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Abstract: Rapid economic and societal development increases resource consumption. Understanding
how to balance the discrepancy between economic and social water use and ecological water use is
an urgent problem to be solved, especially in arid areas. The Heihe River is the second-largest inland
river in China, and this problem is notable. To ensure the downstream ecological water use, the
“Water Distribution Plan for the Mainstream of the Heihe River” (97 Water Diversion Scheme) controls
the discharge of Yingluo Gorge and Zhengyi Gorge, while the “Opinions of applying the strictest
water resources control system” (Three Red Lines) restricts the water use. With the development of
the economy and agriculture in the midstream, Zhengyi Gorge’s discharge cannot reach the Heihe
River’s ecological water downstream. This paper is under the constraints of the “97 Water Diversion
Scheme” of Heihe River and the “Three Red Lines” of the total water use control index for Zhangye
County. We constructed a water resource allocation model for the midstream of Heihe River to
reasonably allocate water resources in the Heihe River’s midstream and downstream. This model
is divided into three parts: Establish the mathematical equation, simulate the water consumption
under the different inflow conditions, and ensure each water user’s demand. The result showed that
if we fail to confine total water consumption in the midstream, through the reasonable allocation of
water resources, the real water use and water consumption of the middle Heihe River will be greater
than the “97 Water Diversion Scheme” and the “Three Red Lines.” If we confine water consumption,
they will be within the “97 Water Diversion Scheme” and the “Three Red Lines,” at the same time,
they can reach the downstream of the Heihe River’s ecological water. Besides, under the premise
of satisfying the economic water and ecological water downstream of the Heihe River, returning
farmland to wasteland and strengthening water-saving measures will improve water efficiency and
be more conducive to allocating water resources.

Keywords: The “97 Water Diversion Scheme”; The “Three Red Lines”; ecological water; water
resources allocation model; Heihe River

1. Introduction

Water resources are essential to all life, primary natural resources, strategic economic
resources, and ecological control factors [1–3]. Moreover, many countries face inevitable
conflicts among the financial and the environment caused by limited water resources,
especially in arid and semi-arid areas [4–10]. Arid regions (including semi-arid areas)
account for one-third of the global land area, are spread over more than 50 countries
and regions, and account for 15% of the world’s population. Thus, water competition
in arid and semi-arid basins is becoming more intense [11,12], for example, in the Aral
Sea Basin [13], the Tarim River Basin [14], the Colorado River basin [10], and the Heihe
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River Basin [15]. Attempts to address natural resource development without considering
many other development issues within watersheds will often fail [16–18]. Besides, the
waste of water resources has exacerbated the water shortage crisis [19,20]. About 90% of
freshwater resources in northwest China are used for agricultural irrigation, characterized
by low precipitation and high evaporation. In contrast, the average utilization coefficient
of irrigation water is about 0.5 [21–24]. This utilization of agricultural water resources is
insufficient, and the water supply cannot fully meet the demand. Thus the gap between
water supply and demand has become a significant impediment to economic development,
especially for areas facing severe water shortages [6,21,25]. Water allocation is one of the
most effective water management tools for dealing with this conflict. Hence, the water
resources’ optimal allocation problem has been of interest to water resource managers
and researchers [3,22,25–35]. By building a model, stakeholders can express their points
of view, learn about other perspectives, and examine factual knowledge and subjective
perceptions [36].

The Heihe River is the second-largest inland river in China. It is an essential water
source in Northwest China; it is also the study area’s primary water source. The runoff
from Yingluo Gorge is the main water source of the midstream of the Heihe River. The
discharge from Zhengyi Gorge determines the ecological water demand downstream
of the Heihe River. If the discharge cannot reach the Heihe River’s ecological water
consumption downstream, it will affect the Heihe River’s ecological environment. With
the rapid development of the economy and agriculture in the midstream, water resources
demand has increased significantly [37–39]. This increase in water consumption in the
middle reaches impacted the downstream’s ecology [15,19,40]. In 1992, to solve the water
allocation problem between the financial and the environment, and the water conflict
between the midstream and downstream [41,42], the former State Planning Commission
approved a water distribution scheme for the Heihe River mainstream under the average
condition of many years, that is, the “92 Water Distribution Scheme”. However, as a result
of the “92 Water Distribution Scheme”, the discharge volume of Zhengyi Gorge cannot
meet the ecological water demand downstream, which leads to the deterioration of the
ecological environment downstream of Heihe River. In 1997, with the State Council’s
approval, the Ministry of Water Resources approved the “Heihe River Main Stream Water
Allocation Plan”—the “97 Water Diversion Scheme.” Since implementing the “Heihe River
Main Stream Water Allocation Plan,” Yingluo Gorge and Zhengyi Gorge’s discharge has
been strictly controlled, thus alleviating the downstream’s ecological water shortage.

To effectively curb the excessive development and utilization of water resources,
China’s government established the “Three Red Lines” system that includes total water use
control, water efficiency, and water functional areas that limit pollution capacity [43–45].
The General Office of the People’s Government of Gansu Province issues the “Notice on
the Issuance of Water Resource Management and Control Targets of Gansu Province’s
prefecture-level Administrative Regions in 2020 and 2030”, which specifies targets for water
resource management and control in Zhangye. According to the Heihe River water diver-
sion plan, the county (district) water resources allocation plan, and actual water use, the
Zhangye Municipal People’s government promulgated the total water use index Zhangye
county-level administrative region in 2015, 2020, and 2030. By controlling the whole district
and the county’s water consumption, we can achieve the water’s overall control.

With the continued development of the economy and increasing demand for water
resources, problems in controlling total water use and the “97 Water Diversion Scheme”
gradually appeared [44,46]. In recent years, improvements in the water-saving level in
the midstream and the irrigated area increase. When the total water use changes only
slightly, water consumption will increase to a certain extent, and this may result in real
water use not exceeding the “Three Red Lines”, but still exceeding the level set by the “97
Water Diversion Scheme”, caused ecological water reduction in the downstream of Heihe
River [37,47–49]. To address this discrepancy, many solutions have been proposed; Ge built
a model to allocating water based on water requirements and equity to help multi-level



Int. J. Environ. Res. Public Health 2021, 18, 1887 3 of 19

decision makers manage water resources in a Decision Support System (DSS) while fully
accounting for the effects of human activities [50]; Zhang simulated the change in economic
losses under the economic priority (EP) scenario via computable general equilibrium
(CGE) modeling and that of the ecological area under the eco-environmental sustainability
(ES) scenario by ecological water demand modeling [51]; Li studied the optimal MCRC
modes for irrigation systems, consisting of both agricultural irrigation and eco-logical
irrigation, based on the optimal ways, an inexact multi-stage programming stochastic
programming (IMSP) model under uncertainty will be developed for irrigation water
allocation considering ecological environment protection [52]; Pan coupled the canal water
distribution optimization model and soil moisture simulation model to build a two-level
canal water distribution optimization model based on canal water transfer simulation and
soil water balance simulation [53]; Wang constructed a multi-objective optimization model
of water resources under certain conditions and based on Me measure constraints [54].
However, they don’t consider the “97 Water Diversion Scheme” and “Three Red Lines”
simultaneously, allocating water consumption in the midstream to meet the downstream
ecological water consumption.

In this paper, we constructed a water resource allocation model for Heihe River based
on the “97 Water Diversion Scheme”, simulated water consumption in the middle reaches of
Heihe River under different inflow scenarios, and proposed the water resources regulation
strategy to meet the needs of ecological water in the lower reaches of Heihe River.

2. Materials and Methods
2.1. Study area

The Heihe River is the second-largest inland water body in Northwest China, with the
midstream located at 38.6◦ N–39.8◦ N, 99.5◦ E–100.8◦ E (Figure 1). Heihe is an important
irrigated agricultural area. The average altitude of the Heihe River’s midstream is 1451 m,
the annual average temperature is 6–8 ◦C, and the yearly precipitation is about 150 mm.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 4 of 25 

 

 

 
Figure 1. Study area. 

 
Figure 2. Interannual variation of runoff. 

The Ministry of Water Resources approved the “Water Distribution Plan for the 
Mainstream of the Heihe River.” This plan allocates the water volume of the Heihe River 
in the wet and dry years (Figure 3). When the Yingluo Gorge has a 10% guaranteed rate 
of incoming water of 1.90 billion m³, the Zhengyi Gorge discharges 1.32 billion m³. When 
the Yingluo Gorge’s 25% guaranteed rate of incoming water is 1.71 billion m³, the water 
discharged from Zhengyi Gorge is 1.09 billion m³. When Yingluo Gorge’s 75% guaranteed 
rate of incoming water is 1.42 billion m³, the discharged water will be 760 million m³. 

Figure 1. Study area.

The Heihe River originates from the northern foothills of the Qilian Mountains. The
upstream above Yingluo Gorge, the midstream between Yingluo Gorge and Zhengyi Gorge,
and the downstream below Zhengyi Gorge. The “97 Water Diversion Scheme” strictly
stipulates the inflow of water from Yingluo Gorge and the Zhengyi Gorge’s discharge
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under different inflow conditions. (Figure 2) “Three Red Lines” set strict rules on water
consumption in significant districts and counties along the midstream of the Heihe River,
limiting and complementing each other.
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Figure 2. Interannual variation of runoff.

The midstream of the Heihe River includes three districts and counties (Zhangye City,
Linze County, Gaotai County) and 13 irrigated areas (Shangsan, Daman, Yingke, Xijun,
Shahe, Liyuanhe, Yanuan, Banqiao, Liaoquan, Pingchuan, Youlian, Liuba, Luocheng). Li
Yuan River is a tributary of the Heihe River, the Liyuan River irrigated area irrigated by
the Liyuan River, and the other 12 are irrigated by the Heihe River mainstream. Due to the
development of the economy and agriculture in the midstream of the Heihe River, ground-
water demand is also great, so groundwater is extracted by underground mechanical wells
for agricultural irrigation.

The Ministry of Water Resources approved the “Water Distribution Plan for the
Mainstream of the Heihe River.” This plan allocates the water volume of the Heihe River
in the wet and dry years (Figure 3). When the Yingluo Gorge has a 10% guaranteed rate of
incoming water of 1.90 billion m3, the Zhengyi Gorge discharges 1.32 billion m3. When
the Yingluo Gorge’s 25% guaranteed rate of incoming water is 1.71 billion m3, the water
discharged from Zhengyi Gorge is 1.09 billion m3. When Yingluo Gorge’s 75% guaranteed
rate of incoming water is 1.42 billion m3, the discharged water will be 760 million m3. When
Yingluo Gorge’s 90% guaranteed rate of incoming water is 1.29 billion m3, the discharge
volume of Zhengyi Gorge will be 630 million m3 [55].
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Figure 3. 97 Water Diversion Scheme.

In January 2013, the General Office of the State Council issued the most stringent
“Three Red Lines” indicators for water resources management to all provinces, autonomous
regions, and municipalities directly under the central government. In November, the
general office of the Gansu Provincial People’s government issued water resources man-
agement control indicators for 2015, 2020, and 2030 for the Gansu Province prefecture-level
administrative regions. According to the city water resources management target, the
Heihe water diversion scheme, water resources allocation scheme, and water use practice
for each county, Zhangye City issued its total water consumption targets in 2015, 2020,
and 2030 (Figure 3). The total water consumption control indexes for Zhangye City were
as follows: 2.3 billion m3 in 2015, 2.011 billion m3 in 2020, and 2.71 billion m3 in 2030.
The total water consumption control indexes for Ganzhou District were 779 million m3,
681 million m3, and 702 million m3. The total water consumption control indexes for
Linze County were 464 million m3, 406 million m3, and 418 million m3. The total water
consumption control indexes for Gaotai County were 389 million m3, 340 million m3, and
350 million m3 [55,56] (Figure 4).
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2.2. Data

The Cold and Arid Region Scientific Data Center provided annually observed runoff
discharge (1956–2017) and Digital Elevation Model (DEM) (http://data.casnw.net accessed
on 30 June 2020). We obtained meteorological data from six weather stations in the Heihe
River watershed from 1956 to 2017 from the China National Meteorological Information
Center (http://cdc.cma.gov.cn accessed on 8 July 2020). We obtained data for irrigated
area, average flow rate, and the closing time of the river in the section from the Zhangye
Water Conservancy Annals (http://www.zhangye.gov.cn accessed on 8 July 2020) and
Gansu Statistical Yearbook (http://tjj.gansu.gov.cn accessed on 8 July 2020).

2.3. Method
2.3.1. Water Resource Allocation Model in the Middle Reaches of the Heihe River

The utilization of water resources in the Heihe River Basin should comprehensively
consider the ecological water demand of the irrigated areas of the midstream and the
downstream. Therefore, we established two water resource allocation targets:

• Under the condition of satisfying the water demand guarantee rate of different types
of users, reduce the over-exploitation of groundwater in the midstream.

• Strive to reduce the annual water shortage in the downstream ecological region of
Langxin Mountain section (Figures 5 and 6).
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On this basis, we established two single objective functions:

min fM = max

(
1
n

n

∑
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Wg,i − WP
g , 0

)
(1)

min fL = max

(
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Ec −
1
n

n

∑
i = 1
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Ec,i, 0

)
+ ϕ1·max

(
WKD

Ec − 1
n

n

∑
i = 1

WKS
Ec,i, 0

)
(2)

where fM is the average over-recovery of middle groundwater for many years, 108 m3;
fL is the total amount of ecological water shortage considering the perennial average
water shortage of Zhengyi Gorge and the perennial average water shortage of Langxin
Mountain during the critical period of ecology, 108 m3; Wgj is the groundwater exploitation
in the i year in the midstream, 108 m3; Wp

g is the recoverable amount of groundwater in
the midstream, 108 m3; WD

Ec is the downstream ecological water demand, 108 m3; WS
Ec,i

provides water for the downstream ecology in I year, 108 m3; WKD
Ec is the water demand

in the critical period of downstream ecology, 108 m3; WKS
Ec,i is the water supply in the

critical period of the i-th downstream ecological period, 108 m3; and ϕ1 is the coordination
coefficient, which is an integer greater than 1, used to coordinate the relationship between
the ecological annual water shortage and the water shortage in the critical period.

In Equation (2), the coordination coefficient (ϕ1) is an empirical parameter, which is
determined after many trials and is combined with the Heihe water resources deployment.

The decision variable is the closing time of the channel. According to the water
requirements during the critical period of ecological water demand, we selected the river
channel’s closing time from April and August. The closed-mouth rate characterized the
closing time, the closed-mouth rate is the ratio of the days of the closing time and the total
days, with a value of 0–1.

2.3.2. Model Parameter Calibration

The parameters of the Heihe River Basin water resource allocation model included
the maximum allowable mining depth hg,D, the precipitation infiltration replenishment
coefficient α, the canal water utilization coefficient ηq, the field water utilization coefficient
ηt, the field infiltration replenishment coefficient β, the canal system leakage ratio coefficient
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mr, water supply µ, water conductivity Tg, vertical permeability coefficient KV, phreatic
flow slope width product dg, phreatic flow width-length ratio eg, phreatic evaporation
empirical constant z, and phreatic evaporation limit buried depth hmax

g . To improve the
Heihe River Basin water resources allocation model’s operating efficiency, we divided
these parameters into predetermined parameters and undetermined parameters. The
predetermined parameter directly determined the value within a given range, including
hg,D, α, ηq, ηt, β, mr, KV, z, and hmax

g .The undetermined parameters refer to the parameters
whose values can be obtained through optimization calculation within a given range,
including µ, Tg, dg, and eg.

1. Maximum allowable mining depth hg,D

The burial depth of the groundwater in the irrigation area was the maximum allowable
burial depth. If the irrigated area continued to mine groundwater, we considered it to be
over-exploited. The maximum permissible mining depth was related to such factors as
the irrigation area ecological health level, the natural characteristics of groundwater, and
the method of groundwater extraction. Currently, no reasonable calculation method is
available. In this project, we used the difference between the lowest groundwater level
measured from 2005 to 2012 for each irrigation area in the midstream and used the surface
elevation as the maximum allowable mining depth for each irrigation area.

2. Precipitation infiltration recharge coefficient α

The precipitation infiltration recharge coefficient was the ratio of precipitation to
groundwater for a certain area during a specific period. The coefficient was affected by
rainfall, lithology, groundwater depth, and moisture content of the vadose zone’s moisture
content. We set the coefficient range at 0.1–0.2.

3. Canal water use coefficient ηq and field water use coefficient ηt

The canal system water utilization coefficient was the ratio of the amount of water
entering the field at the end of the canal system to the water taken from the canal head.
The coefficient was related to factors such as the length of the canal system and the lining
condition. The field water use coefficient was the ratio of water used by crops or forests
and grasses to the amount of water entering the field. This coefficient was related to factors
such as crop types and soil types. The canal water utilization coefficient and the field water
utilization coefficient were the irrigation water utilization coefficient. In the current level
year, the water use coefficient of the canal system in the midstream of the Heihe River
was 0.52–0.61, the field water use coefficient was 0.9–0.92, and the irrigation water use
coefficient was 0.47–0.56.

4. Field infiltration recharge coefficient β

The field infiltration recharge coefficient was the ratio of irrigation water quantity to
net irrigation water quantity. This coefficient was related to such factors as groundwater
depth, irrigation quota, and lithology. Considering the actual situation in the midstream
of the Heihe River [56], we set the recharge coefficient range of field water seepage in the
midstream of the Heihe River Basin as 0.28–0.46.

5. Supply coefficient of canal leakage mr

The supply coefficient of canal leakage was the canal system water’s ratio to the
canal head water intake. This coefficient was related to climate, canal system lining, and
lithology under the canal bed. The canal system leakage replenishment coefficient and the
canal system water utilization coefficient were the same. This study, used the canal system
leakage proportional coefficient instead of the canal system water leakage replenishment
coefficient. The proportion coefficient of canal system leakage was the ratio canal system
water supply to the amount of canal system water loss. We set the range of the canal system
leakage ratio coefficient to be 0.4–0.6.
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6. Water supply degree µ and conductivity coefficient Tg

Water supply was the ratio of the maximum volume of water discharged from a
saturated aquifer under gravity to the underground aquifer volume. According to the
current situation for the Heihe River [56], the water supply degree range of the middle
reaches of the Heihe River Basin was 0.1–0.35, and the water conductivity coefficient range
was 300–6500 m2/d.

7. Vertical permeability coefficient KV

The vertical permeability coefficient was the speed at which surface water flows verti-
cally through the vadose zone to reach the diving surface. The unit’s vertical permeability
coefficient in the midstream of the Heihe River Basin was 0.65 m/d [57].

8. Slope width product of diving flow dg and width-to-length ratio of diving current eg

According to the surface contact boundary length of adjacent units in the middle
reaches of the Heihe River Basin and the unit centroid distance [57], we set the phreatic
flow slope product range from the outside to the irrigation area unit to be 0.5–30 m and set
the phreatic flow width-to-length ratio range of the adjacent units to be 0.1–20.

9. Empirical constant of diving evaporation and limit depth hmax
g

Taking into account the main crop types (wheat and corn) and the main soil types
(loam) in the midstream of the Heihe River Basin [58,59], we set the empirical constant of
diving evaporation at 2.6. According to the observation data of the second hydrological
team of the Gansu Geological Bureau [60], we set the maximum buried depth of phreatic
evaporation in the middle reaches of the Heihe River Basin to be 5 m.

Except for KV, z, and hmax
g , which have the same fixed value in each irrigation area,

other predetermined parameters of different irrigation areas are given in Table 1.

Table 1. Specific numerical values of some predetermined parameters of each irrigation area in the
midstream.

Irrigated Area hg,D (m) α ηq
1 ηt

1 β mr

Shangsan 154.6 0.10 0.52 0.92 0.29 0.40
Daman 20.1 0.12 0.58 0.92 0.40 0.44
Yingke 16.3 0.13 0.58 0.92 0.41 0.47
Xijun 10.5 0.16 0.58 0.92 0.44 0.52

Liyuan river 2.7 0.19 0.61 0.91 0.46 0.58
Shahe 35.1 0.10 0.60 0.91 0.34 0.40

Banqiao 11.8 0.15 0.52 0.91 0.43 0.51
Yanuan 4.1 0.18 0.54 0.91 0.46 0.57

Pingchuan 5.2 0.18 0.58 0.91 0.46 0.56
Liaoquan 4.4 0.18 0.57 0.91 0.46 0.56

Liuba 3.6 0.19 0.60 0.90 0.46 0.57
Youlian 11.1 0.16 0.58 0.90 0.43 0.51

Luocheng 3.2 0.19 0.60 0.91 0.46 0.57
1 ηq and ηt are the current level year data. The ηq and ηt of the short-term and long-term level years are
enlarged in proportion to the average irrigation water utilization coefficient; the predetermined parameters of the
sub-irrigation area units with the same name and different numbers are the same.

According to the groundwater module in the midstream of the Heihe River Basin water
resources allocation model, we established an objective function using the historical three-
year (2000, 2010, and 2012) average water withdrawal data, multiyear average precipitation,
multiyear average water surface evaporation, and predetermined parameters of each
irrigation area in the middle reaches, and optimized the calculation of pending parameters.

The objective function is as follows:

minf =
m

∑
i = 1

(
WIgq

i − WOgq
i

)2
+
(

Wgq
r − 2.7

)2
+
(

Wr
gq − 6.1

)2
+
(

Wgq
jw − 1.4

)2
(3)
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where m is the number of irrigation area units, including subirrigation area units, m = 23;
WIgq

i and WOgq
i are the water input and output items of the i-th irrigation district unit,

respectively, 108 m3; Wgq
r is the total amount of surface water used to replenish groundwater

in the corresponding irrigation area in the Yinggao River section, 108 m3; Wr
gq is the

total amount of surface water supplied by the unit groundwater in the irrigation area
to the Gaoping reach and the Pingzheng reach, 108 m3; and Wgq

jw is the total amount of
groundwater in the corresponding irrigated area in the overseas groundwater recharge
research area, 108m3. We obtained the numerical values of undetermined parameters (µ, Tg,
dg, and eg) according to the optimization calculations given in Tables 2–5:

Table 2. Optimal value of degree of unit water supply in the middle irrigation area.

Irrigation Unit µ Irrigation Unit µ Irrigation Unit µ Irrigation Unit µ

Shangsan 0.31 Xijun1 0.11 Yanuan1 0.10 Liuba 0.30
Daman 0.12 Xijun2 0.13 Yanuan2 0.19 Youlian1 0.12
Yingke1 0.35 Liyuan river 1 0.32 Pingchuan1 0.30 Youlian2 0.13
Yingke4 0.21 Liyuan river 2 0.10 Pingchuan2 0.30 Luocheng1 0.23
Yingke2 0.15 Shahe 0.28 Liaoquan1 0.23 Luocheng2 0.32
Yingke3 0.12 Banqiao 0.26 Liaoquan2 0.12

Table 3. Optimal values of slope width product and water conductance of submersible flow from outside to an irrigated area.

Overseas—
Irrigated Unit dg (m) Tg (m2/d)

Overseas—
Irrigated Unit dg (m) Tg (m2/d)

Overseas—Shangsan 5.7 3291 Overseas—Pingchuan 1 6.9 3551
Overseas—Daman 16.7 855 Overseas—Pingchuan 2 14.6 5002

Overseas—Yingke 4 4.9 2044 Overseas—Liuba 3.3 4997
Overseas—Xijun 1 1.3 828 Overseas—Youlian 1 11.0 2741

Overseas—Liyuan river 1 26.4 3370 Overseas—Youlian 2 3.6 2829
Overseas—Liyuan river 2 0.5 1036 Overseas—Luocheng 1 4.7 4084

Overseas—Banqiao 10.0 3064 Overseas—Luocheng 2 10.5 5252

Table 4. The optimal value of the width-to-length ratio and the coefficient of water conductance between the irrigated area
and the channel.

Irrigated Unit-Streamway eg Tg (m2/d) Irrigated Unit-Streamway eg Tg (m2/d)

Shangsan-streamway 2.0 3088 Pingchuan 1-streamway 0.1 5181
Danman-streamway 14.0 702 Pingchuan 2-streamway 16.2 3441
Yingke 1-streamway 0.8 3536 Liaoquan 1-streamway 5.7 4195
Yingke 4-streamway 1.1 2114 Liaoquan 2-streamway 6.9 882
Yingke 2-streamway 14.0 1066 Liuba-streamway 1.6 3437
Yingke 3-streamway 4.2 2681 Youlian 1-streamway 17.4 932
Xijun 1-streamway 16.9 675 Youlian 2-streamway 0.4 1029
Banqiao-streamway 21.3 4640 Luocheng 1-streamway 17.4 2423

Yanuan 2-streamway 16.7 3688 Luocheng 2-streamway 22.2 3719



Int. J. Environ. Res. Public Health 2021, 18, 1887 11 of 19

Table 5. The optimal value of the width-to-length ratio of the diving flow and the water conductivity coefficient of the
adjacent irrigated area unit.

Adjacent Irrigated Area Unit eg Tg (m2/d) Adjacent Irrigated Area Unit eg Tg (m2/d)

Shangsan–Daman 15.0 3151 Liyuan River 2–Yanuan 1 17.8 307
Damna–Yingke 1 4.8 3608 Liyuan River 2–Liaoquan 2 13.4 529
Daman–Yingke 4 7.8 1904 Liyuan River 2–Youlian 1 0.7 574

Yingke 1–Yingke 4 0.2 4796 Shahe–Yanuan2 0.2 3675
Yingke 2–Yingke 3 8.7 1150 Yannuan 1–Liaoquan 1 5.0 1933
Yingke 4-Banqiao 2.7 3731 Yanuan 1–Yanuan 2 14.3 1477

Yingke 3–Yanuan 2 15.6 1747 Banqiao–Pingchuan 1 4.2 4857
Xijun 1–Xijun 2 9.4 900 Pingchuan 1–Pingchuan 2 7.2 5350

Xijun 1–Liyuan River 1 0.1 3203 Liaoquan 1–Liaoquan 2 8.1 2155
Xijun 2–Yingke 2 10.2 1299 Lianquan 2–Youlian 1 13.8 789
Xijun 2–Yingke 3 8.6 989 Pingchuan 2–Liuba 0.5 5352

Xijun 2–Shahe 15.5 2918 Liuba–Youlian2 1.8 3179
Xijun 2–Yanuan 2 3.5 1896 Youlian 1–Luocheng 2 0.4 3345

Liyuan River 1–Shahe 0.6 5221 Youlian 2–Luocheng 1 4.6 2266
Liyuan River 2–Shahe 1.5 2505

3. Results
3.1. Rationality Analysis of Water Resources Allocation in the Middle Reaches of Heihe River

The model simulated the groundwater level of each irrigation area and the flow of
each river section from 2005 to 2012. It was evident from the main section flow fitting and
the groundwater level simulation that the results were better.

3.1.1. The Middle Reaches of Heihe River Control Section Annual Runoff

Figure 7 shows the annual runoff simulation process of the three midstream control
sections of Gaoya, Pingchuan, and Zhengyi Gorge. The annual runoff simulation effect of
the control section in the middle reaches of the Heihe River was good, and the degree of fit
was between 0.81 and 0.85. Therefore, from the perspective of the annual runoff simulation
effect of the control section in the middle reaches of the Heihe River, the groundwater
balance model and optimal parameter values were reasonable.
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3.1.2. Annual Average Groundwater Level in the Middle Reaches of the Heihe River
Irrigation Area

Figures 8 and 9 show the groundwater simulation results of 13 irrigation districts in
the middle reaches of the Heihe River (from Yingluo Gorge to Zhengyi Gorge). The fitting
degree of the annual average groundwater level of the four irrigation districts of Shangsan,
Yingke, Shahe, and Youlian was greater than 0.9. The fitting degree of the annual average
groundwater level of the four irrigation districts of Xijun, Liyuanhe, Yanuan, and Luocheng
was greater than 0.8. The fitting degrees of the average annual groundwater levels of the
other five irrigation districts, including Manchu and Banqiao, were all above 0.7. Therefore,
from the perspective of the average annual groundwater level in the middle reaches of the
irrigation area, the groundwater balance model and parameter optimization values in the
middle reaches of the Heihe River were reasonable.
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3.2. Water Resources Allocation in the Middle Reaches of the Heihe River Without Considering the
Total Water Consumption Index Control

In 2017, the midstream of Heihe needed 1.394 billion m3 of water. We used the water
allocation to simulate the completion of a long series of annual water diversion schemes
under current water demand conditions. Table 6 shows the simulation results of a long
series of years (1956–2017), without considering the total water consumption control under
current water demand conditions. According to the table, during years when water was
abundant, the simulated discharge of Zhengyi Gorge was less than the discharge index.
In wet years, 164 million m3 of downstream water was owed annually. In more abundant
years, 126 million m3 water was owed to downstream water. In a dry year and normal
flow year, the discharge target of the Zhengyi Gorge could be met. The average annual
groundwater extraction volume was 598 million m3, which was greater than the average
annual extraction volume of 480 million m3 in the middle reaches of the Heihe River [28].
The average level of over-extractions was 23% over-extraction.

By comparing the Zhengyi Gorge’s drainage index with the Zhengyi Gorge simu-
lated discharge, under different incoming water conditions, the Zhengyi Gorge simulated
discharge is less than the drainage index, and Midstream water consumption is greater
than the water consumption index. Under such circumstances, the ecological water in the
downstream will be insufficient, thus affecting the ecological environment in the down-
stream. Total water withdrawal (including Liyuan River) in the midstream is also greater
than the Midstream water consumption index. With the increase of water consumption in
the study area, the extraction of water from Heihe River will increase, and the discharge
from Zhengyi Gorge will become smaller, which is more detrimental to the ecological
environment of the downstream of the Heihe River.

In each inflow year, the total water intake was greater than the total water withdrawal
index (1.63 billion m3), and the total water consumption also exceeded the midstream
water consumption index. Therefore, under current water demand conditions, if the total
water consumption was not taken into account, through the reasonable allocation of water
resources, the water intake and consumption would exceed the indexes of in the middle
reaches of “97 Water Diversion Scheme” in the Heihe River. As a result, the ecological water
demand of the lower reaches of the Heihe river decreases, which affects the ecological
development of the lower reaches of the Heihe River.

3.3. Water Resources Allocation in the Middle Reaches of Heihe River Considering Control of Total
Water Consumption Index

Table 7 provides the simulation results for the long series of years (1956–2017) consid-
ering total water consumption control. According to the table, in different inflow years, the
simulated discharge of Zhengyi Gorge was basically equivalent to the discharge index, and
the simulated discharge could complete the drainage index of Zhengyi Gorge. In different
inflow years, the total water intake index was lower than the total water intake index of the
three counties (1.63 billion m3), and total water consumption and total water consumption
indicators were basically equivalent. Therefore, considering the water consumption, under
current water requirements, through water allocation, the water intake and consumption
in the middle reaches of Heihe River could be controlled within the “Three Red Lines” for
water intake and consumption indicators.
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Table 6. Under the condition of current water demand, the allocation results of midstream water resources controlled by water consumption index were not considered, 108 m3.

Water-
Coming

Year

Inflow from
Ying

luo Gorge

Zhengyi
Gorge

Drainage
Index

Zhengyi
Gorge

Simulated
Discharge

Completion
of Water

Diversion
Quota

The Amount of
Groundwater

Extracted in the
Middle Reaches

Midstream
Water

Shortage

Midstream
Diversion

Total Water
Withdrawal
(Including

Liyuan
River)

Midstream
Water Con-
sumption

Total Water
Withdrawal

Index

Midstream
Water Con-
sumption

Index

10% 20.27 14.73 13.09 −1.64 6.81 0.52 9.22 17.29 6.48 16.3 5.53
25% 17.69 11.63 10.37 −1.26 6.28 0.28 10.10 17.64 6.65 16.3 6.06
50% 15.63 9.29 9.22 −0.07 6.03 0.12 10.56 17.85 6.41 16.3 6.34
75% 14.56 8.10 7.8 −0.30 5.65 0.24 10.77 17.68 6.76 16.3 6.46
90% 12.87 6.28 6.32 0.04 5.48 0.11 10.98 17.72 6.55 16.3 6.59

Table 7. The results of mid-stream water resources allocation under the condition of current water demand are considered, 108m3.

Water-
Coming

Year

Inflow from
Ying

luo Gorge

Zhengyi
Gorge

Drainage
Index

Zhengyi
Gorge

Simulated
Discharge

Completion
of Water

Diversion
Quota

The Amount of
Groundwater

Extracted in the
Middle Reaches

Midstream
Water

Shortage

Midstream
Diversion

Total Water
Withdrawal
(including

Liyuan
River)

Midstream
Water Con-
sumption

Total Water
Withdrawal

Index

Midstream
Water

Consumptin
Index

10% 20.27 14.73 14.70 −0.03 6.81 1.64 8.09 16.17 5.57 16.3 5.53
25% 17.69 11.63 11.37 −0.16 6.28 1.68 8.69 16.24 6.22 16.3 6.06
50% 15.63 9.29 9.22 −0.07 6.03 1.55 9.12 16.42 6.41 16.3 6.34
75% 14.56 8.10 8.00 −0.1 5.65 1.58 9.42 16.34 6.56 16.3 6.46
90% 12.87 6.28 6.29 0.01 5.48 1.56 9.52 16.27 6.58 16.3 6.59
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By comparing the Zhengyi Gorge’s drainage index with the Zhengyi Gorge simu-
lated discharge, under different incoming water conditions, the Zhengyi Gorge simulated
discharge is less than the drainage index. However difference between the results is not
significant. Total water withdrawal (including Liyuan River) in the midstream is also less
than the Midstream water consumption index. By the conditions, the discharge volume of
Zhengyi Gorge can be satisfied to meet the downstream ecological water.

Under these circumstances, the water shortage in the middle reaches was significantly
greater than without the considering water consumption index. In years when the incoming
water was 10%, 25%, 50%, 75%, and 90%, the water shortage was 1.64 and 1.61, 1.55, 1.58,
and 1.56 million m3.

In the case of considering water consumption, the downstream ecological water
demand can be satisfied through rational allocation of water resources, so as to achieve
the purpose of water resources allocation, but the water shortage in the middle reaches
was significantly greater than without considering the water consumption index. So some
measures should be taken.

4. Discussion

According to the results of water resources allocation, we obtained different results
under different inflow conditions. If the total water consumption limit was not taken
into account, the water consumption in the middle reaches of the Heihe River exceeded
the water consumption target. If the total water consumption limit was not taken into
account, the water shortage in the middle reaches significantly increased. We identified
two solutions: (1) Returning farmland to 1200 Km2; (2) use advanced technologies to save
water and improve the utilization efficiency of water resources, to increase the utilization
coefficient of irrigation water to 0.68. Increasing water-saving measures can reduce water
consumption and improve water efficiency.

4.1. Returning Agricultural Land to 1200 Km2

The increase in the cultivated land area has been the main factor driving water demand.
Reducing midstream water demand can achieve the water diversion target in wet years.
The cultivated land area in the middle reaches should be 1200 km2, and the corresponding
water demand is 1.023 billion m3 (Heihe Recent Governance Plan) [28]. We simulated the
completion of a long series of annual water separation indexes under the water demand
scheme. Table 8 shows that the water diversion index can be completed in different inflow
years, and the average annual groundwater exploitation was 528 million m3, with 10%
over-extraction. The water consumption in the middle reaches of Heihe could be controlled
within the “97 Water Diversion Scheme”.

4.2. On the Premise of Maintaining the Farmland Area of 1200 Km2, Water-Saving Measures
Were Implemented to Increase the Utilization Coefficient of Irrigation Water to 0.68

Strengthening water saving in the middle reaches can alleviate the water contradiction
of water use in the middle reaches. In the middle reaches of Heihe River, the water
demand was 1.15 billion m3 under water-saving conditions. In addition, the reclaimed
farmland in the middle reaches of the Heihe River to 1200 Km2 and the corresponding
water demand was 1.046 billion m3 [28]. We simulated the completion of a long series of
annual water separation indexes under the water demand scheme. Table 9 shows that the
water diversion index could be completed in different inflow years, and the average annual
groundwater exploitation amount was 549 million m3, with 14% over-extraction. The water
consumption in the middle reaches of the Heihe River could be controlled within the “97
Water Diversion Scheme”.
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Table 8. The result of the allocation of water resources in the middle reaches was 120 km2 of farmland, 108 m3.

Water-
Coming

Year

Inflow from
Ying

luo Gorge

Zhengyi
Gorge

Drainage
Index

Zhengyi
Gorge

Simulated
Discharge

Completion
of Water

Diversion
Quota

The Amount of
Groundwater

Extracted in the
Middle Reaches

Midstream
Water

Shortage

Midstream
Diversion

Total Water
Withdrawal
(including

Liyuan
River)

Midstream
Water

Consumptin

Total Water
Withdrawal

Index

Midstream
Water

Consumptin
Index

10% 20.23 14.41 14.21 −0.2 6.29 0.25 8.57 16.05 16.3 6.02 5.82
25% 18.08 12.31 11.96 −0.35 5.7 0.38 9.23 16.19 16.3 6.12 5.77
50% 15.91 9.6 9.72 0.12 5.46 0.43 9.34 16.13 16.3 6.19 6.31
75% 14.08 7.52 7.55 0.03 4.99 0.47 9.97 16.35 16.3 6.53 6.56
90% 12.02 5.42 5.57 0.15 4.97 0.53 10.31 16.74 16.3 6.45 6.6

average 16.16 9.93 9.88 −0.05 5.28 0.38 10.96 16.24 16.3 6.28 6.23

Table 9. The results of mid-stream water resources allocation under the condition of strong water-saving, 108 m3.

Water-
Coming

Year

Inflow from
Ying

luo Gorge

Zhengyi
Gorge

Drainage
Index

Zhengyi
Gorge

Simulated
Discharge

Completion
of water

Diversion
Quota

The Amount of
Groundwater

Extracted in the
Middle Reaches

Midstream
Water

Shortage

Midstream
Diversion

Total Water
Withdrawal
(including

Liyuan
River)

Midstream
Water

Consumptin

Total Water
Withdrawal

Index

Midstream
Water

Consumptin
Index

10% 20.23 14.41 13.91 −0.5 6.43 0.26 8.24 15.86 16.3 6.32 6.6
25% 18.08 12.31 11.71 −0.6 5.64 0.31 9.12 16.02 16.3 6.37 6.56
50% 15.91 9.6 9.42 −0.18 5.43 0.27 9.53 16.29 16.3 6.49 6.31
75% 14.08 7.52 7.49 −0.03 5.31 0.3 9.77 16.47 16.3 6.59 5.77
90% 12.02 5.42 5.55 0.13 5.18 0.4 9.92 16.56 16.3 6.47 5.82

average 16.16 9.93 9.91 −0.02 5.49 0.3 10.77 16.26 16.3 6.25 6.23
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According to our results, if water consumption and water use were controlled, farm-
land was returned, and water-saving measures were applied, the indicators of the middle
reaches of the Heihe River could be met. The over-exploitation of groundwater could also
be categorized as mild over-exploitation. The water shortage was not significant, and water
resources allocation in the middle reaches of the Heihe River was well satisfied. So, the
application of returning farmland and water-saving measures is an important measure for
water resources allocation in the Heihe River, and controlling the scale of farmland is the
most important.

5. Conclusions

On the basis of our simulation, we made the following conclusions.

• The “97 Water Diversion Plan” and the “Three Red Lines” control the consumption and
water use, respectively, in the middle reaches of the Heihe River. With improvements
in water use level, and without exceeding the water use targets, water consumption
still increased. This affected the ecological water of the lower reaches of the Heihe
River. We constructed a water resource allocation model to satisfy the “97 Water
Diversion Plan” and solve the shortage of ecological water of the lower reaches.

• Without considering the total water consumption index, even though the reasonable
allocation of water resources, water intake, and consumption in the middle reaches of
the Heihe River exceeded the water intake and consumption indicators. Considering
water consumption in the middle reaches, and with the allocation of water resources,
the water intake and consumption could be controlled within the indicators.

• After the rational allocation of water resources, it is necessary to control the farmland
area to 1200 Km2 and implement water-saving measures, especially the control of
farmland area is of great significance for the Heihe river resources.
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