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Simple Summary: Seafood, especially the traditional one in Taiwan, is rarely sourced from a fixed
species and routinely from similar species depending on their availability. Hence, species diversity
in seafood could be potentially complicated. While a DNA-based approach has been extensively
utilized for species identification, a large scale of seafood species identification in fish markets and
nearby seafood restaurants could be challenging (e.g., elevated cost and time-consuming only for a
limited number of species identification). Environmental DNA (eDNA) metabarcoding has emerged
as a promising tool for the simultaneous identification of multiple species in the environments. In
this work, we aimed to identify the majority of fish species potentially consumed in fish markets
and nearby seafood restaurants using this novel approach. A total of 153 fish species have been
identified. Specifically, 22 chondrichthyan fish, 14 Anguilliformes species, and 15 Serranidae species
were potentially linked with smoked sharks, braised moray eels, and grouper fish soups, respectively.
This is the first study to examine the feasibility of a large scale of seafood identification using eDNA
metabarcoding. Our findings also further imply the species diversity in traditional seafood might be
seriously underestimated and crucial for the conservation and management of marine resources.

Abstract: Seafood, especially the traditional one in Taiwan, is rarely sourced from a fixed species and
routinely from similar species depending on their availability. Hence, the species composition of
seafood can be complicated. While a DNA-based approach has been routinely utilized for species
identification, a large scale of seafood identification in fish markets and restaurants could be challeng-
ing (e.g., elevated cost and time-consuming only for a limited number of species identification). In the
present study, we aimed to identify the majority of fish species potentially consumed in fish markets
and nearby seafood restaurants using environmental DNA (eDNA) metabarcoding. Four eDNA
samplings from a local fish market and nearby seafood restaurants were conducted using Sterivex
cartridges. Nineteen universal primers previously validated for fish species identification were
utilized to amplify the fragments of mitochondrial DNA (12S, COI, ND5) of species in eDNA samples
and sequenced with NovaSeq 6000 sequencing. A total of 153 fish species have been identified based
on 417 fish related operational taxonomic units (OTUs) generated from 50,534,995 reads. Principal
Coordinate Analysis (PCoA) further showed the differences in fish species between the sampling
times and sampling sites. Of these fish species, 22 chondrichthyan fish, 14 Anguilliformes species,
and 15 Serranidae species were respectively associated with smoked sharks, braised moray eels,
and grouper fish soups. To our best knowledge, this work represents the first study to demonstrate
the feasibility of a large scale of seafood identification using eDNA metabarcoding approach. Our
findings also imply the species diversity in traditional seafood might be seriously underestimated
and crucial for the conservation and management of marine resources.
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1. Introduction

Seafood generally refers to a diverse range of aquatic organisms utilized for food and
has been one of the major traded food commodities in the world [1]. Globally, there is a
growing demand for seafood since human consumption continues to increase annually by
3.1% [2]. Over the past few decades, a rapid growth in aquaculture production has certainly
enabled a substantial increase in the supply of seafood and is projected to outnumber
capture fisheries production by 2030 [3]. However, there is still a considerable amount of
seafood from capture fisheries [2,3]. Furthermore, the species diversity of seafood from
capture fisheries could be more complex due to the nature of aquatic biodiversity.

Seafood identification has increasingly received attention since seafood mislabeling
has been reported, raising public awareness of the safety and sustainability of seafood [4].
Moreover, seafood mislabeling could lead to seafood fraud when a low commercial value
seafood is intentionally labeled as a high commercial value one. In general, mislabeling of
seafood could be attributable to the inaccurate identity and origin of aquatic organisms
used for seafood [5]. Misidentification of seafood species is perhaps one of the most
common problem for seafood mislabeling. To address this issue, it requires accurate and
reliable methods for the identification of seafood species.

Conventionally, morphological characters are routinely used for the taxonomical
identification of seafood species [6]. While visual discrimination of seafood species is
certainly simple and cheap, it also requires experts with well-trained experience. Moreover,
visual discrimination of seafood species could be difficult or impossible since morphological
characters are often removed, altered, or destroyed following the process, storage, and
transport of seafood [6]. Alternatively, DNA-based methods have proven to be effective for
accurate seafood species identification that have been frequently used for the authentication
of seafood products [7–12]. However, conventional DNA-based approach often requires
DNA samples from seafood products, and it could be challenging when specimens are
precious and/or required to keep alive. Moreover, a large scale of DNA-based seafood
species identification also requires a considerable number of DNA samples. In this case,
it could be laborious and expensive for species identification using conventional DNA-
based approach.

Environmental DNA (eDNA) is generally considered as DNA present in a variety
of environmental samples, including soil, air, or water [13,14]. Recently, eDNA-based
sampling has emerged as a promising tool to monitor the presence of species within an
environment. With the aid of high throughput sequencing technology, eDNA metabar-
coding has further allowed the simultaneous identification of multiple species present in
environments [15,16]. Hence, eDNA sampling has been extensively applied to explore the
biodiversity, distribution, and habitat of aquatic organisms [15,17–20].

Taiwan is a relatively small island (36,197 km2) with rich marine biodiversity and
resources since it is geographically located in the Western Indo-Pacific region, a hotspot of
marine biodiversity [21]. More than 3000 finfish species have been recorded in the water of
Taiwan, accounting for 9% of the fish species in the world [22]. Coastal fisheries in Taiwan
are highly active with more than 20 fishery sectors in this region [23]. Consequently, seafood
has been one of major food resources in Taiwan. However, seafood in Taiwan, especially in
fish markets and seafood restaurants, is rarely sourced from a fixed species and routinely
prepared with similar species depending on their availability. Moreover, the oversimple
and inconsistent names of seafood also raise the concerns on the exact identities of seafood.
Hence, the species diversity of seafood could be potentially complicated in Taiwan.

In the present study, we aim to determine whether it is feasible to identify fish species
potentially consumed in fish markets and seafood restaurants using eDNA metabarcoding.
Unlike the conventional DNA-based approach, we have collected and analyzed eDNA
samples in a local fish market and nearby seafood restaurants to provide a reference list of
fish species potentially consumed, particularly those threatened, commercially important,
nutrition valued species. Our findings are also expected to provide a comprehensive
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understanding of the species diversity in seafood for the conservation and management of
marine resources.

2. Materials and Methods
2.1. Sample Collection

This research was conducted in the Heping Island fish market in Keelung City, the
northeastern Taiwan from December 2020 to January 2021 (Figure 1A–C). Heping Island
fish market is a small market (area: 200 m × 10 m), contains 20-30 traditional seafood
stalls and restaurants (Figure 1D,E). The seafood here includes live fish, fresh fish, and
processed products. It is mainly caught in the wild and comes from nearby fish harbors.
Most seafood can be observed directly in the fish tank and at the food stall (Figure 1F–H).
In order to reflect seafood diversity, two sampling sites were chosen near the drain of the
fish market (100 m between two sites) (Figure 1A,D,E). We sampled twice in total, with an
interval of about 1 month. We extracted the seawater near the drain with a bucket, and
then 1 L seawater was filtered immediately through a Sterivex cartridge (0.45 µm, Millipore
SVHV010RS, Merck Millipore, Billerica, MA, USA) with a syringe (500 mL) by hand. Each
sampling was taken three times, and the interval was 10 min. Filtered samples were placed
on ice until they were taken back to the laboratory.
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Figure 1. eDNA sampling site information: eDNA samplings were performed in the Heping Island of Keelung city in
the northeastern Taiwan (A,B). Water samples were collected in two sampling sites (C) near the drains of the fish market
(D) and its nearby seafood restaurants (E). Traditional seafood commonly found in sampling sites, including smoked shark
(F), braised moray eel and Anguilliformes species (G), grouper fish soups and Serranidae species (H). The yellow rectangle
indicates the region of the fish market and its nearby seafood restaurants. The red circles mark the location of two sampling
sites (I, II).
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2.2. DNA Extraction

DNA extraction was conducted as previously described [24] with some modifications.
A lysis buffer mix (PBS 220 µL, Buffer AL 200 µL, Proteinase K 20 µL; 440 µL total volume)
was introduced to the cartridge through the inlet. Both ends of the cartridge were sealed by
Luer-Lock stoppers and the cartridge was incubated at 56 ◦C for 30 min with mild rotation.
After the incubation, Luer-Lock was removed from the Sterivex cartridge, and the A lysis
buffer mix was pipetted from the inlet. Mix sample (200 µL) was further purified by Qiagen
DNeasy Blood and Tissue Kit (ThermoFisher Scientific, Waltham, MA, USA) according to
the manufacturer’s protocol. DNA concentration of each sample was checked by using the
Qubit dsDNA HS Assay (Invitrogen, Carlsbad, CA, USA)

2.3. DNA Library Preparation

Amplified gene fragments were prepared for NovaSeq 6000 sequencing according to
the Illumina Sequencing Library preparation guidelines (Illumina, Inc., San Diego, Califor-
nia, USA). Three mitochondrial gene regions were amplified by 19 universal primers,
including: 12S rRNA (MiFish-U/E), ND5 (MiFish-tuna-ND5), and COI (Fish-miniA/C/E;
Fish1/2; Fish1F/2F with Shark COI-MINIR, Shark-MiniV1-R, and Shark-MiniV2-R) as
described [25–28] with modification (Table 1).

Table 1. A list of 19 universal primers validated for the amplification of mitochondrial genes
fragments (12S, ND5, COI).

Primer Sets Sequence Reference

12S

Miya et al. 2015 [25]
MiFish-U-F GTCGGTAAAACTCGTGCCAGC
MiFish-U-R CATAGTGGGGTATCTAATCCCAGTTTG
MiFish-E-F GTTGGTAAATCTCGTGCCAGC
MiFish-E-R CATAGTGGGGTATCTAATCCTAGTTTG

ND5
Miya et al. 2015 [25]MiFish-tuna-ND5-F ATGTCCTTCCTCCTTATCGGCTG

MiFish-tuna-ND5-R TTGCCAGTGGCAGCTACGATC

COI

Shokralla et al. 2015 [26]

Fish-miniA-F ACIAAICAIAAAGAYATYGGC
Fish-miniA-R AARAAAATYATAACRAAIGCRTGIGC
Fish-miniC-F ACYAAICAYAAAGAYATIGGCAC
Fish-miniC-R GAARATCATAATGAAGGCATGIGC
Fish-miniE-F ACYAAICAYAAAGAYATIGGCAC
Fish-miniE-R CTTATRTTRTTTATICGIGGRAAIGC

FishF1 TCAACCAACCACAAAGACATTGGCAC

Becker et al. 2011 [27]
FishF2 TCGACTAATCATAAAGATATCGGCAC
FishR1 TAGACTTCTGGGTGGCCAAAGAATCA
FishR2 ACTTCAGGGTGACCGAAGAATCAGAA

Shark-COI-MINI-R AAGATTACAAAAGCGTGGGC
Zahn et al. 2020 [28]Shark-MiniV1-R AAGATTATTACAAAAGCRTGRGC

Shark-MiniV2-R AAGATTATTACRAADGCRTGRGC

Each 20 µL PCR reaction contained 10 µL of 2x PCRBIO HS Taq Mix, 1 µL of each
primer (10 µM), 7 µL ddH2O, and 1 µL of DNA extract. The following cycling conditions
were used: 5 min at 95 ◦C (1×); 1 min at 95 ◦C, 30 s at 48 ◦C, and 45 s at 72 ◦C (38×); 5 min
at 72 ◦C (1×). Three PCR replicates were amplified from each sample and then pooled for
a single PCR cleanup with the QIAquick 96 PCR purification kit (Qiagen; 60 µL elution
volume). Agarose (2% w/v) gel electrophoresis was used to verify the amplification of
samples. PCR products were pooled and quantified using Qubit dsDNA HS Assay before
preparation for the library. The library was following the protocol of the Illumina DNA
PCR-Free Library Prep. The library was sequenced with a 300-cycle S4 kit on the NovaSeq
6000 (with paired-end 150-bp reads, PE150) following the NovaSeq XP workflow. Library
preparation, sequencing, and base calling were carried out by Genomics BioSci & Tech
(http://www.genomics.com.tw/ accessed on 1 February 2021).

http://www.genomics.com.tw/
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2.4. Data Process

The overall quality of the Novaseq reads was inspected by FastQC [29]. Adaptor
sequence and low-quality tails in raw sequence data were trimmed (quality ≤ 10) by
Trimmomatic 0.32. Sequencing reads were filtered to remove reads shorter than 150 bp. The
remaining reads were merged using BBMerge algorithm with default parameter settings
and reads [30]. The assembled reads were further demultiplexed by different primer
sets (12S rRNA: MiFish-U/E; ND5: MiFish-tuna-ND5; COI: Fish-miniA/C/E, Fish1/2,
Fish1F/2F with Shark COI-MINIR, Shark-MiniV1-R, and Shark-MiniV2-R) by Cutadapt
3.4 [31]. In order to remove reads with either ambiguous sites (Ns) or those showing
unusual and too short lengths with reference to the expected size of the PCR amplicons.
Primer clipping and lengths control of reads were also used Cutadapt 3.4 [31].

2.5. Taxonomic Assignment

The pre-processed reads from the above pipeline were further dereplicated by using a
‘derep_fulllengthzrusing’ command in VSEARCH [32]. Keep only sequences with an abun-
dance equal to or greater than 2. OTU clustering and chimera detection in derep-licated
reads for each primer set was used “-cluster_otus” command in USEARCH by default
setting. All OTUs were subjected to local BLASTN searches against a fish mitogenome
database MitoFish V3.68 [33,34]. The top BLAST hit with a sequence identity of more than
or equal to 97% and sequences larger than 100 bp was applied to species assignments of
each OTU. Taxonomic assignment to the species level, and all the scientific names were
checked to remove the synonyms by NomenMatch (http://match.taibif.tw/ accessed on
10 August 2021). The processed OTUs from all primer sets were built to the OTU table. The
OTU occurrences for each sample were performed “usearch_global” with a 97% similarity
threshold command in VSEARCH [32].

2.6. Statistical Analysis

For the analysis of the species diversity, the species data were analyzed with a pres-
ence/absence approach [18]. The species matrix was obtained by the Jaccard similarity
index using the excel VBA. Principal Coordinates Analysis (PCoA) was then used to inves-
tigate the relationship between samples generated through the species matrix by GenAlEx
6.503 [35].

3. Results
3.1. Identification and Classification of Fish Species from eDNA Samplings

A totoal of 50,534,995 reads of three mitochondrial genes (12S, ND5, COI) were
obtained from 4 eDNA samplings, including 6,995,762 reads for December-I, 10,194,137
reads for December-II, 22,323,200 reads for January-I, and 11,021,896 reads for January-II
(Table 2). Following the local BLASTN searches, 417 OTU related to fish speics were
obtained. A total of 153 fish species with high sequence similarity (above 0.97) were
retained after removing duplicate and unidentified species (Table 2). For a detailed list of
species, see Supplmentary Table S1.

Table 2. Summaries for the number of fish species based on the sequencing reads of 12S, COI, ND5
in 4 eDNA samples collected from two different dates and sites.

Items Reads 12S COI ND5 All

December-I 6,995,762 64 52 15 81 *
December-II 10,194,137 39 44 11 56 *

January-I 22,323,200 103 68 17 126 *
January-II 11,021,896 44 52 14 60 *

All 50,534,995 112 * 88 * 18 * 153 *
*: duplicate species were omitted.

http://match.taibif.tw/
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In the four samplings, 81, 56, 126, and 60 species were obtained, respectively. There
are 64, 52, and 15 species (12S, COI, ND5) in sampling December-I; 39, 44, and 11 species
in December-II; 103, 68, and 17 species in January-I; 44, 52, and 14 species in January-II
(Table 2). β-diversity patterns inferred from Principal Coordinate Analysis (PCoA) further
showed the differences on fish species between the sampling dates (December and January)
and sampling sites (I and II) (Figure 2). The pairwise similarity of each sample is between
0.3–0.49. The highest similarity is December-I and January-I, and the lowest similarity is
December-II and January-I.
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was obtained by the Jaccard similarity index.

3.2. Seafood and Its Species Composition

These 153 species were further taxonomically classified into 2 classes (Actinopterygii
and Chondrichthyes), 15 orders (Anguilliformes, Beloniformes, Clupeiformes, Gadiformes,
Mugiliformes, Ophidiiformes, Pleuronectiformes, Salmoniformes, Scorpaeniformes, Siluri-
formes, Tetraodontiformes, Perciformes, Carcharhiniformes, Lamniformes, and Myliobati-
formes), and 49 family, respectively (Table 3).

Chondrichthyan species are the major source of smoked sharks in fish market (Figure 1F).
In the present study, a total of 22 chondrichthyan species were identified and taxonomically
classified into to three orders (Carcharhiniformes, Lamniformes, and Myliobatiformes) and
six families (Carcharhinidae, Sphyrnidae, Triakidae, Alopiidae, Dasyatidae, Urolophidae)
(Table 4). Among these species, seven species were identified by both 12S and COI. Six
and nine species were identified by 12S and COI, respectively (Table 4). Additionally,
five species were consistently detected in all four samplings, including Carcharhinus sealei,
Sphyrna zygaena, Alopias pelagicus, Alopias superciliosus, and Maculabatis gerrardi (Table 4). On
the other hand, six species were only recorded in one sampling alone (Table 4). According
to the IUCN Red List of Threatened Species (https://www.iucnredlist.org/ accessed on 15
August 2021), 17 species are threatened species, including two critically endangered (CR),
eight endangered (EN), and seven vulnerable (VU) species (Table 4). Five species are near
threatened (NT) (Table 4).

https://www.iucnredlist.org/
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Table 3. Taxonomic classification of 153 fish species identified from eDNA sampling in Heping island fish market and its
nearby seafood restaurants.

Class Order Family Species Class Order Family Species

Actinopterygii Actinopterygii
Anguilliformes Congridae 2 Perciformes Haemulidae 2

Muraenidae 12 Istiophoridae 5
Beloniformes Scomberesocidae 1 Kyphosidae 1
Clupeiformes Engraulidae 1 Labridae 2
Gadiformes Gadidae 3 Lutjanidae 8

Mugiliformes Mugilidae 4 Malacanthidae 1
Ophidiiformes Ophidiidae 1 Mullidae 2

Pleuronectiformes Cynoglossidae 1 Nemipteridae 1
Paralichthyidae 1 Nomeidae 1

Salmoniformes Salmonidae 1 Pempheridae 1
Scorpaeniformes Scorpaenidae 2 Pomacentridae 7

Siluriformes Loricariidae 2 Scombridae 12
Tetraodontiformes Diodontidae 1 Serranidae 12

Monacanthidae 3 Siganidae 1
Tetraodontidae 1 Sparidae 3

Perciformes Acropomatidae 2 Stromateidae 3
Apogonidae 2 Trichiuridae 5

Bramidae 1 Xiphiidae 1
Caesionidae 3 Chondrichthyes
Carangidae 11 Carcharhiniformes Carcharhinidae 7

Centrolophidae 3 Sphyrnidae 2
Channichthyidae 1 Triakidae 5
Coryphaenidae 1 Lamniformes Alopiidae 2
Emmelichthyidae 1 Myliobatiformes Dasyatidae 5

Gempylidae 2 Urolophidae 1

Table 4. List of chondrichthyan species detected in this study.

Order Family Scientific Name 12S COI December-
I

December-
II

January-
I

January-
II Status

Carcharhiniformes Carcharhinidae Carcharhinus brevipinna 1 0 0 1 0 1 VU
Carcharhinus falciformis 1 0 0 1 0 0 VU

Carcharhinus macloti 1 0 0 1 0 0 NT
Carcharhinus obscurus 1 1 0 1 1 1 EN

Carcharhinus sealei 0 1 1 1 1 1 NT
Carcharhinus sorrah 1 0 0 1 0 0 NT

Prionace glauca 1 1 0 1 1 1 NT
Sphyrnidae Sphyrna lewini 1 0 0 1 0 0 CR

Sphyrna zygaena 1 1 1 1 1 1 VU
Triakidae Galeorhinus galeus 0 1 1 0 1 0 CR

Hemitriakis japanica 0 1 1 0 1 0 EN
Mustelus asterias 0 1 1 0 1 0 NT
Mustelus griseus 0 1 1 1 0 0 EN
Mustelus manazo 0 1 1 1 0 0 EN

Lamniformes Alopiidae Alopias pelagicus 1 1 1 1 1 1 EN
Alopias superciliosus 1 1 1 1 1 1 VU

Myliobatiformes Dasyatidae Himantura leoparda 0 1 0 1 1 1 VU
Maculabatis gerrardi 1 1 1 1 1 1 EN

Maculabatis pastinacoides 1 1 0 0 1 0 EN
Pastinachus gracilicaudus 0 1 0 1 1 1 EN

Pateobatis jenkinsii 0 1 0 0 1 1 VU
Urolophidae Urolophus aurantiacus 1 0 0 1 0 0 VU

Note: The absence and presence of species is denoted as 0 and 1, respectively. Green colors highlight the presence of species identified
by different mitochondria genes (12S and COI). Yellow colors highlight the presence of species identified in different sampling dates
(December and January) and sites (I and II). Red colors highlight the threatened species. CR: critically endangered species; EN: endangered
species; VU: vulnerable species; NT: near threatened species.

Anguilliformes species are the major source of braised moray eels (Figure 1G). In
the present study, a total of 14 Anguilliformes species were identified and classified into
two families, Congridae and Muraenidae (Table 5). Among these species, three species
were identified by both 12S and COI. Thirteen and five species were identified by 12S and
COI, respectively (Table 5). Additionally, two species were consistently detected in all four
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samplings, including Gymnothorax flavimarginatus and Strophidon sathete (Table 5). On the
other hand, six species were only recorded once (Table 5). According to the species status of
Taiwan Fishbase (http://fishdb.sinica.edu.tw/ accessed 25 August 2021), seven species are
economic (E), three species are underused (U), three species are rare (R), and one species is
endemic species of Taiwan (T) (Table 5).

Table 5. List of Anguilliformes detected species in this study.

Order Family Scientific Name 12S COI December-
I

December-
II

January-
I

January-
II Status

Anguilliformes Congridae Bathycongrus retrotinctus 1 0 0 1 0 0 R
Gnathophis nystromi 0 1 0 1 0 1 R

Muraenidae Gymnothorax flavimarginatus 1 1 1 1 1 1 E
Gymnothorax isingteena 1 1 1 1 1 0 U
Gymnothorax javanicus 1 0 1 0 0 0 E
Gymnothorax prionodon 1 0 0 1 0 0 E

Gymnothorax
margaritophorus 1 0 0 1 0 0 E

Gymnothorax niphostigmus 1 0 0 1 0 0 T
Gymnothorax reevesii 1 1 1 1 1 0 E

Gymnothorax reticularis 1 0 0 1 1 1 U
Gymnothorax thyrsoideus 1 0 0 1 1 1 E
Gymnothorax undulatus 1 1 1 1 1 0 E

Enchelycore anatina 1 0 0 1 0 0 U
Strophidon sathete 1 0 1 1 1 1 R

Note: Green colors highlight the presence of species identified by different mitochondria genes (12S and COI). Yellow colors highlight the
presence of species identified in different sampling dates (December and January) and sites (I and II). Red colors highlight the economic
species. E: economic species; U: underused species; R: rare species; T: endemic species of Taiwan.

Serranidae species (groupers) are economically important fish species and often used
for grouper fish soups (Figure 1H). In the present study, a total of 12 Serranidae species were
identified and classified into four genera, including Aethaloperca, Cephalopholis, Epinephelus,
and Variola (Table 6). Among these species, four species were identified by both 12S
and COI. Twelve and four species were identified by 12S and COI, respectively (Table 6).
Additionally, Epinephelus fasciatomaculosus was the only species consistently detected in all
four samplings. On the other hand, 4 species were recorder once (Table 6). Furthermore,
seven groupers are wild species (W), and five groupers are commonly culture species in
Taiwan (C) (Table 6).

Table 6. List of Serranidae species detected in this study.

Order Family Scientific Name 12S COI December-I December-II January-I January-II Status
Perciformes Serranidae Aethaloperca rogaa 1 1 1 1 1 0 W

Cephalopholis boenak 1 0 1 1 1 0 W
Cephalopholis sexmaculata 1 0 1 1 1 0 W

Epinephelus awoara 1 1 1 0 0 1 W
Epinephelus coioides 1 1 1 1 1 0 C

Epinephelus
fasciatomaculosus 1 0 0 1 0 0 W

Epinephelus fuscoguttatus 1 1 1 1 1 1 C
Epinephelus lanceolatus 1 0 0 1 0 0 C

Epinephelus bruneus 1 0 1 1 0 1 C
Epinephelus quoyanus 1 0 1 1 0 0 W

Epinephelus tukula 1 0 0 1 0 0 C
Variola louti 1 0 0 1 0 0 W

Note: Green colors highlight the presence of species identified by 12S and COI. Yellow colors highlight the presence of species identified
in different sampling dates (December and January) and sites (I and II). Red colors highlight the wild species. W: Wild species; C;
Culture species.

4. Discussion

In the present study, we have demonstrated a novel approach for a large scale of
seafood authentication using eDNA metabarcoding. Compared to the conventional DNA-
based approach, it does not require a considerable number of DNA samples from seafood

http://fishdb.sinica.edu.tw/
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visible and accessible in the fish markets and/or seafood restaurants. Furthermore, it
could also allow the simultaneous detection of multiple species. Despite the disruption of
COVID19 pandemic for this work, we have still identified 153 fish species based on a limited
number of eDNA samplings in a local fish market and its nearby seafood restaurants. Thus,
we have shown the first evidence that it is feasible to provide a more comprehensive
understanding of fish species potentially consumed in fish markets and restaurants using
this novel approach.

The number of fish species identified from eDNA samplings in the present study were
found to vary with different molecular markers. A total of 153 species were identified
from eDNA samples in the present study, 112 species were identified by 12S and the rest
of fish species were identified using COI and ND5. Indeed, 12S have proved to be the
effective molecular marker for the detection of fish species from eDNA samples [25,34]
and have been extensively utilized for the study of fish biodiversity using eDNA metabar-
coding [36–39]. However, some studies also have shown the limitation of 12S for the
detection of fish species from eDNA samples [40–42]. To maximize the number of fish
species detected from eDNA samples in the present study, we have selected 19 universal
primers targeted for three mitochondrial gene fragments (12S, ND5, COI). Additionally,
the amplicons of these gene fragments from eDNA samples were further processed with
relatively higher sequencing depth (6,995,762–11,021,896 reads per sample) in the present
study. Inappropriate sequencing depth of eDNA samples might fail to detect those species
with low abundance in the environments [43].

The number of fish species were also found to vary with sampling dates and sites in
the present study. The differences in the number of fish species between different sampling
dates might be explained by the availability of fish species since fishing seasons varied with
fish species in Taiwan [23]. As for the differences in the number of fish species between
two sampling sites in the present study might be explained by the nature of eDNA samples
sourced from fish market and seafood restaurants. In the fish market, most fish species
were still alive and/or unprocessed whereas most fish species in seafood restaurants are
highly processed. The concentration of eDNA decays over time and its degradation rate
also varies with different environmental conditions, including salinity, temperature, and
pH [44].

Accumulatively, Chondrichthyan, Anguilliformes, and Serranidae species accounted
for approximately one third of fish species identified from the fish market and its nearby
seafood restaurants in the present study. These species are routinely used for the traditional
seafood in Taiwan, including smoked sharks, braised moray eels and grouper soups
(Figure 2F–H). Chondrichthyan species (sharks, rays, and chimeras) have continuously
received much attention due to their declined abundance [45] and vulnerable life history
traits (e.g., slow growth rates and long generation time) [46]. DNA barcoding analysis
of Chondrichthyan species have revealed approximately 20 to 24 species involved in the
seafood consumption in Taiwan [10,47]. In the present study, we have identified a total
of 22 chondrichthyan species based on eDNA samplings from a limited area compared
to previous studies in Taiwan [10,47]. It also worth mentioning that 17 species are now
considered as IUCN threatened species. Anguilliformes are a group of eel-like shape species
comprising 13 families and 206 species in Taiwan [48]. In the present study, 14 species
were identified in the present study. Of these species, three species are rarely found, and
one species is endemic species of Taiwan. These findings also highlight the potential use
of eDNA metabarcoding for the conservation and managements of Anguilliformes in
the future studies. Serranidae species, especially groupers, are globally popular seafood
species with relatively higher economical value and many of them have been supplied by
the aquaculture [49]. In the present study, 12 Serranidae species were identified, including
seven wild and five aquaculture species. Notably, there is a huge difference in the market
price between the wild and farmed groupers in Taiwan. However, these species are often
simply named as the grouper in the fish markets and seafood restaurants in Taiwan. Our
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findings further imply the Serranidae species from both capture fisheries and aquaculture
were routinely consumed in the fish markets and seafood restaurants in Taiwan.

Over the past decades, the global marine biodiversity is declining rapidly due to
climate change, habitat deconstruction, and overfishing [50]. Seafood consumption also
plays a crucial role in the maintenance of marine biodiversity. Our findings have unveiled
the underestimation of species diversity in seafood of Taiwan, especially those routinely
consumed in fish markets and seafood restaurants. However, further improvements and
optimizations of eDNA metabarcoding in fish markets and seafood restaurants would
be required for the future studies, including the increase of sampling times and sites, the
development and employment of molecular markers effective for the other seafood species
(e.g., cephalopods, decapod crustaceans) to provide more comprehensive understandings
of species diversity in seafood routinely consumed in fish markets and seafood restaurants.

5. Conclusions

This work represents the first attempt to examine fish species diversity in traditional
seafood using eDNA metabarcoding approach. With the aid of multiple DNA markers and
high throughput sequencing, a considerable number of fish species were detectable from
limited eDNA samplings while further optimization of this approach remains for future
studies. Nevertheless, eDNA metabarcoding could offer a cost-effective and non-invasive
tool for providing a general profile of fish species potentially consumed in fish markets
and restaurants. The identification of various fish species routinely used for traditional
seafood further suggests a potential underestimation of the species diversity in traditional
seafood and is crucial for the conservation and management of marine resources.
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present study.
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