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Abstract: As a critical storage technology, the material selection and structural design of
flash memory devices are pivotal to their storage density and operational characteristics.
Although van der Waals materials can potentially take over the scaling roadmap of silicon-
based technologies, the scaling mechanisms and optimization principles at low-dimensional
scales remain to be systematically unveiled. In this study, we experimentally demonstrated
that the floating-gate length can significantly affect the memory window characteristics
of memory devices. Experiments involving various floating-gate and tunneling-layer
configurations, combined with TCAD simulations, were conducted to reveal the elec-
trostatic coupling behaviors between floating gate and source/drain electrodes during
shaping of the charge storage capabilities. Fundamental performance characteristics of
the designed memory devices, including a large memory ratio (82.25%), good retention
(>50,000 s, 8 states), and considerable endurance characteristics (>2000 cycles), further
validate the role of floating-gate topological structures in manipulating low-dimensional
memory devices, offering valuable insights to drive the development of next-generation
memory technologies.

Keywords: van der Waals transistor; floating-gate memory; memory window; electrostatic
coupling

1. Introduction
The rapid advancement of artificial intelligence and big data has driven the demand

for high-density, high-performance storage. This makes the scaling of memory devices
inevitable, although they do not directly face the same severe scaling challenges as tran-
sistors [1,2]. Floating-gate memory (FGM), as a key commercial storage technology, has
achieved significant milestones in certain areas, for example, Micron and Intel have adopted
3D NAND technology with floating-gate cells, offering about three times the storage ca-
pacity of conventional NAND dies [3]. However, the ITRS technology roadmap predicts
severe challenges for FGM scaling beyond the 12-nm node [4]. Emerging van der Waals
(vdWs) materials provide viable solutions for further scaling [5–8]. The introduction of
vdWs into FGM devices not only enables a minimized device design of the channel, but also
offers an ideal platform for in-depth studies of the physical properties of memory device
due to their back end of line (BEOL) processing compatibility and immunity to the short
channel effect [9–23]. For example, graphene (Gr) as the floating-gate layer can maintain an
extremely high current density with effective protection against gate oxide layer contamina-
tion and suppress ballistic current-induced charge storage degradation compared with its
polycrystalline silicon counterparts [24–36]. In particular, with device dimensions stepping
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into the nanoscale, the floating-gate configuration has become more critical, as it dominates
the storage capability such as storage states and retention [32,37,38]. Although the relevant
feature between the floating gate and back gate in vdWs FGM has been mentioned, system-
atic research on the coupling effects among critical terminals remains relatively scarce, with
many key issues yet to be thoroughly explored and resolved [28,39]. Consequently, more
efforts should focus on in-depth investigations into the effect of floating-gate configurations
on storage characteristics to achieve high-performance memory devices.

In this study, we systematically investigated the floating gate-topology-dependent
memory behavior of typical vdWs FGM devices by combining experimental and theoretical
approaches. The fabricated MoS2 FGM with a longer floating gate demonstrated better
carrier storage capability and delivered a positive correlation between the memory win-
dow (MW) and the floating-gate length. A saturation phenomenon of the MW could be
observed by either prolonging the floating-gate layer over the channel length or increasing
the thickness of the tunneling layers, which emphasizes the critical role of floating-gate
design in manipulating the charge storage characteristic in FGM devices. TCAD device
simulation was further conducted to clarify the floating-gate configuration-dependent
electrical field distribution for carrier tunneling and the negative effect of electrostatic cou-
pling between the floating gate and source/drain (S/D) electrodes on the carrier tunneling
process. Based on the optimized device design, we further performed fundamental device
characterization and achieved a good memory performance including a large memory
window ratio (82.25%), good retention (>50,000 s, 8 states), and considerable endurance
characteristics (>2000 cycles). This work establishes a connection between floating-gate
design and memory performance in vdWs FGM devices, providing insights for further
scaling and future developments.

2. Experimental
This study fabricated a series of vdWs FGM devices using a back-gate structure on a

SiO2/Si substrate with a 300 nm SiO2 layer as the gate dielectric.
2H-MoS2 flakes were employed as the semiconductor channel. Few-layer Gr and h-BN

with different sizes or thicknesses were used to serve as the floating gate and tunneling
layer, respectively.

The fabrication process begins with the thermal evaporation of a pair of 50 nm thick
Au electrodes onto a cleaned SiO2/Si substrate. Gr, h-BN, and MoS2 flakes are then
mechanically exfoliated using PDMS films and sequentially transferred onto the target
substrate [10]. The Gr floating gate is entirely encapsulated with h-BN layers, which serve
as a tunnel barrier, isolating the channel from the MoS2 channel. The Gr floating gate
is laterally encapsulated by h-BN and remains electrically isolated from both the MoS2

channel and control gate. This design ensures charge confinement while enabling field-
driven charge injection. Finally, a few-layer Gr is aligned and transferred to the ends
of the MoS2 films to serve as source and drain electrodes with a fixed channel length
of 15 µm, completing the device fabrication. During this process, vdWs materials are
screened using an optical microscope to ensure that their thickness meets the experimental
requirements [9]. Electrical measurements were conducted in a nitrogen atmosphere at
300 K using a Keysight B2912B semiconductor parameter analyzer, (Krysight, Bayan Lepas,
Malysia) effectively minimizing environmental interference and ensuring stable device
characterization. To further investigate the device structure and surface morphology, atomic
force microscopy analysis (AFM) was performed to examine the thickness of fabricated
devices across different materials [5]. Additionally, device simulations were performed
using Silvaco TCAD 2021, providing a theoretical framework to analyze device behavior.
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3. Results and Discussion
In general, the equivalent circuit of a typical vdWs FGM can be represented as a series

connection of Cox and Ch-BN, as illustrated in Figure 1, where Cox denotes the capacitance
between the back gate and the floating gate, and Ch-BN represents the capacitance between
the floating gate and the S/D electrodes. It is evident that the topology of the floating-gate
layer plays a crucial role in shaping the performance of the vdWs FGM. The coupling
behavior between the back gate and the floating gate has been basically evaluated in
existing studies [40], however, the interrelations between the floating gate and other critical
terminals, such as the source and drain electrodes, remain unclear.
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Figure 1. (a) Three-dimensional structural schematic of a typical vdWs FGM, where the blue box
represents the coupling effect between the floating gate and the back gate, and the red box represents
the coupling behavior between the floating gate and the S/D electrodes. (b) Two-dimensional
structural schematic of the vdWs FGM with 1⃝ Denotes the coupling between the back gate and the
floating gate. 2⃝ Denotes the coupling between the floating gate and the source/drain terminals
interrelations among critical terminals and the equivalent circuit with the main capacitances.

Therefore, to systematically investigate the influence of floating-gate topology on
memory performance, devices with an elaborate design, for example, by varying the
floating-gate length and the tunneling-layer thickness, were experimentally fabricated.
At first, by adjusting the floating-gate length (Lfg), this study explored how structural
variations impact the charge storage and MW characteristics. In this device series, the
channel length was maintained at 15 µm, while the Lfg was varied symmetrically with
respect to the S/D electrodes. The optical microscope (OM) image of a representative device
is shown in Figure 2a, providing a clear view of the material stacking. Additionally, AFM
was used to determine the thicknesses of the key layers in the device structure. As shown in
Figure 2b, the thicknesses of MoS2, h-BN, and Gr flakes were 9.20 nm, 19.70 nm, and 7.03 nm,
respectively. The output characteristic curves of the FGM device exhibited excellent linearity
(Figure S1), indicating that the Gr S/D electrodes formed a high-quality ohmic contact
with the MoS2 channel. Furthermore, Raman spectroscopy analysis demonstrated the
high-quality vertical stacking of the constituent material layers in the FGM heterostructure
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(Figure S2). To evaluate the impact of Lfg on memory behavior, electrical measurements
were performed under a ±80 V bidirectional back gate voltage (Vbg) sweep with a fixed
drain voltage (Vds) of 0.1 V. As shown in Figure 2c, the measured transfer curves revealed
significant variations in MW as the Lfg changed. The varying trend could be further
visualized in the statistical results of 19 devices (Figure 2d). Initially, as the Lfg increased,
the MW expanded, indicating enhanced charge storage capacity. However, when the Lfg

approached or exceeded the channel length (Lch), a saturation phenomenon occurred,
followed by a gradual MW decline. The working mechanism of the FGM devices was
hypothesized to explain this phenomenon, as illustrated in Figure 2e. For devices with
shorter floating gates, increasing the Lfg enhances the charge storage capability, leading to a
gradual MW increase. However, as the Lfg extends closer to the S/D electrodes, electrostatic
coupling intensifies, weakening the vertical electric field strength between the floating
gate and channel, thereby hindering the electron tunneling process. Consequently, MW
exhibits a saturation trend before gradually decreasing. These findings emphasize the
crucial role of floating-gate topology in shaping memory performance in low-dimensional
FGM devices [40].
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Figure 2. (a) A typical OM image of the vdWs FGM. (b) AFM image and the corresponding height
profile of the fabricated device. (c) Transfer curves for devices with an Lfg of 5, 10, 15, 25, and 50 µm,
measured under a fixed Vds of 0.1 V. (d) Histogram of MW for devices with varying Lfg. The dashed
line with red dots shows the average values of MW. (e) Schematic of the working mechanisms and
electron transport behavior with different Lfg.

To further verify the above-mentioned hypothesis regarding the influence of electro-
static coupling between the floating gate and S/D electrodes, an in-depth investigation was
performed on the charge storage characteristics by tuning the carrier tunneling behavior.
Specifically, by systematically varying the thickness of the h-BN tunneling layer (Th-BN),
how the floating-gate configuration impacts MW, particularly in the presence of electro-
static coupling effects, can be determined. For a fair comparison, two sets of devices were
fabricated with the Lfg fixed at 15 µm and 30 µm. For each set, three different Th-BN were
adopted, which were categorized as the thinner, medium, and thicker h-BN layer. The spe-
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cific three thicknesses, such as 8.84 nm, 17.24 nm, and 24.35 nm, were further clarified using
AFM analysis (Figure 3a). As a result, the measured transfer curves in Figure 3b clearly
illustrated significant variations in MW as the Th-BN changed. The extracted MW trends are
summarized in Figure 3c, revealing distinct behaviors for the two Lfg sets. Specifically, for
devices with Lfg = 15 µm, MW exhibited a monotonic decrease as the Th-BN increased. In
contrast, for devices with Lfg = 30 µm, MW followed a hump-shaped trend, initially increas-
ing before gradually declining as the Th-BN continued to rise. The physical mechanisms
underlying this behavior are illustrated in Figure 3d. Taking devices with a longer Lfg

(30 µm) as an example, when Th-BN is relatively thin, the floating gate is in closer proximity
to the S/D electrodes, resulting in a stronger electrostatic coupling effect. This enhanced
coupling weakens the vertical electric field between the floating gate and the MoS2 channel,
thereby reducing the effectiveness of electron tunneling and leading to a lower MW. As
Th-BN increases, the electrostatic coupling effect is progressively mitigated, which in turn
strengthens the vertical electric field, allowing for improved charge storage and an increase
in MW. However, as Th-BN continues to increase, the widening of the tunneling barrier
eventually suppresses electron tunneling, leading to a gradual decrease in MW. This trend
indicates that while an optimal Th-BN can enhance memory performance by balancing the
tunneling efficiency and electrostatic effects, excessive thickness ultimately hinders charge
trapping due to increased energy barriers. These findings provide further evidence of the
crucial role that electrostatic coupling plays in shaping charge storage behavior in FGM
devices. Understanding the interplay between Lfg, Th-BN, and electrostatic effects offers
valuable insights for optimizing the tunneling layer design to achieve improved memory
performance in low-dimensional memory devices.

To further explore the underlying physical mechanisms of the critical role of floating-
gate topology in shaping FGM charge storage capabilities, device modeling and electrical
simulations were conducted using the ATLAS module of Silvaco TCAD. Note that due
to the lack of several new materials in the database of the current simulation module, the
used MoS2, h-BN, and Gr were newly defined according to the key physical parameters
(Table 1) [41–45]. Figure 4a presents the simulated device structure, which shares the same
architecture as the experimentally fabricated devices, ensuring consistency between the sim-
ulation and experimental conditions. The corresponding Lfg-dependent MW characteristics
are also depicted in Figure 4b,c, which revealed a clear monotonic decrease as Lfg increased
from 15 µm to 50 µm. These results aligned well with the experimental observations and
confirmed that increasing the Lfg distinctly suppresses the charge storage windows. To
further reveal the dynamic tunability of Lfg on the charge storage behavior, the evolution of
the electric field across the tunneling layer was simulated after the programming operation.
As can be seen in Figure 4d, after programming, the electric field strength between the
floating gate and the MoS2 channel showed a clear monotonic decline as Lfg increased. This
phenomenon can be attributed to the intensification of electrostatic coupling effects, which
reduces the vertical tunneling electric field and hinders efficient charge trapping. Note
that this scenario is consistent with the physical images for the experimental results shown
in Figure 2d, further validating the hypothesis that electrostatic coupling plays a critical
role in memory performance. To gain insights into how the Th-BN affects MW, further
simulations were performed using two sets of devices aligning with our experiments,
Lfg = 15 µm and Lfg = 30 µm, respectively. For devices with Lfg = 15 µm, the electrostatic
coupling effects between the floating gate and S/D electrodes were relatively weak, and
Th-BN dominated during the carrier transport. As shown in Figure 4e, the simulated MW
decreased monotonically as Th-BN increased, which suggests that the thicker the tunneling
barrier width (increasing Th-BN), the lower tunneling probability for carriers. However,
for devices with Lfg = 30 µm, a distinct evolution of MW depending on Th-BN could be
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observed. In this scenario, the MW initially increased as Th-BN increased before reaching a
peak and subsequently decreasing. The underlying mechanism can be explained by the
competing influences of electrostatic coupling and tunneling barrier width. As the Th-BN

increases, the electrostatic coupling between the floating gate and S/D electrodes gradually
weakens. This, in turn, leads to an enhancement in the vertical tunneling electric field
between the floating gate and the channel, hence enhancing the charge storage capability
and broadening the MW (Figure 4f). However, as the Th-BN continues to increase, the
widening of the tunneling barrier becomes dominant, affecting the charge storage. This
would gradually weaken the tunneling electric field and in turn, negatively influence the
electron tunneling probability and lead to a gradual decline in MW. These simulation
results are consistent with the experimental findings, further confirming that floating-gate
topology plays a crucial role in shaping the charge storage characteristics of FGM devices.
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Based on the principles of floating-gate configuration for FGM devices, we further
performed fundamental device characterization to evaluate the memory characteristics of
fabricated devices with an equal length of channel and floating gate. As shown in Figure 5a,
the device demonstrated excellent retention, maintaining a high ON/OFF current ratio of
over 105 for 5×105 s. For the 10 year linear extrapolation of the ON and OFF state currents,
the ON state/OFF state ratio still exceeded 104 when the retention curves were extrapolated
to 10 years, demonstrating the ultralong retention time of our memory device (Figure S3).
Cycling endurance tests (Figure 5c) showed reproducible switching between low- and
high-resistance states for 2000 cycles. Additionally, multi-bit storage functionality was
achieved by regulating the programming process, producing a 3-bit storage characteristic
with stable retention exceeding 5000 s (Figure 5b). Figure 5d further benchmarks the
ON/OFF current ratio and MW ratio to make a comparison with previously reported FGM
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devices [16,28,46–52]. The results showed that our device achieved an ON/OFF ratio of
105 and a MW ratio of 82.25%, which are comparable to those of FGM devices based on
metal oxide semiconductors, organic materials, and other vdWs materials. These results
underscore the reasonable device design principle of the floating-gate configuration in
improving the memory performance of vdWs FGM devices.

Table 1. Supplementary parameters for various materials in Silvaco.

Material Dopant Thickness Value

MoS2 Eg (eV) 1.9
εr 4.2

χ (eV) 4.7
µn (cm2/(V·s)) 200
µp (cm2/(V·s)) 76

Gr Eg (eV) 0
εr 25

χ (eV) 4
gc (E) 3 × 1017

gv (E) 3 × 1017

µn (cm2/(V·s)) 1 × 104

µp (cm2/(V·s)) 1 × 104

h-BN Eg (eV) 4
εr 7.5
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Figure 5. (a) Retention characteristic of the vdWs FGM under ON and OFF states with an operating
gate voltage of −80 and 80 V, respectively (Vds = 0.1 V). (b) Multi-bit storage function with 8 distinct
states under different gate voltage pulses (from top to bottom: −80, 20, 25, 27, 29, 30, 31, and 80 V,
pulse width = 1 ms). (c) Endurance characteristic of the vdWs FGM under cyclic programming and
erasing operations (Vbg = ±80 V, 1 ms; Vds = 0.1 V. (d) ON/OFF current ratio and MW ratio (the ratio
of memory window size to swept voltage range) benchmark of the FGM devices [16,28,46–52].

4. Conclusions
In conclusion, we systematically investigated the mechanism underlying the impact

of floating-gate topology on the MW of classical MoS2 FGM devices. Both the experimental
measurements and simulation results revealed that the floating-gate length and the electro-
static coupling between the floating gate and S/D electrodes are critical factors influencing
the charge storage capability. These findings highlight the significant role of floating-gate
design in optimizing memory performance. The optimized device achieved remarkable
electrical storage characteristics: a large memory window ratio (82.25%), good retention
(>50,000 s, 8 states), and considerable endurance characteristics (>2000 cycles). This study
provides fundamental insights into the role of floating-gate topology in vdWs FGM devices,
offering valuable guidance for the design and fabrication of next-generation non-volatile
memory technologies. These foundational studies on floating-gate topology provide crit-
ical guidance for the design and fabrication of next-generation high-performance vdWs
FGM devices.
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