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Abstract: Adenovirus infections tend to be mild, but they may pose a serious threat for young and
immunocompromised individuals. The treatment is complicated because there are no approved safe
and specific drugs for adenovirus infections. Here, we present evidence that 17-(Allylamino)-17-
demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90 chaperone, decreases the rate of human
adenovirus 5 (HAdV-5) replication in cell cultures by 95%. 17-AAG inhibited the transcription of
early and late genes of HAdV-5, replication of viral DNA, and expression of viral proteins. 6 h after
infection, Hsp90 inhibition results in a 6.3-fold reduction of the newly synthesized E1A protein level
without a decrease in the E1A mRNA level. However, the Hsp90 inhibition does not increase the
decay rate of the E1A protein that was constitutively expressed in the cell before exposure to the
inhibitor. The co-immunoprecipitation proved that E1A protein interacted with Hsp90. Altogether,
the presented results show, for the first time. that Hsp90 chaperones newly synthesized, but not
mature, E1A protein. Because E1A serves as a transcriptional co-activator of adenovirus early genes,
the anti-adenoviral activity of the Hsp90 inhibitor might be explained by the decreased E1A level.

Keywords: adenovirus; Hsp90; inhibitor; 17-AAG; E1A

1. Introduction

Cytoplasmic heat shock protein 90 (Hsp90), which is an indispensable component
of every eukaryotic cell, is represented in vertebrate cells by two closely related proteins,
called Hsp90α and Hsp90β. Hsp90 is involved in the chaperoning of 200–300 clients
proteins, and it is among the most abundant proteins in the cell [1,2]. Hsp90 clients include
many proteins important for the regulation of cellular processes, such as hormone receptors,
transcription factors, and protein kinases [3]. Many of the Hsp90 clients are involved in
the development and progression of cancers, which makes this protein an attractive target
for pharmacological intervention. The chaperoning activity of Hsp90 depends on the
binding and hydrolysis of ATP by the N-terminal domain of this protein. Most of the
identified inhibitors of Hsp90 binds to the ATP-binding pocket of ATPase. One of the
first ATPase inhibitors of Hsp90 successfully used to inhibit Hsp90 chaperone activity in
cultured mammalian cells was 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) [4].
18 Hsp90 inhibitors reached different stages of more than 170 clinical trials as a potential
drugs in humans [5,6]. The dose-limiting toxicity was a major problem reported for the
compounds tested so far. No clinical trials of the antiviral activity of the Hsp90 inhibitors
have been conducted so far. The Hsp90 inhibitors interfered with the replication of many
viruses that were tested in vitro, indicating that it might be possible to fight viral infections
through Hsp90 inhibition. Interestingly, viruses tested so far appear to be sensitive to the
non-toxic doses of Hsp90 inhibitors [7,8]. The replication of a virus requires the production
of a large quantity of several types of proteins. These proteins often require help from
cellular chaperones in proper folding and protection from aggregation. Hsp90 is involved
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in the replication of many viruses at different stages of the replication cycle by facilitating
virus particle entry in the cell, intracellular transport, expression, and the stabilization of
viral proteins, and genome replication [9–11]. Hsp90 may also be required for the virus
assembly and trafficking [12,13]. Interestingly, the requirement for Hsp90 chaperone seems
to be universal for the replication of viruses that belong to different taxonomic groups, but
the function of Hsp90 seems to be specific for each virus [14–16].

Human adenoviruses (HAdV) belong to the Adenoviridae family and they are classified
in the Mastadenovirus genus. Non-enveloped icosahedral virions of human adenoviruses
are 70 to 90 nm in diameter with over 30 proteins encoded in a 35 kbp long double-stranded
DNA. Human adenoviruses are divided into seven species (Human mastadenovirus A-G)
with best-studied HAdV-2 and HAdV-5, both belonging to the species C [17–19]. Ade-
novirus infection is mostly associated with respiratory tract disease and conjunctivitis,
while gastrointestinal and urinary tract disease less commonly occurs. Primarily associated
with both occasional cases and epidemic infections among children, HAdVs now emerged
as opportunistic pathogens causing significant morbidity and mortality in the immuno-
compromised population [20,21]. In immunocompetent hosts, adenovirus infections are
usually mild and self-limiting, with the rare need for medical intervention.

HAdV-5 infection begins with the virus binding to the cell membrane, through the
interaction of fiber protein with Coxsackievirus–adenovirus receptor (CAR), CD46, or sialic
acid [22–25]. Subsequently, the penton base protein binds to integrins from αvβ family
that serve as an entry receptor and the virus is internalized in the endosomes by receptor-
mediated endocytosis [26,27]. The transport of the viral DNA is usually completed in less
than 1 h [28].

E1A RNA is the first to be transcribed after HAdV DNA enters the nucleus [29]. E1A
proteins, which are translated from differentially spliced mRNAs, serve as co-activators of
the remaining early promoters (E1B, E2A, E2B, E3, and E4) and regulate the transcription
of many cellular genes [30]. E2 region encodes the proteins necessary for AdV DNA
replication. E2A transcript translates to DNA-binding protein (DBP) and E2B transcript
encodes polymerase and precursor terminal protein [31].

The subsequent transcription of the early AdV regions E3 and E4 results in the produc-
tion of proteins active in inhibition of apoptosis and suppression of intracellular immune
response and activation of the late promoter L4 [32–37].

DNA replication is initiated by the products of the E2 region. DNA replication also
activates a transcription of the major late transcript from the late promoter. This transcript
is alternatively spliced into several mRNAs that encode hexon, penton, fiber, and other
structural proteins of the AdV capsid [38]. After the replication and capsids assembly is
completed, virus is released by cell lysis [39,40].

HAdV infection leads to increased transcription of HSP27, HSP70, and HSP90 genes [41].
Hsp70 interacts with adenoviral capsid proteins [42,43]. However, the specific function of
heat shock proteins in HAdV replication was not studied. Therefore, in the present work,
we decided to investigate the possible role of Hsp90 in HAdV-5 replication.

2. Results
2.1. Hsp90 Is Necessary for Efficient HAdV-5 Replication

We used 17-AAG, a selective inhibitor of Hsp90 to test the role of Hsp90 in HAdV-5
replication. Human A549 cells were infected with the virus at 500 TCID50/mL in the
presence of the inhibitor. Staining with a polyclonal antibody specific for the human
HAdV-5 proteins demonstrated that, in the cells exposed to 0.5 µM 17-AAG, the expression
of these proteins was not detectable 24 h after infection (Figure 1A). A cytopathic assay
confirmed that, 48 h after infection, the yield of infective virus particles was 10 times lower
in the presence of 0.125 µM 17-AAG, and 20 times lower in the presence of 0.5 µM 17-AAG,
as compared to yield in control cultures without the inhibitor (Figure 1B). The results of
the MTT assay demonstrated that over 95% of the cultured cells remained viable after
72 h, even at the highest, 0.5 µM concentration of the inhibitor, eliminating the possibility
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that the decreased rate of the virus replication may be attributed to the cytotoxic effect of
17-AAG. The 0.25 µM 17-AAG effectively inhibited the replication of the virus, even when
the cells were infected with high doses of the virus (Figure 1C), and the inhibition was
clearly visible, even in cultures with 0.03 µM 17-AAG (Figure 1D).
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Figure 1. Hsp90 activity is necessary for AdV5 replication. (A) Cells A549 were infected with
500 TCID50/mL of AdV5 without 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) (panel A)
or with 0.25 µM 17-AAG (panel B). Cells were stained with anti-human adenovirus 5 (HAdV-5)
antibody (red) and DAPI (blue) 24 h after infection. (B) A549 cells infected with HAdV-5 were
cultured for 48 h in the indicated concentrations of 17-AAG. The yield of the virus was measured
using a cytopathic assay. Cell viability after 72 h of culture in the same 17-AAG concentrations was
measured using MTT assay. Plotted are TCID50 and 95% confidence intervals values for the virus
yield, and mean and SD values for the cell viability, and p value was calculated using one-tailed
student’s t-test. (C) A549 cells infected with indicated concentration of HAdV-5 were cultured in
0.25 µM 17-AAG or without the inhibitor for 24 h. (D)A549 cells infected with 500 TCID50/mL of
HAdV-5 were cultured in the indicated concentrations of 17-AAG for 24 h. Protein extracts were
analyzed by western blot with anti-HAdV-5 antibody.
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2.2. Hsp90 Inhibition Decreases Transcription of HAdV-5 Early and Late Genes and Replication of
HAdV-5 Genome

The results of the immunofluorescent staining and western blot analysis of the HAdV-5
infected cells demonstrated that 17-AAG inhibits the synthesis of the viral proteins. There-
fore, we decided to test whether 17-AAG also inhibits the transcription and genome
replication of HAdV-5. For that A549 cells were infected with HAdV-5 and cultured in
a medium supplemented with 0.25 µM 17-AAG or without the inhibitor. Subsequently,
HAdV-5 genomic DNA and transcripts for E1A, DBP, hexon were quantitated by qPCR. The
exposure of cells to 17-AAG resulted in an 80-fold reduction of HAdV-5 DNA replication
21 h after infection. The effect of Hsp90 inhibition on mRNA was even greater. The number
of transcripts was decreased over 800-fold for E1A and 8000-fold for hexon. Relatively
lower, 70-fold reduction of DBP transcription corresponded well with the reduction in
DNA replication (Figure 2).
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Figure 2. 17-AAG inhibits transcription of AdV5 genes and replication of AdV5 genome. A549 cells
infected with HAdV-5, were cultured in the presence of 0.25 µM 17-AAG, or without 17-AAG, for the
specified time. HAdV-5 DNA and mRNAs were quantitated by qPCR. Plotted are numbers of DNA
or mRNA copies per cell in cultures with 17-AAG (closed circles) and control cultures (open circles).
Plots represent means and SD of the experiment performed in triplicate.

2.3. 17-AAG Does Not Decrease the Level of Cellular Receptors for HAdV-5

To test whether 17-AAG affects cellular receptors for HAdV-5, we compared expres-
sion of CAR and αv integrin receptors in A549 cells after 24 h of treatment with 0.25 µM
and 0.5 µM 17-AAG to the expression of CAR and αv integrin receptors in cells that were
cultured without the inhibitor. The unchanged amount of both proteins ruled out the
possibility that the inhibition of AdV-5 replication is caused by the decreased availability
of the receptors (Figure 3).
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Figure 3. Level of receptors for HAdV-5 is not affected by Hsp90 inhibition. A549 cells were cultured
for 24 h in the indicated concentrations of 17-AAG. 10 µg of a total protein extract was loaded on a
gel and probed with antibodies specific for CAR and integrin αV. The experiment was repeated twice
with identical results.

2.4. Expression of HAdV-5 Structural Proteins Is Sensitive to Hsp90 Inhibition Several Hours
after Infection

We tested how the addition of the inhibitor at different time points after infection
affects the expression of HAdV-5 proteins to elucidate which step of HAdV-5 replication
is susceptible to 17-AAG presence. A549 cells that were infected with the virus were
allowed to grow for the specified time. Subsequently, 17-AAG was added to a final 0.25 µM
concentration, and incubation was continued for a total time of 24 h. All of the cell cultures
were lysed 24 h after infection, and the protein extracts were analyzed by western blot with
a polyclonal antibody that recognized several components of HAdV-5 capsid proteins. The
results presented in Figure 4 demonstrate that Hsp90 inhibition substantially decreased the
level of viral proteins, even when the inhibitor was added 9 h after infection, several hours
after the DNA of the virus reached the nucleus, and after transcription and translation of
the early genes began.
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Figure 4. 17-AAG inhibits translation of HAdV-5 proteins 9 h after infection. A549 cells were infected
with HAdV-5. 17-AAG was added to a final 0.25 µM concentration at the indicated times and
culture was continued to a total of 24 h. Expression of virus proteins was detected with anti-HAdV-5
polyclonal antibody.

2.5. 17-AAG Inhibits Transcription of HAdV-5 Genes at the Early Steps after Infection

0.25 µM 17-AAG was added to the infected cells at the specified time points and the
expression of E1A, DBP, hexon mRNA, and the genomic DNA of the virus after 24 h of
culture was measured by q-PCR in order to investigate if the decrease in the HAdV-5 protein
levels described above resulted either from the reduced protein synthesis or the reduced
transcription of the corresponding mRNAs. The mRNA expression of early genes (E1A and
DBP) and the replication of the genomic DNA was only affected when 17-AAG was added
immediately after infection. The hexone mRNA, expressed from the major late promoter
was decreased in cells that were exposed to the inhibitor up to 9 h after infection (Figure 5).
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Figure 5. 17-AAG inhibits HAdV-5 transcription and DNA replication early after infection. A549
cells were infected with HAdV-5. At the indicated times 17-AAG was added to a final 0.25 µM
concentration (dotted line) or left without the inhibitor (solid line) and culture was prolonged to 24 h.
24 h after infection DNA and RNA was analyzed by q-PCR with primers specific for E1A, DBP, and
hexon transcripts. DNA was analyzed using hexon-specific primers. The presented results are means
and SD values from three experiments, normalized to results obtained for GAPDH.

2.6. Immediately after Infection 17-AAG Inhibits E1A Protein but Not E1A mRNA Expression

Early E1A promoter is the first to be activated and the expression of the E1A protein
is necessary for efficient transcription from other early promoters. The qPCR analysis
demonstrated that E1A transcription is effectively inhibited by 17-AAG that is added to the
culture at the time of infection but not 3 h later. Therefore, we decided to test how Hsp90
inhibition affects the expression of E1A mRNA and protein up to 6 h after HAdV-5 infection.
A549 cells were infected with the virus at 1 × 105 TCID50/mL for 15 min. in medium
with 4 µM 17-AAG or without the inhibitor. The high concentration of the inhibitor was
used to assure its effectiveness against the high titer of the virus combined with a short
incubation time. After infection, cells were washed twice with PBS and the incubation
in medium with or without 17-AAG was prolonged for 2, 4, and 6 h. The protein extract
was analyzed by western blot with the E1A-specific antibody, and mRNA isolated from
the cells was subjected to qPCR analysis with the E1A and GAPDH specific primers. The
E1A protein was not detectable in control cells for the first 2 h after infection. 4 h after
infection, Hsp90 inhibition resulted in a 3.6-fold reduction of the newly synthesized E1A
protein level, and after 6 h the level of E1A in the control cells was 6.3-fold higher than
in the cells that were treated with 17-AAG. These differences were statistically significant
with p ≤ 0.0023 and p ≤ 0.0001, respectively (Figure 6A,B). E1A mRNA transcription was
clearly detectable 2 h after infection, but the mRNA level did not change significantly in
cells that were treated with 17-AAG when compared to control ones (Figure 6C). Together,
these results demonstrate that Hsp90 inhibition affects the E1A protein level, but not its
mRNA level.
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Figure 6. 17-AAG inhibits E1A translation, but not transcription. (A) A549 cells were infected with
HAdV-5 at TCiD50 5 × 105/mL for 15’ at 37 ◦C. After infection cells were washed 2 times with PBS
and incubated in medium with 4 µM 17-AAG (+), or without it (-) for the indicated time. C- and C+
represent protein extracts of not infected and infected cells, respectively. Western blot was probed
with E1A specific antibody. (B) Densitometric quantification of the western blot results for E1A
normalized to GAPDH. (C) q-PCR was used to measure content of the E1A mRNA. q-PCR results
were normalized to the results obtained with GAPDH specific primers. Plots B and C represent
means and SD from three independent experiments.

2.7. The Inhibition of Hsp90 Increases Degradation Rate of the Newly Translated E1A

We analyzed the effect of the inhibitor on E1A protein expressed in HEK293 cell to
test whether 17-AAG inhibits synthesis of E1A de novo, or increases the degradation rate of
the E1A already present in the cells. These cells constitutively expressing the HAdV-5 E1A
protein were clonally selected after transfection with a fragment of HAdV-5 DNA containing
the E1A gene [44]. We found that the E1A protein remained stable in HEK293 cells that were
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exposed to 17-AAG for 24 h (Figure 7A). 17-AAG did not increase the rate of E1A protein
decay. even when the protein synthesis was inhibited by cycloheximide (Figure 7B).
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2.8. Hsp90α Interacts with E1A Protein

The E1A 289R (289 amino acid long product of the alternative splicing of E1A pre-
mRNA) is the main transcriptional co-activator of the early promoters of HAdV-5. This
form of E1A protein is both sufficient and necessary for the replication of the virus [45].

A co-immunoprecipitation assay was performed to test whether Hsp90 associates with
E1A 289R [45]. Cells that were used in this assay were transfected with Flag-tagged Hsp90α
E46A mutant and Myc-tagged E1A 289R. The complexes of Hsp90 with client proteins are
usually unstable. Therefore, the E46A mutant of Hsp90 was used to stabilize its interaction
with client proteins. The E46A substitution does not affect the ability of the mutant to bind
client proteins, but the mutant lacks ATPase activity, necessary to complete the chaperoning
cycle, and it remains in complex with a client protein. The results confirmed the association
of Hsp90α and E1A 289R (Figure 8).
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Figure 8. E1A 289R interacts with Hsp90α. HEK293 cells were transfected with plasmids that
expressed E1A 289R-Myc and E46A mutant of Hsp90α-Flag as indicated. Flag specific antibody
was used for immunoprecipitation. Cell extracts (input) and proteins bound to anti-Flag antibody
(IP α-Flag) were probed with anti-Flag, or anti-Myc antibodies, to detect Hsp90α and E1A 289R
respectively. Representative western blot, one of two performed is shown.

3. Discussion

Viruses utilize host cell cellular mechanisms to synthesize a large number of proteins
that are involved in their replicative cycle. The inhibition of chaperoning activity of Hsp90
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during infection prevents or suppresses the replication of many viruses that belong to
different groups [46–50].

The aim of this study was to evaluate the effect of 17-AAG, the Hsp90 inhibitor, on
human HAdV-5. We demonstrated that 17-AAG exerted a strong, concentration-depending,
inhibitory effect on HAdV-5 replication at concentrations that did not affect cell viability.
This effect was especially pronounced when the inhibitor was applied at the time of
infection, which suggested that Hsp90 is required at the early steps of HAdV-5 replication.

Hsp90 inhibition does not influence the expression of the receptors that are necessary
for HAdV-5 entry into the human mesothelioma JMN-1B cells [51]. We confirmed that
this is also true for A549 cells, because, in 17-AAG treated cells, there was no decrease
in the expression level of CAR and integrin αv, the receptors that are necessary for this
process. Moreover, the synthesis of the viral proteins was inhibited by 17-AAG, even
9–12 h after infection, when the viral DNA reached the nucleus and transcription of the
viral genes begun.

The time-course analysis of transcription revealed that 17-AAG inhibits the expression
of the HAdV-5 early genes E1A and DBP at the time of infection, but it seems to be
relatively ineffective when applied later. The expression of HAdV genes begins with
the E1A transcription [52]. The E1A protein is necessary for the efficient transcription of
other early HAdV-5 mRNAs and stimulates its own transcription [53]. Immediately after
infection with the virus, the E1A transcription is catalyzed by the cellular proteins. Hsp90
inhibition did not affect this early transcription of the E1A gene, but the E1A protein level
was decreased, which suggested that Hsp90 chaperones E1A protein. This conclusion was
further supported by the Hsp90α-E1A association detected by co-immunoprecipitation.
However, the E1A protein constitutively expressed in HEK 293 cells was not affected
by the Hsp90 inhibition. Therefore, it seems that Hsp90 stabilized and protected from
degradation the newly translated, but not the mature, E1A protein that was present in the
cells before they were exposed to the inhibitor. The conclusion that 17-AAG affects only
de novo expressed E1A protein was supported by the observation that 17-AAG did not
increase the decay rate of E1A in HEK 293 cells after the protein synthesis was inhibited
by cycloheximide.

Recently, the anti-HAdV activity of mifepristone was reported, attributed to the inter-
ference with steps preceding an entry of the virus genomic DNA into the nucleus [54]. The
study of three salicylanilide anthelmintic drugs demonstrated that two of these compounds
inhibit the HAdV life cycle by restricting access of the viral DNA to the nucleus, whereas
the third one inhibited HAdV replication by decreasing E1A transcription [55]. All of these
compounds were effective within 1 h after infection. The data presented here demonstrated
that the Hsp90 inhibitor effectively limited HAdV-5 replication much later after infection.
The expression of mRNAs for the proteins necessary for the viral genome replication,
polymerase DBP, and PTP is activated by E1A. Therefore, the viral DNA replication de-
pends indirectly on E1A. The decreased rate of the genome replication results in decreased
production of the late viral proteins, not only due to the lower number of the gene copies,
but also because the viral DNA replication activates the transcription of late promoter
activator IVa [56].

The expression of capsid proteins, controlled by the late promoter, was especially
sensitive to Hsp90 inhibition late after infection. These proteins are the last components of
the virus to be synthesized. The expression of late mRNAs begins with the activation of the
L4 promoter that drives the expression of L4-22K and L4-33K proteins [57]. These proteins
are essential activators of the full set of late mRNAs [58]. L4 promoter is activated by the
viral proteins E1A, E4 Orf3, and IVa2 [37]. The decreased E1A expression is a limiting
factor for the viral capsid protein’s expression, not only directly, but also indirectly, because
E1A also stimulates the expression of IVa2 and E4 orf3 [59,60].

A recently published study on HAdV inhibition by ivermectin, a drug preventing
E1A protein from entering the nucleus, reports similar effects on the virus mRNA and
protein expression and DNA replication, resulting in the decreased production of viral
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progeny similar to the reported here [61]. However, ivermectin inhibits E1A expression
more effectively 24 h and 36 h after infection, whereas Hsp90 inhibition is most effective
up to 9 h after infection.

Although there is a number of investigations focused on the role of Hsp90 in sup-
porting viral replication, intracellular antiviral response, and virus trafficking, there are
only limited data available concerning the chaperoning activity of Hsp90 for early viral
activators of the replication process. Basha and collaborators presented an impact of gel-
danamycin (GA) on the expression of immediate early (IE) and major immediate early
genes of human cytomegalovirus (CMV) [62]. There was a delay in IE2 (but not IE1) protein
synthesis, and a significantly lower amount of IE2 was produced. The addition of GA at
early steps of infection (0–8 hpi) lead to the effective inhibition of immediate early genes,
which also led to a decreased synthesis of the second tier of major immediate early genes.
Interestingly, following applications of GA doses during changes of cell culture medium
led to the complete inhibition of CMV replication. Another work, by Katsuma, revealed the
dependency of baculoviral IE protein on Hsp90 chaperone function [63]. Similar to our ob-
servations, treatment with 17-AAG did not affect the initiation of IE gene transcription, but
it had a significant negative effect on stable IE protein synthesis. In both cases, conclusions
indicated a fundamental role of Hsp90 in supporting viral replication via chaperoning of
immediate early genes, while inhibition of this process resulted in disruption of viral gene
expression cascade and eventually led to the delay or inhibition of the entire process of
virus replication.

Contrary to the above-mentioned drugs that had anti-adenoviral activity, none of
the Hsp90 inhibitors was approved for use in humans. This however may change with
the new inhibitors being developed and numerous trials conducted. The data reported
here demonstrated that 30 nM 17-AAG effectively inhibited HAdV-5 replication in vitro.
17-AAG antiviral activity at the non-toxic concentration was also reported in other stud-
ies [64–66]. The 17-AAG in plasma of the patients during the clinical trials reached 6–16 µM
concentration, depending on the administered dose, with moderate adverse effects [67,68].
A lower concentration of the drug necessary to suppress viral infection may limit its toxic
side effects. Antiviral drugs tend to lose effectiveness due to drug-resistant mutations.
This may not be the case for the Hsp90 inhibitors, because a protein that depends on the
Hsp90 chaperone for maturation and stability is not likely to be converted to the chaperone-
independent and still functional variant by the simple mutation. There are known Hsp90
mutations that are resistant to ATPase inhibitors, but such mutations might occur in a
limited number of cells, and they would not have an impact on the viral infection progress
at the whole organism level [69].

Modified adenoviruses are widely used as vectors for DNA delivery into mammalian
cells and HAdV modified to target tumor cells are studied as a potential means to treat
cancers [70–72]. The applications of Hsp90 inhibitors in cancer treatment are also studied.
The possible interference between the clinical application of Hsp90 inhibitors and HAdV-
based agents should be considered. The data presented here suggest that replication-
competent oncolytic adenoviruses may be particularly sensitive to the adverse effects of
the Hsp90 inhibitors. The HAdV infections tend to be mild, but they can be serious in
young and immunocompromised individuals, and specific drugs to treat such infections
are lacking [73–75]. Our results indicate that Hsp90 inhibitors could be used to suppress
the adenoviral infection.

4. Materials and Methods
4.1. Cell Lines and Virus Infection

The human epithelial cell line derived from lung carcinoma (A549) and human embry-
onic kidney 293 cells (HEK293) were obtained from ATCC and grown in Iscove’s Modified
Dulbecco’s Medium (IMDM) that was supplemented with 10% fetal bovine serum, 100 U
of penicillin, and 100 µg of streptomycin/mL (Sigma). Transfections were performed using
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Metafectane (Biontex), as suggested by the manufacturer. Human adenovirus 5 (VR-5) was
obtained from ATCC.

In order to determine the effect of 17-AAG on HAdV-5 replication, A549 0.8 × 106 cells/well
were seeded in a six-well plate and then infected with the virus at the indicated titer. The
inhibitor was added at the specified time concerning infection. Cycloheximide was used at
100 µg/mL concentration and 17-AAG was 0.25 µM, unless specified otherwise.

The virus titer was measured by 50% tissue-culture infectivity endpoint (TCID50)
method of Reed and Muench [76].

4.2. Cell Viability Assay

Cell viability was determined using the Cell Counting kit–8 (Sigma). The cells were
seeded into a 96-well plate in IMDM medium with different concentration of 17-AAG
(0, 0.125, 0.25, 0.5 µM). After 72 h, cell viability was measured according to manufacturer
instructions.

4.3. Plasmid Construction

E1A 289R DNA was amplified by RT-PCR from a total RNA isolated from HAdV-5
infected A549 cells using RNAzol and then converted to cDNA with hexamer primers in a
reaction with AMV transcriptase. Primers E1A289F and E1A289R were used in this reaction.
The resulting DNA fragment was cloned in the plasmid pcDNA-Myc using Kpn I and
Xho I restriction sites that were incorporated in the sequence of the primers. The resulting
plasmid expresses E1A 289R protein with the C-terminal Myc-tag from CMV promoter.

A plasmid that expresses the Flag-tagged Hsp90α gene in human cells was described
earlier [69]. The Hsp90α E46A mutation was generated by PCR mutagenesis

Supplementary Table S1 lists the primers used to construct plasmids.

4.4. Immunofluorescence Microscopy

Prior to infection, A549 cells were seeded on coverslips and cultured overnight to
adhere. The medium was removed and replaced with IMDM containing 0.25 µM 17-AAG
and with HAdV-5 at 500 TCID50/mL and cultured for 24 h followed by 4% formaldehyde
fixation, 0.1% Triton X-100 permeabilization and blocking with PBS containing 3% bovine
serum albumin (BSA). The fixed cells were then stained with an anti-HAdV-5 rabbit
polyclonal antibody (Abcam). Goat anti-rabbit secondary IgG antibody conjugated with
Alexa Fluor Plus 598 (Invitrogen) was then added and DAPI was used to stain the nuclei.

4.5. Co-Immunoprecipitation Assay (Co-IP)

HEK293 cells were transfected with E1A 289R-Myc and Hsp90α E46A plasmids, while
the control cells were transfected with pcDNA-Myc and Hsp90α E46A plasmids. After
48 h, cells were harvested and lysed with IP buffer (0,25% Triton X-100, 10 mM Tris, 20 mM
NaF, 100 mM, 10 mM β-glycerol phosphate, 2 mM sodium orthovanadate, 5 mM ATP,
and protease inhibitors cocktail (Roche)). The lysates were cleared by centrifugation at
12,000× g for 15 min. at 4 ◦C. The protein concentration was measured using the BCA assay
(Sigma), and adjusted with IP buffer to 1 mg/mL. 10 µL anti-Flag agarose beads (Pierce)
were added to the supernatant (700 µL), and then incubated for 2 h at 4 ◦C with mixing.
The immunoprecipitates were washed with ice-cold PBS four times and eluted with 40 µL
1× SDS PAGE Loading buffer. The samples were boiled for 10 min. and analyzed by
western blot.

4.6. Western Blot Analysis

The proteins were extracted by lysis with RIPA buffer. Rabbit polyclonal antibody
for the HAdV-5 (ab6982) and for E1A (ab204123) were obtained from Abcam. Monoclonal
antibodies were purchased from: Flag (Sigma, F3165), Myc (Merck, MABE282), CAR
(Cell Signaling, 5670S), and integrin Vα (Cell Signaling, 60896S). Secondary antibodies
that were conjugated to Alexa488 (Invitrogen, A32723) and Alexa594 (Invitrogen, A32740)



Int. J. Mol. Sci. 2021, 22, 2020 12 of 15

were obtained from Abcam. Goat anti-rabbit IgG-HRP and Goat anti-mouse IgG-HRP
antibodies were obtained from Bio-Rad (cat. no. 170-6515 and 170-6516). Western blot and
immunofluorescence staining were performed according to the standard protocols with
the antibodies diluted, as recommended by manufacturers.

4.7. qPCR

2 µg of RNA extracted with RNAzol reagent (Sigma) was used for cDNA synthesis
while using hexamer primers and AMV reverse transcriptase. After synthesis, polymerase
was inactivated and the reaction mixture was diluted with nine volumes of water. 1 µL
of the cDNA was used as a template in a 20 µL PCR reaction with primers specific for
E1A, DBP, hexon, and GAPDH (listed in Supplementary Table S1). The cDNA obtained
as described above was used as a template in a qPCR reaction with primers and TaqMan
probes listed in Supplementary Table S1. The results were expressed as the relative copy
number of HAdV-5 mRNA or DNA normalized to GAPDH and G6PD, and then for a
number of cells used for RNA extraction. QPCR for the viral DNA was performed using
primers Hexon-F, Hexon-R, and Hexon probe.

4.8. Statistical Analysis

The one-tailed Student’s t-test was used for data analysis, with the significance set
at 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/4/2020/s1, Table S1: Oligonucleotides used in this study.
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