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In‑situ porosity recognition 
for laser additive manufacturing 
of 7075‑Al alloy using plasma 
emission spectroscopy
Wenjing Ren1,2 & Jyoti Mazumder2*

Poor quality and low repeatability of additively manufactured parts are key technological obstacles 
for the widespread adoption of additive manufacturing (AM). In-situ monitoring and control of the 
AM process is vital to overcome this problem. This paper describes the combined artificial intelligence 
and plasma emission spectroscopy to identify the porosity of AM parts during the process. The 
time- and position-synchronized spectra were collected during the directed energy deposition (DED) 
manufacturing process of a 7075-Al alloy part. Eighteen features extracted from spectra were coupled 
with the deposition qualities which were characterized by the 3D X-ray Computed Tomography (CT) 
scan and used to train a Random Forest (RF) classifier. The well-trained RF classifier achieved up to 
83% precision for the porosity recognition of depositions. The feature importance recorded by the RF 
classifier indicates that the intensities of spectra at the wavelength of 414.234 (Fe I) nm and 396.054 
(Al I) nm, and the kurtosis of spectra at wavelength ranges of 484–490 nm and 508–518 nm, are the 
most effective features for porosity recognition. The physical correlations between spectra, porosity 
formation, and thermal accumulation during the AM process were analyzed. This study demonstrates 
the great potentials, as well as challenges of plasma emission spectroscopy for in-situ quality 
monitoring of laser AM which allows the enhancement of AM technique.

Additive manufacturing (AM), hailed as one of the most innovative technologies in Industry 4.0, is leading to 
innovations in a wide range of sectors, including aerospace, automotive, and medical1,2. However, the low repeat-
ability of qualified parts prevents AM from being fully adopted in practical applications, especially in industries 
with strict requirements on parts quality3,4. Traditional post-build part characterization methods, like X-ray 
computed tomography (CT), are time- and cost-consuming and their implementations are limited by the scale 
of production5. Defect detection during the AM process using in-situ monitoring techniques is an essential way 
to overcome these challenges. Signal analysis of the laser-metal interaction zone in real-time allows for defects 
and mechanical properties to be detected and corrected in real-time without interruption6,7. In-situ monitoring 
is urgently demanded by AM since conventional statistical quality control methods are not always applicable for 
the quality assurance of AM due to its low volume production and high variants of products.

This study focus on the in-situ recognition of internal porosity in laser additive manufactured parts. Inter-
nal porosity has fatal effects on mechanical properties and reliability and is difficult to detect in-situ due to the 
complex formation mechanisms below the build surface8. Although some popular optical sensors including 
pyrometers and cameras have been shown to be effective for detecting geometric defects such as deformation 
and unqualified surfaces9,10, they cannot provide much fundamental physics information except the temperature 
and images of the build surface, and thus are unreliable for internal defect detection. Coeck et al.11 employed 
the light intensity collected during the powder bed fusion (PBF) process using photodiodes to monitor non-
fusion type porosities induced by the suboptimal gas flow. An anomaly of the light intensity was observed in the 
location where the CT scan showed a large pore. Similar to Coeck’s work, the present investigations of in-situ 
porosity recognition mainly focus on the non-fusion type porosity caused by abnormal process parameters. 
The principle in these studies is that non-fusion type porosity mainly occurs along with changes of geometry or 
temperature in the melt pool which can be detected by optical cameras or thermal sensors12. However, poros-
ity formation mechanisms are various and complex8. Pores commonly occur in AM parts even under optimal 
parameters through either entrapped gas or hydrogen dissolution due to the thermal density variation or anomaly 
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in the manufacturing process, especially for the 7075-Al alloy which has high thermal conductivity and complex 
compositions including volatile materials such as Mg and Zn. For these types of porosity, signals which provide 
more fundamental information related to the porosity are needed. Recently, Leung13 demonstrated the applica-
tion of high-speed synchrotron X-ray imaging for porosity monitoring in laser PBF. This research revealed the 
pores formation mechanism and pores’ dynamic behaviors under the build surface. However, the X-ray imaging 
technique can only be used for small samples for limits of X-ray image resolution, which hinders its adoption in 
practical applications together with the high cost of synchrotron X-ray implementation.

To overcome the above challenges in in-situ porosity detection, an advanced sensing technique named emis-
sion spectroscopy is employed in this study. The emission spectra are made up of photons emitted from excited 
atoms in the plasma generated during the laser AM process. Recorded with fine wavelength resolution, emission 
spectra contain much more physical information than other optical signals. The spectral emission wavelength 
reveals the chemistry of the plasma and the spectral intensity reflects the element concentrations and plasma 
conditions such as plasma temperature and electron density14. Owing to the rich information in the spectra, 
emission spectroscopy has the potential for monitoring multiple part qualities, from defects to composition. 
Research using emission spectroscopy on in-situ monitoring of laser AM has been done before, notably by 
Mazumder and his group members who have been carrying out an in-depth study on this topic for a consider-
able amount of time. They have demonstrated that emission spectroscopy is effective for in-situ monitoring of 
feedstock composition15, phase transformation16, and residual stress17 of parts. In their recent patents, spectral 
features including spectral line intensity, line-to-line ratio, and plasma temperature are used for the closed-loop 
control in a Direct Energy Deposition (DED) system18. Lough19 also equipped a spectrometer into the PBF 
system to measure the real-time spectra for melt pool size monitoring. Stutzman et al20 demonstrated that the 
median line-to-continuum ratios of spectra at 430 nm and 520 nm significantly increased when the DED part 
presented non-fusion pores induced by suboptimal process parameters. However, this study doesn’t detect the 
porosity quantitively and the physical relationship between pores and spectra were not analyzed. Montazeri et al21 
developed a machine learning model for porosity detection of laser PBF using the line-to-continuum ratio of 
Cr spectral emission. The proposed method can accurately recognize the porosity level of parts printed under 
different process parameters which has proved the great potential of spectroscopy for porosity recognition. The 
main limitation of this study is that it recognizes the porosity layer-by-layer which makes it not applicable for 
real-time defects correction.

A challenge in using this method is knowing which features in the spectra give the most meaningful infor-
mation about the part quality. Various features can be extracted to interpret spectra in a different way, such as 
emission intensity, intensity ratios, and spectral profile properties. However, the importance of these spectral 
features for porosity detection has not been discussed. The physical principle of emission spectroscopy on defects 
recognition needs to be studied further. Therefore, an artificial intelligence method named Random Forest (RF) 
classifier has been employed in this study, which can estimate the importance of individual spectral features 
during developing the porosity recognition model. In summary, this study investigated the in-situ recognition 
of local porosity in the laser-based DED part produced under consistent parameters. Spectra signals were related 
to the porosity defects which were characterized by 3D X-ray Computed Tomography (CT). An intelligent RF 
classifier was developed for local porosity recognition using spectral features. Important spectral features for 
porosity detection were determined and analyzed.

Methodology
Plasma emission spectroscopy in laser AM.  Unlike the laser-induced breakdown spectroscopy (LIBS), 
spectra are directly produced by the laser in the additive manufacturing process. As shown in Fig. 1, metal depo-
sition and powder are melted and partially evaporated under the illumination of a highly energetic laser. Atoms 
in the metal vapor and the shielding gas are excited to high energy level states and then transit to lower energy 
level states based on spontaneous transition theory22. During these spontaneous transitions, photons with spe-
cific wavelengths determined by the energy gaps of transitions are released and recorded as emission spectra. 
Since the energy gap is a characteristic of each element, the wavelengths of the emission spectrum are identifiers 
for the radiating atoms. Further information on emission spectroscopy can be found in references14. The spectral 
plot in Fig. 1, for instance, is a spectrum collected during laser additive manufacturing of 7075-Al alloy. Peaks at 
wavelengths 383.229 nm, 396.054 nm, 414.234 nm are respectively identified as the peaks of Mg I, Al I, and Fe I 
which are the main elements in the target material.

The intensity of the spectrum is proportional to the density of emitted photons. Under the local thermal 
equilibrium assumption, the emission density ( Iij (�) ) of photons is:

where the partition function U(T) is the statistical occupation fraction of every level of the atomic species:

There are two types of variables: (1) the element-determined variables, including the wavelength of the photon 
( � ), the transition probability ( Aij ), the degeneracy of the upper level ( gi ), the energy at level i ( Ei ) and level j ( Ej ); 
(2) and the plasma-determined variables, including the number of neutral atoms in plasma ( n0 ), the temperature 
of plasma ( T ), and the spectral line profile ( I(�) ). These variables are directly correlated with process parameters 
and the quality of the manufactured parts. For example, the laser power density affects the temperature and 
electron density of the plasma, which in turn affects the intensity and profile of spectra. Parameters, including 
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laser properties (wavelength and power distribution), powder delivery rate, and shielding gas flow also influence 
the spectral properties significantly. Therefore, the close relationships between spectra signal and manufacturing 
parameters and quality make emission spectroscopy a great candidate for in-situ defects detection.

Theory of random forest.  Random Forest (RF) is an ensemble model that is constructed by multiple clas-
sifications or regression trees (CARTs) and makes predictions based on majority voting from individual trees23. 
The building procedures of an RF classifier are shown in Fig. 2 in which a two-stage randomization procedure 
contributes unique advantages of the RF model. One is that examples used to grow individual decision trees are 
randomly selected from the training dataset with replacement, known as bootstrap aggregating24. By assembling 
trees grown from different training data subsets, the RF model becomes more robust when facing slight varia-
tions in input data and, in turn, achieve greater classification stability. Several studies have proved that models 
based on bootstrapping, like RF, are less sensitive to noise and more effective for handling imbalanced data com-
pared to other models25,26. Also, as growing trees, only 2/3 of the bootstrapped dataset is used to train the current 
tree and the other 1/3 of the dataset forms another subset named out-of-bag (OOB). The OOB dataset is used to 
get an unbiased estimate of the classification error as trees are added, which avoids the RF model overfitting data. 
The OOB method has a similar function with cross-verification but almost no additional computational task is 
needed. Another randomization stage is that rather than using all features only a random subset of features is 
used as candidates for splitting each node of a tree. This can reduce the correlation between trees so that RF gets 
a higher generation accuracy although the strength of an individual tree is decreased.

As growing trees, a feature selection measurement is required to split examples at each node. One of the most 
popular measurements, named the Gini impurity criterion, is used in this study. The Gini impurity indicates 
how pure the node is, and it goes to zero when all examples at the node are purely classified. At each node, the 
decision tree searches through the subset features for the value to split on that results in the greatest reduction 

Figure 1.   Plasma emission spectroscopy in laser AM.

Figure 2.   Random Forest schematic diagram.
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in Gini impurity. The Gini impurity at node m ( GIm ) of all classes is calculated using Eq. (3), where, fi is the 
probability of class i at m node and C is the number of the unique classes.

RF also provides an assessment of the relative importance of each feature for classification. This property is 
significant because it is important to know how each feature influences porosity recognition, and which feature 
is most relevant to porosity defects. To get the relative importance of each feature, the RF model replaces one 
of the input random features and measures the resulting decrease in accuracy by seeing the change in the OOB 
error estimation and the Gini impurity24. Investigating the response of the most important features to additive 
manufacturing quality is helpful to reveal the underlying fundamentals of defects formation.

Experiment
Experiments were conducted using the smart DED system developed at SenSigma company, USA. The DED 
system consists of a high power Trumpf 6 kW Nd: YAG laser, a six-axis robot, a material supplier, and a Smart 
Optical Monitoring System (SOMS). The experimental setup is shown in Fig. 3. A Gaussian laser beam with a 
wavelength of 1030 nm is focused on the build surface. An optical head and a customized nozzle are assembled 
on the robot arm. Argon gas is used to shield the powder flow into the laser beam, and create an inert environ-
ment around the metallic deposition. The 7075 powders are delivered co-axially with the laser beam and are 
melted and deposited as the delivery nozzle moving relative to the base plate. An optical probe collects the light 
emitted from the plasma and transmits the light to the spectrometer (Ocean Hr2000). The optical probe is set to 
be nearly parallel to and 2 mm above the substrate, and 150 mm away from the laser beam. Spectra are collected 
during the DED process using the SOMS system with a spectrometer having a 277–570 nm wavelength range 
and a resolution of 0.154 nm. The integration time of the spectrometer is set to be 0.01 s.

The 7075 powder is gas-atomized with a particle size ranging between 44 µ m and 105 µ m (− 140/ + 325 
mesh). Table 1 presents the chemical composition of the powder. To print a part with qualified dimensions and 
containing the proper number of pores, optimization experiments were conducted following the Taguchi design 
method with laser power, scanning speed and the powder delivery rate between 1000–1200 w, 6–8 mm/s, and 
0.5–1.5 g/min, respectively. Only the parameters as listed in Table 2 were used to print the part for the porosity 
recognition investigation in this study, as all other parameters produced parts with unacceptably high numbers 
of pores. Figure 4a schematically illustrates the scanning path, which consists of 10 layers and 14 bidirectional 
lines in each layer. The layer thickness and hatching space are set to be 0.35 mm and 0.75 mm, respectively. 
At the beginning of each layer, a square periphery would be printed along the edge of the deposition to avoid 
collapse. The nozzle goes back to the start point after each layer being done, and rises 0.35 mm, then repeats 
to print the next layer. In this way, a rectangular part, shown in Fig. 4b, with dimensions of 12.6× 12.6× 3.5 
mm, was deposited upon a 7075-Al alloy substrate with a thickness of 12.7 mm (1/2 in.). Spectra signals were 
synchronously collected for each deposition layer.  

The printed part was cut off from the substrate using an abrasive cutting machine and inspected in the as-built 
condition. Post-inspection was implemented for the presence of pores in the part using a 3D X-ray Computed 
Tomography system (Zeiss Versa 520) with a voxel resolution of 7.5 µm in each direction (x, y, and z). The part 
was mounted on a high-precision stage and incrementally rotated by 0.225 degrees for a full 360° rotation. As 
the sample rotating, X-ray beams were transmitted through the part at a power of 7 w and a voltage of 80 kV 

(3)GIm =
∑

C

i=1
fi
(
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)

Figure 3.   Schematic diagram of the DED system with SOMS.

Table 1.   Chemical weight composition of 7075 powder.

Elements Zn Mg Cu Si Fe Mn Cr Ti Al

Percentage (%) 5.1–6.1 2.1–2.9 1.2–2.0 0.4 0.5 0.3 0.18–0.28 0.2 Balance
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getting one projection image at each rotated angle with an exposure time of 3 s. The source filter used during the 
scanning is LE2 glass filter. 1601 projections were taken in 360° of the part and reconstructed to a complete 3D 
X-ray CT scan representation of the part. The outputs of the X-ray CT characterization were used to manually 
label the local deposition as dense or porous.

Experimental data analysis
Spectra signal possessing.  The raw spectra signals collected from one layer printing process are plotted 
in Fig. 5a. There are 3480 spectral frames collected in each layer in which each spectral frame consists of a spec-
trum with 2047 variables in wavelength dimension. Since the spectra signals are collected synchronously during 
the printing process, each frame of the spectra can be located at a specific voxel of deposition based on Eq. (4).

where L is the printing length corresponding to the Nth frame of spectra. τ and V  are the integration time of 
spectrometer and printing speed, respectively. Therefore, the spectra data can be labeled with the quality of 
deposition qualified by X-ray CT scans.

As shown in Fig. 5b, the raw spectrum is made of continuums spectrum (background continuum) and 
emission spectrum (emission lines) which are produced in completely different mechanisms and hold distinct 
information about the process. Thus, the background continuum and emission lines were extracted from the raw 
spectrum and interpreted separately. The first lower envelope of the raw spectrum is calculated using a linear 
interpolation formula shown in Eq. (5). Then the lower envelope of the first lower envelop curve was calculated 
in the same way and served as the background continuum of the spectrum.

(4)L = Nth · τ · V

(5)P(�) = f (�−��)−
f (�+��)−f (�−��)

2

Table 2.   Process parameters for printing the part for porosity recognition investigation.

Parameter Laser power Scanning speed Powder flow rate Laser beam Layer space Hatching space

Value 1200 (W) 6 (mm/s) 1.5 (g/min) 1.2 (mm) 0.35 (mm) 0.75 (mm)

Figure 4.   Printing path (a) and the as-deposited specimen (b).

Figure 5.   3D plot of an example of spectra collected from one layer (a) and spectrum collected over one 
integration time (b).
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where P(�) is the interpolation at wavelength � and f (�) is the intensity of the curve to be interpolated at the wave-
length � . Figure 5b presents the estimated background continuum (black dash line) and the emission lines (blue 
line) for a raw spectrum (red line). As can be seen, sharp peaks present at 383.229 nm, 396.054 nm, 414.234 nm, 
which are respectively identified as Mg I, Al I, and Fe I based on the NIST Atomic Spectra Database27.

Spectral feature extraction.  The full wavelength range spectrum is too intricate to indicate the process-
ing conditions directly. Therefore, effective and reliable features have to be extracted. Here, eighteen spectral 
features related to emission lines of Mg I (383.229 nm), Al I (396.054 nm), Fe I (414.234 nm, 473.566 nm, and 
518.216 nm), Cr I (484.207 nm), and statistical properties in high wavelength ranges were extracted in various 
ways. Table 3 presents the details of the eighteen spectral features.

Since the laser-material interaction area equals the laser beam diameter, which is 1.2 mm in this study, the 
prediction resolution was set to be 1.2 × 1.2 mm in the XY plane. Within each interaction area, 20 frames of 
spectra were collected. An average of 20 frames was taken for each feature and served as the input of the clas-
sification model.

Post‑built porosity calculation.  The actual quality (ground-truth) of each local deposition in the part is 
labeled by the X-ray CT scanning results. To correlate the synchronized spectral data with the porosity distribu-
tions, the CT scans of the part were manually rotated and translated to register the CT scan volume to the same 
coordinate system. The CT scanning volume was sectioned into 250 slices perpendicularly to the building direc-
tion. Based on the deposition layer thickness, 24 CT scanning slices were assigned to each printing layers and ten 
slices were assigned to the attached substrate for porosity rate calculations.

To eliminate the complications arising from the effects of the edge depositions, analysis of the CT image 
is limited to a region of interest (AOI) which is approximately 1.8 mm away from the edges. Figure 6a gives a 
representative slice of CT scans, in which the red box and dash lines illustrate the AOI and the 12 printing paths 
(from the second line to the thirteenth line), respectively.

The porosity distribution in each layer of the part can be calculated as follows: (1) Convert each slice in one 
deposition layer to a binary image using a threshold of 140 lightness, so that the pores in the slice are converted 
into black pixel contrasting to the white dense deposition areas. (2) Get the spatial porosity rates by calculating 
the ratios of the black pixels to the white pixels in the local area. As shown in Fig. 6b, the local area is outlined by 
a window with a size of 111× 111 pixels, which correspond to an area of 1.2× 1.2mm deposition. (3) By mov-
ing the window along the printing path with 50 pixels overlap, the spatial porosity rate of the whole slice can be 
obtained. (4) Calculate the porosity rate of each slice in this layer using the same method. Average the porosity 
rate at the same position in the XY plane of all slices in this layer. (5) Label the local deposition region as porous 
(class 0) if the average porosity rate is higher than 0.02%, otherwise, label the deposition region as dense (class 
1). Implementing these steps on each layer, the spatial porosity rates of the whole part were calculated, and 
consequently, each local deposition was labeled. Figure 6c presents the calculated porosity distribution for the 
second layer, with the horizontal axis representing the printing time.

A combination of spectral features and ground-truth quality of a local region ( 1.2× 1.2mm ) is regarded as 
one example used for the RF classifier training and testing. Consequently, 156 examples are obtained from each 
layer. To eliminate the effects of the substrate, data from the first layer was discarded. The spectra signals from 
the eighth layer were not saved due to operator error. Altogether, a dataset consisting of 1092 examples from 
seven layers (2nd, 3rd, 4th, 5th, 6th, 7th, and 9th layers) was created and used for porosity recognition. Since 

Table 3.   Features introduction and definition. Where, Ir(�), Ib(�) and I(�) represents the raw spectral 
intensity, background intensity, and background-subtracted intensity at the wavelength �. The full wavelength 
range of the spectrometer φ = [227, 569](nm) . The sub-wavelength-ranges for RMS and Kurtosis calculation 
are ϕ1 = [484, 490] and ϕ2 = [508, 518]. The symbol ni refers to the points number in the sub-wavelength-
range ϕi . The symbol di refers to the haft broaden of the emission line at the wavelength �i.

Feature No. Features Formula

1–5 Background-subtracted emission line intensities
I(�i) =

∫

�i+di
�i−di

(Ir (�i)− Ib(�i))d�
(�i = 383.229, 396.054, 414.234, 473.566, 484.207 nm, di
=0.882, 1.168, 1.014, 1.123, 1.813)

6 Average raw spectra intensity 1
N

∑

�ǫφ Ir (�)

7 Average background intensity 1
N

∑

�ǫφ Ib(�)

8 Integration of background continuum
∫

(Ir (�)− Ib(�))d�, �ǫφ

9–12 Line-to-continuum ratios Ri = I(�i)/Ib(�i) , ( �i=414.234, 396.054, 473.566, 
484.207 nm)

13–14 Line-to-line intensity ratios I(396.054)/I(414.234), I(484.207)/I(518.216)

15–16 Root mean squares of raw spectral intensity in sub-wave-
length-ranges RMSj =

√

1
ni

∑

�iǫϕj
Ir
2(�i) , j = 1, 2

17–18 Kurtosis of raw spectral intensity in sub-wavelength-ranges κj =

1
ni

∑

�i ǫϕj

(

Ir (�i)−
−

I r

)4

(

1
ni

∑

�i ǫϕj

(

Ir (�i )−
−

I r

)2
)2 − 3

 , j = 1, 2
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the part was printed layer by layer, each layer can be taken as an individual part. Therefore, examples from the 
2nd layer and the 3rd layer were used to train and test the RF classifier to verify the recognition performance. 
Examples from the other five layers were used for experimental verification to verify the robustness of the model. 
Specifically, 75% of the examples in the second and the third layers were used for training the RF classifier. The 
rest 25% of examples from these two layers and examples from other layers were used for testing. Each testing 
operation was repeated ten times to ensure the reliability of the results.

Results and analysis
Porosity recognition performance.  Figure 7 compares the recognition performances for porous, dense, 
and overall examples. The mean values of testing precisions are shown as lines. The precision standard deviations 
of ten repeat operations are shown as the error bars. Some observations can be found: (1) The classifier trained by 
the data of the 2nd layer and the 3rd layer can recognize the porosity of other examples of these two layers with 
relatively high recognition precisions (83% for porous examples, 82% for fully dense examples and 82% for over-
all examples). The F1-score for the prediction of these two layers is 82%. Table 4 presents the confusion matrix of 
the test result for these layers. (2) The recognition accuracies for the quality of the subsequent deposition layers 
decrease layer after layer. Furthermore, the recognition accuracies of the training layers and the layers close to 
the training layers have shown a lower standard deviation than the layers far behind the training layers. (3) The 
precision for recognizing the porous examples is higher than the precision for recognizing the dense examples, 
except for the last two layers. 

The decrease of the recognition performance for the subsequent layers is mainly caused by the variability in 
deposition thickness. In this study, the probe of the spectrometer is assembled on the optics head and focused 
on a specific plasma zone. The optics head as well as the probe rose a predetermined height after each printed 
layer under the assumption of a constant deposition thickness. However, since the over- and under-building are 
common occurrences in the DED process, the deposition layer may be slightly thinner or thicker than the preset 
layer thickness. In that case, the relative location between the probe and plasma will change. Then the probe 
would focus on a different zone of plasma which can cause a change of spectra intensity or even spectral profile29. 
Consequently, the change of spectra caused by the variability of deposition thickness induced errors for porosity 
recognition. Besides, the thickness deviation would increase the error of post-build porosity characterization. 
Thus, spectra data may be labeled incorrectly and this error accumulated with layers. These limitations are great 

Figure 6.   Diagram of the CT scanning image processing procedure: a representative CT image in the second 
layer (a), the corresponding binary CT scan image (b), and the calculated porosity rate (c).

Figure 7.   RF testing results for dense and porosity recognition.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:19493  | https://doi.org/10.1038/s41598-020-75131-4

www.nature.com/scientificreports/

challenges for online recognition of DED. However, this anomalous thickness variability can be eliminated using 
a height control30.

Visualization of the important spectral feature.  The relative importance of the eighteen spectral fea-
tures during the classification process was recorded by the RF classifier. This information can describe how 
closely spectral features are associated with the printing quality and help to reveal the fundamental physics of 
defects recognition. Table 5 lists the four most important features reported by the RF classifier. It can be seen 
that the intensities of Al (396.054 nm) and Fe (414.234 nm) emissions, the kurtosis of spectra in two wavelength 
ranges (508–518 nm and 484–490 nm) are mostly associated with the porosity defects.

The distribution of the most important features (I414.234) for the second deposition layer was compared with 
the porosity distribution getting from the CT scans in this layer, as shown in Fig. 8. The I414.234 vector of this layer 
is reshaped to a matrix in sort of printing path in which each row of the matrix corresponding one printing line 
and mapped to a contour as shown in Fig. 8b. In the contour image the horizontal axis represents the printing 
line numbers, the vertical axis represents the distance from the lower deposition edge, and contour color repre-
sents the amplitudes of spectral feature I414.234. The binary CT images of this layer are overlaid together so that 
all pores produced in this deposition layer can be shown in one image as Fig. 8a. As can be seen, the second half 
of the deposition layer is more porous which corresponds to a higher I414.234. The first half part, by contrast, has 
a lower porosity rate which corresponds to lower I414.234. The spectral feature (I414.234) increased markedly when 
pores are produced, especially the large pores. Therefore, the selected important spectral features match well 
with the porosity rate of the deposition. The significant increase of Fe spectral intensity indicates that more Fe 
elements were evaporated and excited in the plasma when pores present.

Table 4.   Confusion matrix of the test result for the 2nd and 3rd layers.

Example number = 78 Actual porous Actual dense

Predicted porous 31 6

Predicted dense 7 34

Table 5.   The top four important features reported by the RF classifier.

N0 Feature Importance value Physical meaning

1 I414.234 0.102 The emission intensity of Fe I

2 k(508–518) 0.092 Kurtosis of spectra in the wavelength range 508–518 nm

3 K(484–490) 0.082 Kurtosis of spectra in the wavelength range 484–490 nm

4 I396.054 0.064 The emission intensity of Al I

Figure 8.   The comparison of overlaid binary CT image (a) with the spectral feature contour (b) of the second 
layer.
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Discussion
Figure 9 presents the specific spectra taken from areas with large pores (blue lines), without pores (black lines), 
and small concentrated pores (red lines), respectively. As shown, emission lines as well as the background con-
tinuum of spectra for depositions with pores are much stronger than those for fully dense depositions. Intense 
metal emission lines are observed in the spectra when pores are produced, especially for the spectra correspond-
ing to the large pores. The large pore was randomly produced around dense areas and is believed to be randomly 
caused by abnormal conditions, for instance, unstable laser input or metal spatter. These abnormal conditions 
create an active environment in which more elemental emissions are excited. As shown in Fig. 9, small pores are 
mostly concentrated in the second half part of the deposition layer. That is because the temperature of the build 
surface kept increasing during the printing process of the aluminium alloy, which increased the unstable depres-
sion within the molten pool and in turn entrapped gas as pores. Moreover, another factor for the pore formation 
is the metal evaporation under the high-temperature conditions. It has been proved that the evaporation of alloy 
elements in materials influences the convection dynamics as well as the uptake of hydrogen in the melted alloy 
which results in the formation of pores28. On the other hand, the high temperature and increased evaporation 
of alloy elements contribute to the strong intensity of spectra.

In summary, emission spectroscopy is an excellent in-situ monitoring technique for AM not only for aca-
demic research but also for commercial use. It is cheap and easy to access and can provide a large amount of 
fundamental information about the AM process. The multiple functions including composition recognition 
and defects detection make emission spectroscopy suitable for developing a cost-efficient monitoring system. 
Despite its obvious benefits, it is important to note the limitations of this technique. As can be shown in “Porosity 
recognition performance” section, spectra collection is highly sensitive to the relative position of the sensor, thus 
deposition thickness needs to be strictly controlled when using spectroscopy in the DED system. Furthermore, 
some kinds of material may not be easy to emit line emissions which result in a low signal-to-noise ratio of the 
spectra signals, especially when the system working under a low laser power.

Conclusions
This work investigated the application of combined artificial intelligence and plasma emission spectroscopy for 
in-situ porosity recognition of additive manufacturing. Spectra signals synchronously collected during DED for 
7075-Al alloy were analyzed and correlated with the quality of deposition which is characterized by the 3D X-ray 
CT scans. An RF classifier was developed and trained by examples consisting of spectral features and ground-
truth deposition qualities with a resolution of 1.2 × 1.2 mm in the XY plane. This classifier achieved a porosity 
recognition precision up to 83% for the examples from the training layers or their adjacent layers. However, 
with the printing layer going up the recognition precision decreased to a low level which is mainly caused by the 
variability of deposition thickness.

The importance values of eighteen spectral features for porosity recognition were recorded by the RF classifier. 
The comparison of the most important spectral feature (I414.234) with the porosity distribution presents a good 
response to the random pores and concentrated small pores. Thermal accumulation and abnormal conditions 
increase the evaporation of element and the temperature of plasma which increase the porosity rate in the part 
as well as the intensity of spectra.

This work shows the potentials as well as the challenges of plasma emission spectroscopy applying on the 
in-situ quality monitoring of laser AM. It is significant for facilitating the online quality assurance and under-
standing the physical phenomena in the laser AM process. In future work, parts will need to be printed with 
strict deposition thickness control and used for further verification of the proposed method in this study. Deep 
learning classification models, such as long short-term memory models, may also be utilized to mine compre-
hensive and efficient information from spectra for defects recognition of AM.

Figure 9.   Comparison between spectra collecting from areas with a large random-pore (blue lines), without 
pores (black lines), and small concentrated pores (red lines).
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