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Abstract
The long-term use of the artificial pancreas (AP) requires an automated insulin delivery algorithm

that can learn and adapt with the growth, development, and lifestyle changes of patients. In this

work, we introduce a data-driven AP adaptation method for improved glucose management in a

home environment. A two-phase Bayesian optimization assisted parameter learning algorithm is

proposed to adapt basal and carbohydrate-ratio profile, and key feedback control parameters.

The method is evaluated on the basis of the 111-adult cohort of the FDA-accepted UVA/

Padova type 1 diabetes mellitus simulator through three scenarios with lifestyle disturbances

and incorrect initial parameters. For all the scenarios, the proposed method is able to robustly

adapt AP parameters for improved glycemic regulation performance in terms of percent time in

the euglycemic range [70, 180] mg/dl without causing risk of hypoglycemia in terms of percent

time below 70 mg/dl.
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1 | INTRODUCTION

For several decades, engineers and clinicians have been working on

artificial pancreas (AP) systems to achieve automated blood glucose

(BG) regulation for patients with Type 1 diabetes mellitus (T1DM).

With the encouraging outcome of recent large-scale/long-duration

outpatient clinical trials,1–4 current AP systems require user interven-

tion around meals and exercise. Since clinical factors such as basal rate

(BR) and carbohydrate ratio (CR) are not fixed but do change for

patients with Type 1 diabetes, adaptation and learning are needed

and expected from AP systems to improve outcome and enable better

control as insulin sensitivity changes. In addition, the effects of physi-

cal activity on glucose utilization, production, insulin sensitivity, and

absorption strongly depend on its timing, type, and intensity,5,6 which

vary with lifestyle changes. This forms another motivation to incorpo-

rate adaptation in AP design.

To achieve this goal, different approaches to AP adaptation have

been investigated in the literature. Automated BR modulation was

considered in recent outpatient clinical trials1,2 and the first U.S. Food

and Drug Administration (FDA) approved commercial hybrid AP sys-

tem in the United States.3 With different degrees of automation and

clinician effort, pump setting adaptation was also considered in multi-

ple clinical studies,7–9 although the detailed techniques were not

explicitly reported. In a 12-week outpatient study,4 an automated

algorithm monitored by study physicians was employed to perform

joint adaptation of BR and CR. In earlier investigations,10,11 a run-to-

run approach was proposed to update BR and meal bolus sizes based

on sparse BG measurements; this approach was recently revisited in

Reference 12 to adapt CR profile during the day and BR at night

based on continuous glucose monitor (CGM) measurements, and was

verified through multiweek simulations that took account of insulin

sensitivity circadian rhythm. A closely related approach that can

exploit CGM measurements and continuous insulin delivery is itera-

tive learning control, which can be regarded as a two-timescale

enhancement of run-to-run methods.13 In Reference 14, iterative

learning model predictive control (MPC) was proposed to adapt the

reference trajectory of the closed-loop controller used for glucose

regulation, which was tested in a pilot study recently.15
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Despite the aforementioned progress, the problem of systemati-

cally adapting multiple key AP parameters (e.g., segments in BR and

CR profiles, controller parameters) under lifestyle disturbances while

explicitly enforcing safety considerations remains to be explored. In

this work, a two-phase data-driven multivariate parameter learning

framework for long-term adaptation of AP is developed. The proposed

learning algorithm features a controller-led approach to adaptation of

BR profile and a Bayesian optimization (BO) approach to adaptation

of the CR profile and the controller parameters. The effectiveness of

the algorithm is evaluated using the entire 111-adult cohort of the

FDA-accepted Universities of Virginia (UVA)/Padova T1DM simula-

tor16 for multiple challenging scenarios. The obtained results suggest

that the proposed AP adaptation method can robustly improve glu-

cose regulation performance in terms of percent time in the euglyce-

mic range and average glucose levels without causing the risk of

hypoglycemia. A related topic to AP adaptation is individualized AP

design, the key idea of which is to design the AP algorithms based on

patient-specific parameters or historical data for improved glucose

regulation performance.17,18 Generally, AP adaptation attempts to

dynamically adjust the individualized parameters (e.g., BR and CR pro-

files) that might have been improperly determined or change slowly in

time, while AP individualization features more on static personaliza-

tion of glucose control performance based on individualized parame-

ters or personal patient data, which can be regarded as AP adaptation

if the individualization procedures are performed progressively in

time. In addition, AP adaptation can work seamlessly on top of an indi-

vidualized controller; in our work, the lower-level MPC algorithm

adopts a control-relevant model personalized by total daily insulin.

2 | METHODS AND MATERIALS

Patients with T1DM suffer from malfunctions of the glucose meta-

bolic system due to the failure of the pancreas to secrete insulin and

require external insulin infusion to regulate excessive BG. An AP

attempts to automate glucose regulation through generating insulin

micro-boluses according to real time BG measurements. To assist with

the home use of an AP, a dual-layer control system scheme is first

introduced. In the following, the parameter adaptation problem is

described and the outline of the solution proposed is discussed.

The human glucose metabolic process is affected by disturbances

that evolve under different time scales, including (a) food intake, phys-

ical exercise, stress, and alcohol consumption occurring on a random

basis within a day, (b) the diurnal circadian rhythm of the body

sensitivity to insulin and life habits that repeat on a daily/weekly basis,

(c) randomly occurring sickness that can affect insulin sensitivity for

one or a couple of days (e.g., influenza and gastrointestinal disease),

and (d) chronic metabolic variations due to aging and lifestyle change.

To achieve satisfactory glucose regulation performance, these distur-

bances need to be considered in the design of AP algorithms.

Considering the multi-timescale nature of the disturbances, we

introduce a dual-layer control scheme in this work (see Figure 1). The

lower layer is composed of multiple controllers that deal with short-

term disturbances, including

1. a feedforward BR calculator that provides the basal insulin deliv-

ery rate based on a predetermined piecewise constant BR profile

to counteract against patient’s daily life habit and the diurnal insu-

lin sensitivity.

2. a feedforward meal controller that calculates reference meal and

correction boluses based on meal information and additional insu-

lin requests provided by the patient.

3. a feedback controller that deals with all uncompensated distur-

bances based on real-time CGM measurements and safety

considerations.

The feedback controller tops up the BR doses provided by the BR

calculator to finalize real-time insulin microboluses. With a properly

designed BR profile, the feedback controller does not need to act with

abruptly varying and scenario-dependent aggressiveness, which

reduces the difficulty of feedback control design and the chance of

faulty controller-induced overdose behavior. Feedforward control

(e.g., meal boluses) can reduce high-glucose events and is therefore

important in glucose management, particularly when meals cannot be

accurately predicted. In the AP literature, lower-layer control system

design has been extensively investigated, the focus of which has been

developing safe and efficient feedback control algorithms to improve

glucose management; interested readers are referred to Reference 19

for a detailed review of control design for the AP. In our algorithm, we

assume that lower layer control tasks are handled by a periodic zone

MPC with asymmetric costs20 together with the meal bolus strategy

introduced therein, although the proposed approach can be applied to

other lower-layer control algorithms.

As is shown in Figure 1, the upper layer is responsible for long-

term parameter adaptation of lower layer control algorithms. This

layer evolves on a longer timescale (e.g., weeks) and handles chronic

changes in the patient’s glucose metabolic process and lifestyle

FIGURE 1 Dual-layer control scheme. The lower layer (highlighted in blue color) deals with disturbances occurring on smaller time scales based

on real time CGM data, while the upper layer (highlighted in green color) handles chronic changes in the glucose metabolic process based on
recent performance metrics from the lower layer
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through long-term AP adaptation algorithms, based on historical per-

formance metric records from the lower layer. With the successful

deployment of large and long-term out-patient clinical studies, long-

term AP adaptation has gained in importance only recently, and is the

main focus of this article.

With the dual-layer control scheme, we are now ready to intro-

duce the parameter adaptation problem to be investigated. Specifi-

cally, the parameters to be adapted include

1. segments {βn} that compose the BR profile β ≔ [β1, β2, …, βN]

used in the BR calculator. Note that each βn is associated with a

time period Tβ
n during which it is active. In this work, we assume

that Tβ
n is fixed and predetermined by clinicians.

2. segments {γn} that compose the CR profile γ ≔ [γ1, γ2, …, γM] used

in the meal controller. Similar to β, each segment γn is used for a

particular time period Tγ
n , which is assumed to be fixed by clini-

cians as well.

3. parameters in the closed-loop controller. Three parameters in the

zone MPC developed in Reference 20 are considered, including R̂

that represents the control penalty parameter for insulin delivery

above the BR, D that determines the upper bound of a glucose

zone for which the velocity penalty is active, and a coefficient γIOB

that determines the responsiveness of the insulin-on-board (IOB)

constraint.

The goal of this work is to develop an automatic parameter learn-

ing algorithm that can correctly adapt the parameters in the lower-

layer control algorithms and is robust to lifestyle disturbances, with

minimal patient/clinician involvement and without causing risks of

hypoglycemia during the adaptation procedure.

To achieve this goal, a data-driven multivariate parameter

learning framework in proposed. Considering the different roles of

the lower-layer control algorithms, the adaptation procedure is

divided into two phases. In Phase I, the parameters in the feedfor-

ward control algorithms (namely, the BR and CR profiles) are opti-

mized. Based on the obtained/updated BR and CR profiles,

parameters in the feedback control algorithms are adjusted in

Phase II. In both phases, we consider the challenging but realistic

case that the patient is under closed-loop control, such that the

“open-loop” parameters are adjusted in Phase I based on closed-

loop data. The detailed adaptation algorithms are presented in Sec-

tions 2.1 and 2.2, respectively.

2.1 | Learning feedforward control parameters

In this subsection, we focus on adapting the parameters in the BR and

CR profiles, which is Phase I of the adaptation procedure. The aim

here is to obtain reasonable rather than optimal profiles, such that an

appropriate operating point is provided for the feedback controller,

which helps enhance the safety of closed-loop glucose control. More

importantly, considering the fact that the feedback control may not be

available for some periods (e.g., when the controller runs out of bat-

tery or lost CGM connection), the obtained parameter needs to be

“safe” in the sense that no hypoglycemia would be caused when the

patient loses closed-loop control. In the following, we first separately

introduce the methods for BR and CR adaptation, based on which a

hybrid time- and event-triggered method is introduced to iterate the

procedures that adapt BR and CR.

2.1.1 | Adaptation of BR profile

Intuitively, the BR profile β is designed to manage “healthy” fast-

ing glucose levels without considering meal-induced glucose

excursions. However, when the fasting glucose levels (measured

as glucose levels at night or before meals) are not satisfactory, it

is difficult to diagnose which segment βn in β is the root cause.

This problem becomes more complicated when the effects of

meal boluses are considered, due to a further loss of “identifiabil-

ity.”21 A helpful observation, however, is that the “effective” real-

time BR is ultimately determined by the feedback controller,

which is able to adjust a potentially inappropriate BR provided by

the BR profile to a certain extent. This observation allows us to

perform BR profile adaptation using a controller-led approach,

without the need of explicitly performing root cause diagnosis. To

reduce the risk of controller-induced hypoglycemia, safety con-

straints are designed to eliminate the adoption of aggressive BR

profiles. Through controller-led BR adaptation, the problem of

lack of identifiability/diagnosability can be automatically solved,

which leads to a direct separation of the adaptation of BR and

CR profiles. The difficulty of algorithm design and implementa-

tion, however, is independent of the number of segments in the

BR profile.

Controller-led BR profile update

BR adaptation determines the values of BR segments βk +1n

� �
at

iteration k + 1 based on βkn
� �

and available glucose and insulin deliv-

ery information. The idea is to update the BR segment βn with the

averaged nonmeal-related insulin microboluses commanded by the

feedback controller during the same time interval, namely, Tβ
n .

Although different methods can be used to distinguish meal/nonmeal-

related insulin, we consider a simple approach in this work and define

nonmeal-related insulin as the insulin deliveries that happen τm hours

after the previous meal. This defines a set of admissible meal-related

insulin deliveries I d
n for each BR segment βn:

I d
n≔ t, Idt

� �jt2 Tβ
n ,t≥ T

d
m tð Þ+ τm

� �
, ð1Þ

where Idt denotes an insulin delivery at time instant t on day d, Tβ
n

denotes the time period for which βn is active, and Td
m tð Þ denotes the

time of the previous meal that happens before time t on day d. We

take τm = 3 hr in our implementation. An initial BR estimate β
k
n for βkn

can be written as

β
k
n ¼

Pnw
d¼1

Pnd
t¼1

Idt �1 t, Idt
� �2I d

n

� �
Pnw
d¼1

Pnd
t¼1

1 t, Idt
� �2I d

n

� � , ð2Þ

where nd denotes the number of insulin microboluses in a day, and nw

denotes the number of days in iteration k of the adaptation process,

and 1(�) denotes the indicator function. Although the actual real-time
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BR will be decided by the feedback control algorithm (using the

knowledge of βn), the key consideration on the obtained βn is that it

should not overestimate the “true” BR and cause hypoglycemic

events, which is particularly important when the feedback controller is

unavailable. To address this concern, two types of safety constraints

are incorporated, as will be introduced below.

Statistical IOB constraint

Similar to the case with lower-layer control algorithms, the IOB infor-

mation can be exploited to prevent aggressive behavior of the param-

eter adaptation algorithm. On the basis of the IOB calculation used in

zone MPC,20 a statistical IOB constraint is proposed for BR adapta-

tion. Specifically, a dynamic database D βnð Þ is built to eliminate over-

estimated values of βn, which stores the information of a triplet

IOBi
n,β

i
n,γ

i
m�n

n o
that have led to low-glucose events in history for i

2 {1, 2, …, k}, with IOBi
n denoting the averaged IOB value immediately

before βn becomes active in adaptation iteration i, and γkm�n denotes

the values CR used within Tβ
n in iteration k. When β

k +1
n is computed

for iteration k + 1 and β
k +1
n > βkn , the IOB constraint is enforced and

implemented as

IOBk
n,β

k +1
n ,1=γkm�n

h i
⪯ IOBi

n,0:95β
i
n,1=γ

i
m�n

� �
, ð3Þ

for all IOBi
n,β

i
n,γ

i
m�n

n o
2D βnð Þ, where “⪯” denotes an element-wise

partial order holds for the two vectors compared. Here, IOBk
n is used

to estimate the average IOB value immediately before βn becomes

active in adaptation iteration k + 1. If any of the IOB constraints are

violated, β
k +1
n ¼0:95βkn to avoid causing hypoglycemia risk.

Smoothness constraint

This constraint ensures that the BR segment βn does not change too

much compared with its neighboring segments βn− and βn+ , with n− =

N − mod(N − n + 1, N) and n+ = mod(n, N) + 1, respectively. The

underlying intuition is that the insulin requirement of the metabolic

system to maintain a healthy fasting glucose level does not change

abruptly in time. Mathematically, this constraint is implemented as

βkþ1
n ¼ min β

kþ1
n , λβs min β

kþ1
n− , β

nþkþ1
, n

− k
β , n

þk
β

� 	� 	
, ð4Þ

where λβs denotes the “smoothness coefficient” and is selected as 1.3

in our work to compromise smoothness with performance.

2.1.2 | Adaptation of CR profile

Different from BR adaptation, the effect of different CR segments on

glucose profiles are relatively isolated, as meals are usually several

hours apart. This helps decouple the adaptation problems for different

γn values, for which a data-driven optimization approach can be

developed.

Zone objectives

Instead of optimizing the CR profile for a specific glycemic metric, our

goal for CR adaptation is to only ensure that the average BG levels

yγnjn¼1,2,…,Mf g after meals are taken for τγ hours should settle

within a certain zone yγ ,yγ
h i

; in our implementation, this zone is meal-

dependent and is selected as [125, 155], [135, 165], and

[125, 155] mg/dl for breakfast, lunch, and dinner, respectively, based

on simulation data from the UVA/Padova simulator. On one hand, this

choice of a control-to-range objective helps efficiently handle the

uncertainties caused by lifestyle disturbances (e.g., sizes and timing of

meals). Conversely, as the final value of meal boluses are normally

decided by the patient, the meal bolus sizes calculated using the CR

profile are used as references, thus a robust estimate of CR would be

more practical from an application perspective. In this work, τγ is

selected to be 4 or the length of time elapsed before the next meal is

taken if it is less than 4 hr, based on the observations of the UVA/Pa-

dova Simulator.

Parameter optimization with safety constraints

To adapt the CR profile toward the target zone, a virtual optimization

problem is formulated for each γn. The cost function is selected as the

average postprandial BG levels

yγn≔ fγn γn,θ
γ
n

� �
, ð5Þ

where fγn γn,θ
γ
n

� �
is used to represent the underlying unknown depen-

dency of yγn on γn and other parameters θγn. The adaptation process is

then performed by solving a sequence of constrained optimization

problems with this unknown cost function:

minγk +1n
fγn γk +1n ,θγn
� � ð6Þ

s:t: j γk +1n −γkn j ≤ λγγkn , ð7Þ

j fγn γk +1n ,θγn
� �

− fγn γkn,θ
γ
n

� � j ≤ δyγn ð8Þ

γk +1n ≥ γk +1
n

: ð9Þ

To ensure the smoothness of the adaptation procedure, three

safety constraints are considered in the optimization problem above.

The first and second constraints, respectively, restrict the rate of

change of γn and fγn γn,θ
γ
n

� �
. In our implementation, λγ is chosen as

30%, and δy
γ
n is selected as 12 mg/dl. The third constraint directly

bounds γn from below to avoid hypoglycemia risks caused by an

underestimated CR; the lower bound γk +1
n

is updated dynamically by

taking the maximum value of γ in that has caused risk of hypoglycemia

during the adaptation process. Note that γkn and γk +1
n

are known and

fγn γkn,θ
γ
n

� �
can be calculated based on historical CGM measurements

when fγn γk +1n ,θγn
� �

is optimized for γk +1n , but the explicit expression of

fγn γk +1n ,θγn
� �

is generally not known. To solve this problem, a data-

driven BO-assisted algorithm will be provided in Section 2.3.

2.1.3 | Alternating BR and CR adaptation

Considering the coupling effects of BR and CR on glucose manage-

ment, the adaptation of {βn| n = 1, 2, …, N} and {γn| n = 1, 2, …, M}

are performed in an interactive fashion. For safety consideration, only

one profile (BR or CR) is adapted in each iteration. To do this, BR

adaptation is performed in a time-driven manner such that the values

of {βn| n = 1, 2, …, N} are adapted for Nβ consecutive iterations, which

is set to 2 in our implementation. CR adaptation is performed in a
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combined time- and event-triggered fashion; the adaptation proce-

dure ends either when the zone objectives are achieved or when a

maximum number of iterations Nγ is reached, which is set to 5 in our

implementation. As meal boluses can be adjusted by the patients

based on their knowledge and preference, the overall feedforward

parameter adaptation phase begins by adapting the BR profile and

iterates according to the alternating procedure described. An illustra-

tion of the procedure is provided in Figure 2. The phase terminates

when the zone objective criterion for CR adaptation remains valid

after performing the BR adaptation.

2.1.4 | Choice of parameters

A few parameters are adjustable in the proposed BR and CR adapta-

tion procedure, including λγ , δy
γ
n , Nβ , and Nγ, the values of which used

in the in silico studies of this work have been provided in the above

subsections. Specifically, λγ and δyn are safety factors that limit the

rates of change of the elements in the CR profile, while Nβ and Nγ are

the maximum allowable inner iterations to adapt BR and CR profiles

(see also Figure 2) and thus jointly determine the duration of the

adaptation process. With these physical interpretations, other values

of these parameters can be selected based on clinical experience and

knowledge of particular patients in clinical studies.

2.2 | Learning feedback control parameters

In this subsection, we focus on Phase II of the adaptation procedure,

which deals with parameter adaptation for feedback control. As the

appropriately adjusted BR and CR profiles in Phase I provide opti-

mized operating conditions for the closed-loop controller, only moder-

ate changes on the key parameters are needed to achieve satisfactory

glucose regulation. Based on this observation, the approach here is to

first determine the bottle-neck parameter that limits the performance

of closed-loop control for a specific patient, and then to dynamically

learn the appropriate value of the selected parameter. Ideally,

improved performance could be potentially obtained by considering

combined dynamic parameter selection and adaptation, but the

improvement comes with compromised risk of hypoglycemia and time

needed to complete the adaptation procedure.

2.2.1 | Parameter selection based on sensitivity analysis

Generally, parameter selection determines the parameter φ2

R̂,D,γIOB

n o
to be adapted in Phase II. In this work, a sensitivity analy-

sis approach is utilized to achieve automatic parameter selection, by

rerunning the closed-loop control algorithm with different parameter

settings using the most recent historical glucose measurements for a

specific patient, which is the so-called advisory-mode analysis.22 To

do this, for each φ2 R̂,D,γIOB

n o
, a pair of upper and lower bounds

{φ+, φ−} that limit the range of feasible choices of φ in the adaptation

procedure are specified; in our implementation, {φ+, φ−} is chosen as

{150%, 50%}, {122%, 89%}, and {120%, 70%} of the corresponding

nominal values for R̂, D, and γIOB, respectively. Advisory mode com-

parisons are performed by separately choosing φ¼φ and φ¼φ and

keeping parameters in R̂,D,γIOB

n o
= φf g unchanged. The sensitivity

analysis is then performed by solving

φ? ¼ argminφ2 R̂,D, γIOBf g j I φ+ð Þ−I φ−ð Þ j , ð10Þ

where ℐ(φ+) and ℐ(φ−) denote the total amount of insulin calculated

in the advisory mode analysis for φ = φ+ and φ = φ−, respectively. This

procedure determines the parameter that has the “strongest” control-

lability of insulin delivery, hence the closed-loop glycemic regulation

can be adjusted most efficiently.

2.2.2 | Parameter optimization

The goal of adapting the selected parameter φ is to achieve satisfac-

tory average glucose level without having risk of hypoglycemia, which

implies improved percentage time in euglycemic range [70, 180] mg/dl

as the glucose profile is restricted below by considering constraints on

hypoglycemia. To achieve this goal, we again formulate the adaptation

procedure as a sequential optimization problem:

minφk +1 fφ φk +1,θφ
� � ð11Þ

s:t: jφk +1−φk j ≤ λφφk , ð12Þ

j fφ φk +1,θφ
� �

− fφ φk ,θφ
� � j ≤ δyφ , ð13Þ

max φ− ,φk +1
n o

≤φk +1 ≤ min φ+ ,φk +1
� �

: ð14Þ

Here, φk + 1 denotes the value of φ at the (k + 1)th iteration,

fφ(φk + 1, θφ) denotes the average glucose value obtained using φk + 1

with θφ being potential dependent parameters. The constraints in

Equations 12 and 13 restrict the rate of change of φ and fφ(φ, θφ),

respectively. In our implementation, λφ is selected as 30%, and δy
φ
is

chosen as 6 mg/dl; the roles of these two parameters are identical to

those of λγ and δy
γ
n discussed in Section 2.1.4. The constraints in

Equation 14 bound the feasible region of φ; in addition to φ− and

φ+ , φk +1 and φk +1 provide additional dynamic bounds based on his-

torical values of φ, namely, {φ1, …, φk}, to help avoid hypoglycemia

risks. The sequential optimization procedure ends either when aver-

age glucose level becomes satisfactory (less than 135 mg/dl in our

implementation) or when the bounds in Equation 14 become active,

the latter of which means the controller has achieved its perfor-

mance limitation. Similar to the case of adapting γn, the analytical

expression of the cost function fφ(φk + 1, θφ) is not known. A BO-

assisted optimization algorithm will be introduced to solve this

problem.FIGURE 2 Adaptation of feedforward control parameters
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2.3 | BO-assisted parameter adaptation

In Sections 2.1.2 and 2.2.2, optimization problems with unknown

objective functions and constraints need to be solved. Specifically, the

two problems in Equations 6-9 and 11-14 share the form

minψ k f ψ k ,θψ
� � ð15Þ

s:t:, j f ψ k ,θψ
� �

−yk−1 j ≤ δ, ð16Þ

g ψ k
� �

≤0, ð17Þ

where f(ψk, θψ) is an unknown function of ψk parameterized by θψ , yk − 1

is a noisy measurement of f(ψk − 1, θψ), δ is a known parameter, and g(ψk)

is a known (linear) function of ψk. Noticing the fact that a noisy measure-

ment/estimate yk of f(ψ
k, θψ), which is average glucose level for a fixed

ψk, is available, we solve this problem through designing a BO-assisted

optimization algorithm, to make efficient use of historical measurements

of {f(ψk, θψ)| k 2 πk} for an admissible set of iteration indexes πk; here, πk

is defined as the set of iteration indexes for which the same set of

parameters are adapted while other adaptation parameters are kept con-

stant. The main idea is to obtain a data-driven estimate f̂ ψk ,θkjDkð Þ of f
(ψk, θψ) based on available historical data Dk . In the BO literature, dif-

ferent forms of f̂ ψk ,θkjDkð Þ have been proposed.23 As the size of data

set for adaptation is small compared with those available for machine

learning problems, a linear kernel is adopted in this work:

f̂ ψ k ,θkjDk

� �
≔ θk,1ψ

k + θk,2 ð18Þ

with θk ≔ [θk, 1, θk, 2]
>. Note that to make efficient use of data, the

value of θk is made ψ-dependent and is obtained based on data seg-

ment Dk �Dk , which is the subset of data Dk corresponding to itera-

tion indexes in πk. This further explains the rationale for using a linear

kernel: the cost function in Equation 18 simply represents a local line-

arization of the unknown cost function f(ψk, θψ) around the adapted

values of ψk.

To solve Equations 15-17, a BO-based algorithm is proposed (see

Algorithm 1), which iteratively adapts tuning parameter ψk until the

problem-dependent terminal conditions are satisfied. For each itera-

tion, the algorithm starts with updating the admissible set πk, and

obtains Dk �Dk based on πk (line 2 of the algorithm). For the problems

in Equations 6-9 and 11-14, the effect of the adaptation parameter ψ

on f(ψk, θψ) (which can be understood as the sign of the partial deriva-

tive) is known, and can be exploited to determine the search direction

Sk (line 3); this helps ensure that the algorithm can evolve along the

correct direction with noisy measurements {yk}. If there is not enough

data to perform data fitting (line 4), heuristic adjustment of φk will be

performed along Sk for safety concerns, where δS is selected as 10%

in our implementation. For all other scenarios, φk is adjusted through

the proposed BO procedure (lines 5–11). The BO first estimates θk

based on Dk (line 6). With the obtained θk, ψk is calculated by solving

a constrained optimization problem (line 7). As f̂ φk ,θkjDkð Þ is linear

with respect to φk, the optimization problem is actually a linear pro-

gramming problem. To enhance the robustness of the algorithm

against noises in {yk}, the deviation of ψk from ψk − 1 is compared with

Sk; the value of ψk will be recalculated if inconsistency is observed

(line 8). Safety checks are further performed for ψk (line 10), where

the value of ψk is truncated if the constraint is violated. The obtained

φk is then implemented to obtain yk, which is collected to update Dk

(line 12).

3 | RESULTS

In this section, we evaluate the proposed adaptation algorithm

through multiple-month simulations on the 111-patient cohort of the

US FDA accepted UVA/Padova simulator.16 To mimic intra-day varia-

tions in insulin sensitivity and the effect of dawn phenomenon, the

diurnal patterns of the parameters in the endogenous glucose produc-

tion and glucose utilization models are implemented according to Ref-

erence, 24 Inter-day variation in insulin sensitivity is further

introduced by adding random noise obeying a uniform distribution

within �5% of the nominal values of the parameters that determine

insulin sensitivity and dawn phenomenon. To consider the effect of ill-

ness on insulin sensitivity, a healthy in silico patient has a 5% chance

of entering a sick state that can last up to five consecutive days; when

an illness event happens, it can either increase by 50% or decrease by

100% the magnitudes of the insulin sensitivity and dawn phenomenon

parameters with probabilities of 0.5, throughout the illness period.

We assume that the state of sickness is not announced to the adapta-

tion algorithm. To mimic lifestyle disturbances, the in silico subjects

take breakfast, lunch, and dinner with normally distributed meal sizes

(with means and standard deviations equal to [50, 75, 75] g and

[3, 4, 4] g carbohydrate [CHO]) and meal times uniformly distributed

in [07:00, 09:00], [11:00, 13:00], and [18:00, 20:00], respectively; in

addition, each meal can be skipped with probability 0.1. The CGM

measurement noise is generated according to a random noise seed on

each day. We assume that the meals are all fully announced but the

meal boluses are calculated with potentially inappropriate CR profiles.

The updated parameters obtained in each iteration are used for

1 week (7 days)10 before the next iteration, so that enough data can

be collected for performance evaluation. For implementation purpose,

we assume the BR profile contains five segments, the effective period

of which are [02:00, 05:00], [05:00, 10:00], [10:00, 16:00], [16:00,

21:00], and [21:00, 02:00], respectively; the CR profile are composed

of four segments, the effective period of which are [05:00, 10:00],

[10:00, 16:00], [16:00, 21:00], and [21:00, 05:00], respectively; only

the first three segments that are responsible to breakfast (B), lunch (L),

and dinner (D) are adapted and the segment that effective overnight

is set to the default value from the simulator.

To evaluate the safety, effectiveness, and robustness of the adap-

tation algorithm, three scenarios are considered. In the first scenario

(Scenario I), the patients are assumed to have doubled CR and halved

BR profile segments compared with the default values in the simula-

tor; both of these settings will lead to increased hyperglycemia due to

conservative insulin delivery. In the second scenario (Scenario II), the

patients are initiated with doubled CR and doubled BR profiles; the

former would cause conservative meal boluses but the latter would

counteract with relatively larger insulin microboluses, which makes it

challenging for the adaptation algorithm to identify the appropriate

tuning parameters. The third scenario (Scenario III) mimics real-life sit-

uations, in which different segments in the BR profile and CR profile
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may deviate within a reasonable range from either above or below the

corresponding appropriate values; to do this, the in silico subjects are

initialized with randomized BR and CR profiles, in which the segments

are generated according to uniform distributions within [50%, 150%]

of the corresponding default values. For all in silico subjects, we

assume the zone MPC developed in Reference 20 with default param-

eters is used. The parameters in the adaptation algorithm are specified

in Sections 2.1–2.3. For all three scenarios, the first week is utilized to

collect data for initialization and thus no parameter is adjusted; the

adaptation process starts from the second week. All simulations are

run for 24 weeks. The key glycemic metrics obtained before and after

the proposed adaptation algorithm are provided in Table 1.

3.1 | Results for Scenario I

The results for Scenario I are shown in Figures 3 and 4. Figure 3 pro-

vides the trends of key glycemic metrics during the adaptation

procedure, including average BG levels, percentage time in the eugly-

cemic range [70, 180] mg/dl, percentage time below 70 mg/dl, and

percentage time below 54 mg/dl. Due to the joint effect of underesti-

mated BR and overestimated CR profiles, the in silico subjects have

elevated glucose levels on Week 1. From Week 2, monotonic and

steady improvements are achieved by the proposed adaptation algo-

rithm, and a trend of convergence in the performance metrics is

observed around Week 12 as no significant changes happened in the

rest of the simulations. For the 111-subject cohort, the adaptation

algorithm manages to improve glycemic control performance dramati-

cally in terms of both average glucose levels (from 194.3 mg/dl [Week

1] to 142.3 mg/dl [Week 24]; p < .001) and average percent time in

euglycemia range [70, 180] mg/dl (from 41.0% to 88.1%; p < .001).

The adaptation algorithm is safe in the sense that no hypoglycemia

risk is caused during the process.

The trends of parameter changes during the adaptation procedure

are provided in Figure 4. The important observation here is that

FIGURE 3 Trends of the glycemic management metrics in the adaptation procedures for the 111-patient cohort (Scenario I). A box-and-whisker

approach is used to plot the data, where on each box, the central white line is the median, the edges of a box denote the 25% and 75%
percentiles, and the whiskers denote the 5% and 95% percentiles

TABLE 1 Glycemic metrics obtained before and after the proposed adaptation algorithm

Scenario I Scenario II Scenario III

Metrics Week 1 Week 24 p value Week 1 Week 24 p value Week 1 Week 24 p value

Percentage time < 54 mg/dl 0.0 (0.0) 0.0 (0.0) .017* 7.0 (7.6) 0.0 (0.0) <.001* 0.0 (0.0) 0.0 (0.0) .763

Percentage time < 70 mg/dl 0.0 (0.0) 0.0 (0.4) <.001* 15.7 (8.0) 0.0 (0.1) <.001* 0.1 (1.0) 0.0 (0.2) .077

Percentage time 70–180 mg/dl 41.1 (18.2) 88.1 (9.5) <.001* 75.6 (9.9) 88.8 (10.2) <.001* 81.6 (12.4) 88.7 (13.8) <.001*

Mean BG (mg/dl) 194.3 (15.9) 142.3 (8.8) <.001* 110.5 (10.8) 142.0 (8.9) <.001* 144.3 (14.2) 142.4 (9.1) .756

Data in this table are shown as median (inter quartile range). Statistical significance is assessed by Wilcoxon signed-rank test. Statistically significant
(p < .05) changes are highlighted in bold with asterisks.
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through the use of statistical IOB constraints and smoothness con-

straints, strong performance is achieved by the BR profiles with their

segments aligning around the reference value (which is 1 in Figure 4),

instead of profiles with extremely large and small neighboring seg-

ments. In addition, the CR profile segments are aligned around the ref-

erence value; due to the safety constraints, risky (small) values for the

FIGURE 4 Trends of the adaptation parameters in the adaptation procedures for the 111-patient cohort (Scenario I). The same box-and-whisker

approach as that in Figure 3 is used to plot the data. For illustration purpose, the relative values of parameters against default values in the
UVA/Padova simulator are provided

FIGURE 5 Trends of the glycemic management metrics in the adaptation procedures for the 111-patient cohort (Scenario II). The same

box-and-whisker approach as that in Figure 3 is used to plot the data
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CR segments are avoided. In addition, only moderate changes are

observed for parameters in the feedback controller, which is expected

as the obtained feedforward control parameters (BR and CR profiles)

have set up an optimized operating point for the feedback controller,

and thus the default values can achieve satisfactory glucose manage-

ment. It is interesting to note that the second segment of the BR pro-

file is larger than the other elements, which helps counteract against

diurnal insulin sensitivity changes and dawn phenomenon.

FIGURE 6 Trends of the adaptation parameters in the adaptation procedures for the 111-patient cohort (Scenario II). The same box-and-whisker

approach as that in Figure 3 is used to plot the data. Keys are the same as those in Figure 4

FIGURE 7 Trends of the glycemic management metrics in the adaptation procedures for the 111-patient cohort (Scenario III). The same box-and-

whisker approach as that in Figure 3 is used to plot the data
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3.2 | Results for Scenario II

The results for Scenario II are provided in Figure 5 and 6. Due to the

increased BRs, severe hypoglycemia is observed on Week 1 of the

simulation. The controller-led BR adaptation algorithm, however, is

able to recognize safe BR profiles for the in silico cohort from Week

2 and perform safe fine tunes for the rest of the adaptation proce-

dure. The CR adaptation procedure works properly as well, which

manages to decrease the segments in the CR profiles for improved

glycemic metrics. By eliminating risks of hypoglycemia (average per-

cent time below 70 mg/dl, from 15.7% [Week 1] to 0.0% [Week 24],

p < .001), the adaptation algorithm improves average percent time in

[70, 180] mg/dl (from 75.6% [Week 1] to 88.8% [Week 24], p < .001).

The obtained patterns of the BR profile and CR profile are similar to

that of Scenario I.

3.3 | Results for Scenario III

This scenario is devoted to simulate a 6-month study of AP parameter

adaptation, for patients with mixed and reasonably over- or underesti-

mated segments in their BR and CR profiles. The results are provided

in Figures 7 and 8. As expected, with slightly incorrect BR and CR pro-

files, the in silico patients generally have acceptable glucose manage-

ment performance, which challenges the proposed adaptation method

on the ability of recognizing and adjusting small but realistic mis-

matches in the adaptation parameters. From both figures, we observe

that the algorithm is able to discern these parameter mismatches and

achieve improved average percentage time in [70, 180] mg/dl (from

81.6% on Week 1 to 88.7% on Week 24), p < .001, without causing

risk of hypoglycemia. It appears that average percentage time below

70 mg/dl is decreased as well, but the significance is not sufficiently

small (from 0.1% to 0.0%, p = .077). Similar patterns in the BR and CR

profiles to that obtained in the first two scenarios are realized.

3.4 | Intra-patient changes

To further illustrate the effect of the adaptation process, glucose and

insulin profiles of a particular patient simulated using the adaptation

parameters obtained on Weeks 1, 8, 16, and 24 are provided in

Figure 9 (Scenario I), Figure 10 (Scenario II), and Figure 11 (Scenario

III), in which a 24-hr protocol composed of a 50 g CHO breakfast at

08:00, a 75 g CHO lunch at 12:00, and a 75 g CHO dinner at 19:00

with the sensor noise seed is used. The results obtained are consistent

with the population-level analysis in this section.

4 | DISCUSSION

Several challenges exist in approaching the AP parameter adaptation

problem. First, the effect of different AP parameters on glucose man-

agement is usually strongly coupled. For instance, the size of a real-

time insulin microbolus is jointly determined by the BR profile and the

closed-loop feedback controller, while BR, feedback controller, and

user-requested meal boluses can all contribute to meal-related insulin

delivery. This causes loss of identifiability to determine the correct

root cause of poor glucose management; adjusting an incorrect

parameter, however, may cause disastrous consequences. Second,

lifestyle disturbances can also mask issues in glucose management.

For instance, if a patient had a low BR for some time period while

he/she happened to be jogging (which would increase insulin sensitiv-

ity) at the same time, the glucose traces might still appear to be

acceptable, which would prevent an adaptation algorithm from identi-

fying the real problems in glucose regulation. Finally, a considerable

number of parameters in AP need to be considered as candidate vari-

ables in the adaptation procedure (which is 12 in our in silico tests in

this work), while from a user experience perspective, the time of adap-

tation is limited (e.g., 24 weeks). As an iteration of the adaptation

FIGURE 8 Trends of the adaptation parameters in the adaptation procedures for the 111-patient cohort (Scenario III). The same box-and-

whisker approach as that in Figure 3 is used to plot the data. Keys are the same as those in Figure 4
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procedure may take 1 week to average out lifestyle disturbances, this

basically implies that the task of AP adaptation through adjusting

12 coupled parameters need to be achieved within 24 iterations.

To overcome these challenges, a data-driven multivariate learning

framework is developed in this work, on the basis of a dual-layer

control scheme for long-term home use of AP. In this scheme, feed-

back/feedforward control algorithms operate in the lower layer to

achieve real-time glucose regulation, while the adaptation algorithm

is implemented in the upper layer based on data from the lower

layer. The proposed adaptation procedure is composed of two

phases. The first phase focuses on adaptation of feedforward control

parameters, including BR and CR profiles. To bypass the noniden-

tifiability issue, a controller-led approach is proposed for BR adapta-

tion; the key idea is to exploit the intelligence from lower-layer

feedback control algorithm to achieve autonomous decision of BR

profiles. IOB and smoothness constraints are proposed to avoid

hypoglycemia risks in the controller-led decision procedure. The CR

profile is adapted through optimizing the postprandial BG levels

toward a user-specified target zone while considering dynamically

updated data-driven safety constraints. A hybrid time- and event-

triggered iterating procedure is proposed to achieve joint adaptation

of BR and CR profiles. The second phase is devoted to adapting

feedback control behavior. To improve the efficiency of adaptation,

a sensitivity analysis is proposed through performing advisory mode

comparison based on historical glucose data,22 so that the bottleneck

control parameter can be selected for adaptation. The selected

parameter is then updated by optimizing average glucose levels

while restricting risks of hypoglycemia.

For optimization problems encountered in CR profile and feed-

back control adaptation, analytical relationships between optimization

parameters and performance metrics are generally not known, which

precludes the use of standard optimization methods.25 To overcome

this additional challenge, the optimization problems are solved utiliz-

ing a BO approach, which was developed to optimize unknown objec-

tive functions based on noisy measurements in the machine learning

community,23 and has been recently used in on-line dynamics learn-

ing, automatic controller tuning and nonlinear adaptive control.26–29

In our work, we integrate BO with safety requirements and clinical

experience, so that the “black-box” glucose regulation process can be

safely adapted and improved.

The proposed adaptation method is evaluated on the basis of the

111-patient cohort of the U.S. FDA accepted UVA/Padova simula-

tor16 for three in silico scenarios. The first two scenarios focus on

edge cases with (a) underestimated BR and overestimated CR profiles

and (b) overestimated BR and CR profiles, while the third scenario

considers a real-life situation that different segments in the BR and

CR profiles can be either overestimated or underestimated within a

moderate extent. To challenge the proposed algorithm, lifestyle distur-

bances caused by timing and size changes for meals, inter- and intra-

day insulin sensitivity changes, and occasionally occurring sickness

that can significantly offset insulin sensitivity. We show that for all

scenarios, the proposed method is able to correctly identify and
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(d) Week 24

FIGURE 9 Twenty-four-hour glucose and insulin profiles simulated using the system parameters obtained on Weeks 1, 8, 16, and 24 of Scenario

I for a particular patient. For comparison purpose, the same meal protocol and measurement noise sequence are applied to generate the data in
the four subplots. Green and purple triangles denote meals of 50 g and 75 g CHO, respectively
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(d) Week 24

FIGURE 11 Twenty-four-hour glucose and insulin profiles simulated using the system parameters obtained on Weeks 1, 8, 16, and 24 of

Scenario III for a particular patient. Meal protocol and sensor noise sequence are the same as those in Figure 9
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FIGURE 10 Twenty-four-hour glucose and insulin profiles simulated using the system parameters obtained on Weeks 1, 8, 16, and 24 of

Scenario II for a particular patient. Meal protocol and sensor noise sequence are the same as those in Figure 9
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adaptively adjust the inappropriate parameters to achieve improved

and satisfactory glucose regulation, without causing risks of hypogly-

cemia throughout the adaptation procedure.

5 | CONCLUSION

In this article, a data-driven multivariate learning approach has been

proposed for long-term parameter adaptation of an AP, on the basis

of a dual-layer control scheme. Through a two-phase adaptation pro-

cedure, the algorithm gradually adjusts BR profile, CR profile, and

parameters in the closed-loop control algorithm. The adaptation of BR

profile was performed by based on the behavior of the closed-loop

control algorithm while considering IOB and smoothness constraints,

and CR profile and feedback control parameters were adjusted

through a BO-assisted approach. It was shown that the algorithm was

able to adjust inappropriate parameters for improved glucose regula-

tion, despite of lifestyle disturbances caused by skipped meals, sick-

ness, and inter- and intra-day insulin sensitivity changes.
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Algorithm 1: BO-assisted parameter adaptation

1: while termination conditions not satisfied do.

2: update iteration counter k ≔ k + 1, update πk and query

Dk for data Dk used in adaptation of ψ ;

3: update Sk based on yk − 1;

4: if jπk j ≤ nBO then.

ψk ¼ 1+ δsSkð Þψk−1;

5: else.

6: update θk through solving.

minθ
P

k2πk yk − f̂ ψk ,θjDkð Þ

 �2

;

7: obtain ψk by solving.

minψk
f̂ ψk ,θkjDkð Þ

s:t:, j f̂ ψk ,θkjDkð Þ−yk−1 j ≤ δ;
8: if sign(ψk − ψk − 1) is inconsistent with Sk then.

ψk ¼ 1+ δsSkð Þψk−1;

9: end if.

10: update ψk through safe checks.

ĝ ψkjDkð Þ≤0;
11: end if.

12: implement ψk to obtain yk, and update data set

Dk +1 ≔Dk [ Δkf g with Δk ≔ {yk, ψk};

13: end while.
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