary view that

our predicted candidates influence biology relevant to psychiatric disease. We observe that a

high recall score is not possible in this case because the authors report only the top-15

compounds.

Materials and methods

Dataset

We performed our experiments on top of SPARK’s high-throughput screening results, which

aim was to screen for compounds that inhibit or activate MEGF10 [24] to correct aberrant

astrocyte-mediated synaptic pruning in schizophrenia. With that purpose, the screen was a

phagocytosis assay using astrocytes isolated from fetal human brain samples and synaptosomes

prepared from mouse brain samples. They measured phagocytosis with a pH-sensitive fluores-

cent dye conjugated to the synaptosomes that is only activated when engulfed and localized to

the low pH found in intracellular lysosomes. The screen was conducted in plates containing

both positive and negative controls for data normalization (article in preparation).

The screening assessed 2218 different compounds at different concentrations, i.e., 1.39,

2.78, 5.56, 11.11, 22.22 μM. All the analyzed compounds derive from the Library of Pharmaco-
logically Active Compounds (LOPAC) [25] and NIH Clinical Collection (NIHCC) [26], so they

include inhibitors, receptor ligands, pharma-developed tools, and approved drugs. Due to the

overlap of the two libraries, we removed duplicate results, leading to 10914 unique compound-

dose combinations. For this analysis, we used median-normalized fluorescent signal as a proxy

for relative phagocytosis.

We classified screening results by assigning a class to each instance. In particular, there are

three class types:

• increase phagocytosis—if the combination of compound and dose intensifies the phagocytic

activity;

• decrease phagocytosis—if the combination of compound and dose inhibits the phagocytic

activity;

• no change—if the combination of compound and dose does not affect the phagocytic activity.

We assigned the classes by applying a threshold on the number of cells with phagocytosis

signal. More specifically,

increase phagocytosis if b � 130% of the controls

no change if 70% < b < 130% of the controls

decrease phagocytosis if b � 70% of the controls

8
>>><

>>>:

with β as the number of cells with phagocytosis signal with respect to the median of the plate.

Each compound is initially represented through its Simplified Molecular Input Line Entry
System (SMILE) string. The SMILE string is a character string that captures the compounds’

elements and the bonds between them. For each compound we also include additional infor-

mation regarding atoms and bonds, as shown in Table 10.

Finally, given D ¼ f1:39; 2:78; 5:56; 11:11; 22:22g the set of tested concentrations and

Y ¼ fincrease phagocytosis;no change; decrease phagocytosisg the set of target values, the

final dataset can be described as D ¼ fci; di; yig
10914

i¼1
, where ci is the i-th tested instance (note
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that a single compound is tested under different concentrations), di 2 D is the tested concen-

tration for the instance, and yi 2 Y is the corresponding outcome.

For the purposes of our work, we represent each compound (originally expressed as a

SMILE string) as a molecular graph, which is a consolidated representation of atoms and the

bonds between them. We consider a molecular graph as an undirected graph defined as the

tuple g ¼ ðV; E;X;EÞ. The set V contains interacting entities, which in this case corresponds

to atoms, and E is the set that contains the links among those entities, i.e., chemical bonds. On

the other hand, X 2 RjVj�jFj is the atom features matrix, where |F| is the number of available

features for an atom. Analogously, E 2 RjEj�jEj is the bond features matrix, where |E| is the

number of available chemical bond features. We refer to xi and eij as the feature vector of atom

i and feature vector of bond connecting atoms i and j, respectively. Also, we denote the neigh-

borhood of a node i 2 V as the set, N ðiÞ ¼ fj 2 V j fi; jg 2 Eg, that contains every nodes with

a link with node i.

Model

We tackle the task of predicting glial phagocytic activity in brain tissue by an approach based

on deep learning for graphs [27], given its power in encoding graph-based structures, e.g.,

molecules. Our model comprises the following two components:

• a compound embedding module fcomp;

• an output module fout.

From a high level point of view, given D the set of tested concentrations, a compound, c, is

processed as follows. First the compound is processed by the compound embedding module to

compute a representation vector from its molecular graph,

hc ¼ fcompðcÞ

Table 10. The list of features regarding atoms and bonds.

Name Type Number of Values

Valence one-hot 7

Number of Hs one-hot 6

Hybridization one-hot 5

Symbol one-hot 11

Degree one-hot 7

Aromatic boolean 2

(a) Atom features

Name Type

Aromatic boolean

Single boolean

Double boolean

Triple boolean

IsInRing boolean

Conjugated boolean

(b) Bond features

https://doi.org/10.1371/journal.pcbi.1009531.t010
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that later is concatenated with the dose, d 2 D, and passed to the output module. Hence, the

final prediction is computed as

o ¼ foutðhc; dÞ:

This process is summarized visually in Fig 5.

We considered three different compound embedding modules and two output modules

and we empirically confronted their effectiveness. We implemented the output module either

by a Multi-Layer Perceptron (MLP) or by a Random Forest (RF) [28]. For the compound

embedding module, we first leveraged the Extended-Connectivity Fingerprint (ECFP) [29]

based on the Morgan algorithm [30]. ECFPs are static molecular fingerprints that exploit atom

neighborhoods to represent molecules through a non-adaptive approach that does not take

into consideration the predictive task at hand. A visual representation of this process is shown

in Fig 6.

Differently from the ECFP method, which is static, the other two approaches considered for

the compound embedding module are adaptive and generate compound embeddings that are

specialized for the specific predictive problem. To this end, we consider deep learning solu-

tions that can process the compound represented as a molecular graph.

Fig 5. A high level overview of the proposed model. Given the molecular graph of a compound c and a dose d 2 D,

the model computes a vectorial representation hc using the compound embedding module fcomp and later computes

the final result using the output module fout by leveraging the concatenation of hc and d.

https://doi.org/10.1371/journal.pcbi.1009531.g005

Fig 6. Fluorine’s influence in a circular fingerprint computation (radius equal to 3) of 1-Chloro-4-fluorobenzene.

https://doi.org/10.1371/journal.pcbi.1009531.g006
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The first adaptive approach that we consider is a linear embedding model, implemented

through a MLP that computes a vectorial representation for each atom in the compound,

which then are aggregated by an element-wise sum or mean without taking into consideration

any spatial information. The second approach leverages Deep Graph Networks (DGNs) [27],

which learn a mapping function that compresses the complex relational information captured

by a graph into an information-rich feature vector that reflects both the topological and the

label information in the original graph. At a high level, given a molecular graph as input, a

DGN computes a representation for each node through transformations that combine the pre-

vious representation of the node with its neighbor representations. Those transformations are

often referred to as Graph Convolutional Layers (GCLs). Ultimately, node representations are

aggregated to obtain a single embedding for the whole graph. An overview of this method is

shown in Fig 7.

We investigated different DGN implementations. More specifically, the DGNs that we con-

sider are based on GraphSAGE [31], Graph Attention Network (GAT) [32], Edge-Conditioned

Convolution Network (ECC) [33, 34], and Neural Graph Fingerprint [35]. An overview of

such methods is reported in S1 Appendix.

For our purposes, we evaluated the performance of seven configurations of compound

embedding module and output module:

• Linear Embedding and Neural Network (LinNN)—used as a baseline for this task;

• ECFP fingerprint based on Morgan algorithm and Random Forest (MoRF)—commonly

used in literature for biomedical-based problems [10, 11, 36, 37];

• ECFP fingerprint based on Morgan algorithm and Neural Network (MoNN);

• GraphSAGE and Neural Network (SAGENN);

• GAT Network and Neural Network (GaNN);

• ECC Network and Neural Network (ENN);

• Neural Graph Fingerprint and Neural Network (NeFPNN).

Experimental setting

We split the data into a development set (80%) for model selection and a test set (20%) for risk

assessment. We consider the obtained test set as a hold-out, in other words, as a set of examples

only used to estimate the generalization performance of the model, and never used during the

Fig 7. An example of DGN applied on 1-Chloro-4-fluorobenzene molecular graph. Given the molecular graph of a

compound, each GCL computes the representation of each node in the graph as a transformation of their neighbor

representations. In the end, node representations are aggregated to obtain a vectorial representation that reflect the

original molecular graph.

https://doi.org/10.1371/journal.pcbi.1009531.g007
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training phase. Internally to the development set, we used a 3-fold cross-validation for model

selection. We generated each split in a stratified fashion. In other words, each split maintains

the distribution with respect to a target variable. Specifically, we implemented stratification

according to two strategies. The former splits the data by maintaining the distribution with

respect to the target y; while the latter with respect to the target y, the cardinality of atoms in

the compounds, and the concentrations. The rationale behind the latter strategy is to generate

more homogeneous data splits, avoiding unbalanced distributions of molecule size and con-

centrations in the training and validation splits. We will refer to the first strategy as simple

cross-validation, while the second as complex cross-validation.

The three classes are not balanced, with the no change category representing roughly 81% of

samples. To preserve the minority classes we undersampled the majority class. At each epoch

we randomly sampled from the no change instances to generate a subset with the same size of

other classes. The rationale behind this approach is to keep the classes always balanced, and

also to leverage all the data available. Indeed different sub-samples are extracted at each epoch.

We recall that Random Forests are more resistant to data imbalance, therefore, we did not

implement undersampling for RF-based models.

Our experiments can be summarized as follows. At first, we conduct the model selection

and the risk assessment phases. The rational behind these steps is, first, to select the best

hyper-parameters for the models among a set of candidates, and then to evaluate their general-

ization capability on a different set of data. Lastly, we use the best model, selected from the pre-

vious stage, in a real world drug repurposing scenario with the aim of understanding the

potential in prioritizing the selection of compounds to be tested in a specific biomedical

experiment.

We performed hyper-parameter tuning via grid search, optimizing the AUROC with

macro-average, which is a good estimate of the classification performances since the dataset is

balanced. We recall that the macro-AUROC is defined as

macro � AUROC ¼
1

c

Xc

i¼1

AUROCi

where c is the number of classes (in this work c = 3) and AUROCi is the metric computed for

class i. The grids used in our experiments are reported in S2 Appendix. We trained models

with fout = MLP to minimize the Cross-Entropy loss accumulated across all the instances in the

dataset.

The experiments were carried on a Dell server with 4 Nvidia GPUs Tesla P100. We release

openly the code implementing our methodology and reproducing our empirical analysis at:

https://github.com/gravins/DGNs-for-schizophrenia.

Conclusion

This work investigates the benefits of ML for graphs to predict compounds that mitigate

abnormal brain reduction induced by excessive glial phagocytic activity in people affected by

schizophrenia. In this context, we designed a model that is able to recognize whether a com-

pound can reduce, increase, or not influence phagocytosis. More precisely, the model takes as

input a compound and a concentration to predict a score associated with the three possible

compound effects. This allows us to anticipate compounds with potentially desirable clinical

effects for patients with schizophrenia. Internally, the model leverages a static fingerprint (i.e.,

Morgan-based ECFP) or an adapting fingerprint (i.e., DGNs) to represent compounds. We

have shown experimentally that our approach is effective and has good generalization capabili-

ties. Indeed, we have found that the model can generalize its predictions when employed on an
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unseen library, identifying as potential beneficial compounds those already used to treat brain-

related diseases. Lastly, we have presented a list of compounds that we believe have the most

potential clinical utility against glial-mediated brain reduction in schizophrenia patients.

We tested multiple chemical representations and discovered that an adapting approach was

sufficient for describing phenotypic screen effects. A static fingerprint was insufficient, yet

including full bond information decreased model performance. This suggests that, in some

cases, structure-function information requires knowledge of the atoms and their arrange-

ments, but not the full detail of their connections. It may be advantageous for other rapid drug

development programs to leverage this information to more efficiently predict compounds

with desired effects. In this scenario, we were eager to test our model on new drug information

and validate the utility of the model, however experimental validation was infeasible for this

work. Instead, we tested a novel validation approach by using SciFinder to understand the rele-

vance of compounds to biological use cases. Indeed, SciFinder recovered drug-phenotype asso-

ciations that mapped to neurological terms, suggesting that emerging literature evidence

supported the potential utility of model-predicted compounds. We anticipate that this can be

used to further prioritize predicted compounds and minimize the needs for very large, follow-

up validation screens and that other structure-functional studies using machine learning will

benefit from our in silico validation approach.

Supporting information

S1 Appendix. Overview of the employed dynamic compound embedding modules based

on DGNs.

(PDF)

S2 Appendix. Hyper-parameters tables.

(PDF)
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