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Background: Patients with schizophrenia show abnormal spontaneous oscillatory

activity in scalp-level electroencephalographic (EEG) responses across multiple

frequency bands. While oscillations play an essential role in the transmission of

information across neural networks, few studies have assessed the frequency-specific

dynamics across cortical source networks at rest. Identification of the neural sources

and their dynamic interactions may improve our understanding of core pathophysiologic

abnormalities associated with the neuropsychiatric disorders.

Methods: A novel multivector autoregressive modeling approach for assessing effective

connectivity among cortical sources was developed and applied to resting-state EEG

recordings obtained from n = 139 schizophrenia patients and n = 126 healthy

comparison subjects.

Results: Two primary abnormalities in resting-state networks were detected in

schizophrenia patients. The first network involved the middle frontal and fusiform gyri

and a region near the calcarine sulcus. The second network involved the cingulate gyrus

and the Rolandic operculum (a region that includes the auditory cortex).

Conclusions: Schizophrenia patients show widespread patterns of hyper-connectivity

across a distributed network of the frontal, temporal, and occipital brain regions.

Results highlight a novel approach for characterizing alterations in connectivity in

the neuropsychiatric patient populations. Further mechanistic characterization of

network functioning is needed to clarify the pathophysiology of neuropsychiatric and

neurological diseases.

Keywords: resting-state electroencephalography (EEG), effective connectivity, schizophrenia, source level

analysis, biomarker, temporal cortex, frontal cortex
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INTRODUCTION

Neurophysiologic abnormalities are commonly studied in
patients with schizophrenia in response to experimental stimuli,
cognitive, tasks, and even at rest. Neural oscillations play an
essential role in cortico-cortical transmission and the integration
of information across neural networks supporting critical brain
functions, including perception, attention, and other higher-
order cognitive functions (1–7).

Neural oscillations can be measured in the scalp
electroencephalogram via a variety of analytic and experimental
settings [e.g., spontaneous, evoked, induced, and emitted (8–
10)], which have productively resulted in the identification
of abnormalities across a broad range of conditions in
schizophrenia patients. Task-related (i.e., evoked and induced)
high frequency oscillatory abnormalities in schizophrenia
patients, especially for gamma band oscillations (i.e., above
30Hz), have been consistently reported among the myriad
neurophysiological abnormalities seen in schizophrenia
(8, 9, 11–17), and are associated with multiple cognitive deficits
in patients (18). In contrast to the widely studied stimulus-
or task-evoked gamma oscillations, spontaneous oscillatory
abnormalities in schizophrenia, particularly in the gamma band,
have been relatively less studied.

Resting-state EEG does not require behavioral responses to
stimuli or cognitive tasks for elicitation and is already widely used
as part of routine neurologic and psychiatric assessments (19).
Spontaneous oscillations arise from the synchronous firing of
neurons in distributed neuronal networks and are characterized
at broadband frequency ranges detectable via scalp sensors. Such
oscillations can also be characterized via the flow of spectral
information among their calculated neural sources. Identification
of the primary contributing neural sources as well as the dynamic
interactions among sources of spontaneous EEG activity may
elucidate fundamental pathophysiologic abnormalities associated
with the illness which may ultimately yield clinically relevant
applications (biomarkers of illness, risk of illness, or sensitivity
to therapeutic interventions).

A recent review article reported that schizophrenia patients
showed increases in the canonical theta, alpha, and beta bands,
but with no difference in the delta band activity in scalp level
responses (20). Despite enthusiasm for measures of gamma band
phase locking and synchronization to steady-state stimulation
(8, 21), resting state gamma band activity has not been commonly
studied. Moreover, while such scalp-level responses have been
extensively described, the spatial information of neural network
dynamics underlying frequency-band specific resting-state EEG
activity in schizophrenia patients is largely unknown. To our
knowledge, only one paper, by Andreou et al. (22) reported
increased resting-state gamma-band functional connectivity
across the Rolandic operculum, a region that includes superior
temporal and inferior frontal gyri, in schizophrenia patients.

In this study, a novel multivector autoregressive modeling
method was developed and applied to assess the effective
connectivity of resting-state EEG activity among cortical sources
in schizophrenia patients and healthy comparison subjects.
This data-driven approach enables an analysis of cortical

network dynamics with directed information flow [e.g., Granger
causality (23); increased or decreased EEG phase coherence
between two cortical regions] using a correlation with a time
delay. We hypothesized that patients with schizophrenia would
show abnormal increased frequency-specific oscillations (e.g.,
gamma-band activity) across frontotemporal cortical networks.
Furthermore, we aimed to characterize the networks associated
with other frequency bands in schizophrenia patients and healthy
comparison subjects.

MATERIALS AND METHODS

Subjects
EEG data from n = 147 healthy comparison subjects and n =

159 schizophrenia patients was processed. Recordings from n =

2 healthy comparison subjects and n = 5 schizophrenia patients
were dropped in the quality control step in the pre-processing of
EEG. In the sample of n = 145 healthy comparison subjects and
n = 154 schizophrenia patients, age and sex were significantly
different between the groups. Therefore, we removed the subjects
of extreme value of age and sex, and used a final sample of n= 126
healthy comparison subjects and n = 139 schizophrenia patients
in the effective connectivity analysis (Supplementary Method 1,
Supplementary Table 1). Resting-state spectral characteristics
assessed at a single principal component analysis (PCA)-based
composite scalp sensor level were previously reported (24).
Antipsychotics, anxiolytics, and anticholinergics were prescribed
for 125, 27, and 42 schizophrenia patients, respectively. Since
anxiolytics and anticholinergic medications are known to have
potential impacts on resting state scalp EEG (25, 26), separate
analyses of schizophrenia patients who did not have either
anxiolytics nor anticholinergics (N = 80) were also conducted.
Written informed consent was obtained from each subject. The
Institutional Review Board of University of California San Diego
approved all experimental procedures (071831, 170147).

Electroencephalography Recording and
Pre-processing
Participants sat in a comfortable chair in a quiet room and were
instructed to relax and with their eyes open. Subjects were closely
monitored via a one-way mirror throughout this brief 5min
session. The recording could be paused if subjects appeared to
be drowsy either by direct observation or as indicated in their
EEG/EOG recordings. The recording would then be resumed
after the subject was reminded to keep their eyes open.

EEG was continuously digitized at a rate of 1,000Hz (nose
reference, forehead ground) using a 40-channel Neuroscan
system (Neuroscan Laboratories, El Paso, Texas). The electrode
montage was based on standard positions in the International
10–5 electrode system (27) fit to the Montreal Neurological
Institute template head used in EEGLAB (28). The system
acquisition band pass was 0.5–100Hz. Offline, EEG data
were imported to EEGLAB 14.1.2 (29) running under Matlab
2017b (The MathWorks, Natick, MA). Data were high-pass
filtered [finite impulse response (FIR), Hamming window, cutoff
frequency 0.5Hz, transition bandwidth 0.5]. EEGLAB plugin
clean_rawdata() including artifact subspace reconstruction
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(ASR) was applied to reduce high-amplitude artifacts (30–35).
The parameters used were: flat line removal, 10 s; electrode
correlation, 0.7; ASR, 20; window rejection, 0.5. Mean channel
rejection rate was 4.2 % [standard deviation (SD) 2.3, range
0–15.8]. Mean data rejection rate was 2.0% (SD 3.5, range 0–
22.4). The rejected channels were interpolated using EEGLAB’s
spline interpolation function. Data were re-referenced to average.
Adaptive mixture independent component analysis (ICA) was
applied to the pre-processed scalp recording data to obtain
temporally maximally independent components (ICs).

Source Localization Using an Equivalent
Current Dipole Model
The values in the column of the mixing matrix derived from
ICA were mapped on to the scalp electrodes to obtain IC
scalp topography, which represents scalp projection of ICA-
derived effective EEG sources inside the brain (36). A previous
study showed that this scalp topography is modeled well by an
equivalent current dipole model, and in fact the “dipolarity”
of IC scalp topography correlates with the mutual information
reduced by ICA (37). Thus, even though ICA is agnostic on
spatial information (electrode locations, electric forward model
of the brain, or spatial information about location of the
EEG generators), minimizing the mutual information in the
decomposed signals naturally achieves a physiologically valid
dipolar spatial projection pattern. These findings are often
taken as evidence of physiological validity of ICA when applied
to scalp-recorded EEG data (independence-dipolarity identity).
This estimation of equivalent current dipoles was performed
using Fieldtrip functions (38). Two symmetrical dipoles were
estimated for scalp topographies (39).

Selection of Independent Components
Representing EEG
To select brain ICs among all types of ICs, EEGLAB plugin
ICLabel() was used (40). The inclusion criteria were (1) “brain”
label probability > 0.7 and (2) residual variance i.e., var[(actual
scalp topography) – (theoretical scalp projection from the fitted
dipole)]/var(actual scalp topography)< 0.15. Seven subjects were
removed because they did not have minimum of 4 brain ICs. The
mean number of ICs remained was 12.5 (SD 4.5, range 4–25). To
ensure consistency across computations, recordings longer than
300 s were truncated to 300 s. Mean data length was 297.7 s (SD
8.9, range 202–300).

Effective Connectivity Analyses
To calculate the grand-mean effective connectivity across
ICs for each group, we applied EEGLAB plugin groupSIFT,
which recently demonstrated successful application in other
neuropsychiatric disorders (41). Renormalized partial directed
coherence [RPDC (42)] was calculated across ICs (single window,
logarithmically distributing 50 frequency bins from 2 to 55Hz).
This generated a connectivity matrix with the dimension of IC×

IC for each participant. The grand-average optimummodel order
determined via the elbow detection method was 7.1 (SD 0.6) i.e.
delayed effective connectivity up to about 64ms was utilized. An
autocorrelation function (ACF) test showed that probability for

the residual to be white was 0.81 (SD 0.04). Data consistency (43)
was 88.2 % (SD 4.3). The estimated equivalent dipole locations of
the corresponding ICs were convolved with 3-D Gaussian kernel
with 20mm full width at half maximum (FWHM) to obtain
probabilistic dipole density (truncated at 3 σ). The dipole density
inside the brain space is segmented into anatomical regions
defined by custom automated anatomical labeling [AAL (44)];
the original 88 anatomical regions in AAL were reduced to 76
by summarizing basal and deep limbic regions into two umbrella
regions, upper and lower basal. The labels “upper basal” and
“lower basal” were originally matched to ventral mid-cingulate,
“mid-cingulate” as dorsal mid-cingulate, and “insula” as inferior
frontal. The individual IC × IC connectivity matrix was thus
mapped to a 76 × 76 connectivity matrix, on which RPDC
was also mapped as a weighting factor to modulate pairwise
dipole density to calculate graph edges. For both groups (healthy
comparison subjects and schizophrenia patients), including a
minimum of 70% of unique subjects was set to be an inclusion
criterion for each graph node to be analyzed in the next stage.
Also, for the group comparison (healthy comparison subjects
and schizophrenia patients), 48/76 graph nodes showed overlap
between the groups, which explained 82.3% of total dipole
density, consistent with findings from Loo et al. (41). For the
statistics of RPDC in the frequency domain, a weak family-wise
error rate control was applied (45, 46). The brain graphs were
visualized using BrainNet Viewer software (47).

RESULTS

The connectivity matrix that represents the group-difference
[healthy subjects (N = 126) and schizophrenia patients (N =

139)] of each EEG band activity [a pre-defined p < 0.0001,
corrected; two-tailed (48)] is shown in Supplementary Figure 1.
The results revealed 10 graph edges (effective connectivity,
i.e., increased or decreased EEG phase coherence between
two cortical regions) for delta band (1–4Hz), 16 for theta
band (4–8Hz), 14 for alpha band (8–14Hz), 11 for beta
band (14–30Hz) and 8 for gamma band (30–50Hz) activity
(Figures 1–3). The connectivity results of healthy comparison
subjects and schizophrenia patients are separately shown in
Supplementary Figure 2.

The matrix of the group-difference [healthy subjects (N =

126) and schizophrenia patients who were not treated with
anxiolytics or anticholinergics (N = 80)] of each EEG band
activity (p < 0.0001, corrected; two-tailed) is also shown in
Supplementary Figure 3. We revealed 10 graph edges for delta
band, 14 for theta band, 17 for alpha band, 17 for beta band and
6 for gamma band activity (Supplementary Figures 4, 5).

Delta Band Activity (1–4Hz)
Decreased effective connectivity from a region near the calcarine
sulcus to the fusiform, temporal and middle cingulate gyri
was detected in delta band in schizophrenia patients compared
to healthy subjects (Figures 1–3). A bidirectional increased
interaction between the rightmiddle temporal gyrus and the right
middle cingulate gyrus was also observed. These connectivities
were more prominent in the right hemisphere.
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FIGURE 1 | Difference of effective connectivity in each EEG band activity between healthy subjects (N = 126) and schizophrenia patients (N = 139). SZ,

schizophrenia; HCS, healthy comparison subject; L, left; R, right; Front Mid, middle frontal; Front Inf Oper, opercular part of inferior frontal; Cing Ant, anterior cingulate;

Cing Mid Dors, dorsal middle cingulate; Cing Mid Vent, ventral middle cingulate; Cing Post, posterior cingulate; Temp Sup, superior temporal; Temp Mid, middle

temporal; Temp Inf, inferior temporal; Rolandic, Rolandic operculum; Supramarg, Supramarginal.

Frontiers in Psychiatry | www.frontiersin.org 4 November 2020 | Volume 11 | Article 608154

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Koshiyama et al. Resting-State EEG Connectivity in Schizophrenia

FIGURE 2 | Abnormal effective connectivity of resting-state EEG activity in schizophrenia patients. Red arrow indicates high effective connectivity and blue arrow

indicates low connectivity in schizophrenia patients relative to healthy comparison subjects. Sphere size indicate amount of total outflow in each node. SZ,

schizophrenia; HCS, healthy comparison subject; Front Mid, middle frontal; Front Inf Oper, opercular part of inferior frontal; Cing Ant, anterior cingulate; Cing Mid Dors,

dorsal middle cingulate; Cing Mid Vent, ventral middle cingulate; Cing Post, posterior cingulate; Temp Sup, superior temporal; Temp Mid, middle temporal; Temp Inf,

inferior temporal; Rolandic, Rolandic operculum; Supramarg, Supramarginal.
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FIGURE 3 | Neural networks underlying resting-state EEG activity in schizophrenia patients. Difference of effective connectivity between healthy subjects (N = 126)

and schizophrenia patients (N = 139) is shown; Asterisks (*) indicate the increased or decreased information flows observed in schizophrenia patients who did not

have either anxiolytics nor anticholinergics (N = 80) compared to healthy subjects (N = 126). SZ, schizophrenia; HCS, healthy comparison subject; Front Mid, middle

frontal; Front Inf Oper, opercular part of inferior frontal; Cing Ant, anterior cingulate; Cing Mid Dors, dorsal middle cingulate; Cing Mid Vent, ventral middle cingulate;

Cing Post, posterior cingulate; Temp Sup, superior temporal; Temp Mid, middle temporal; Temp Inf, inferior temporal; Rolandic, Rolandic operculum; Supramarg,

Supramarginal.
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Theta Band Activity (4–8Hz)
Theta band effective connectivity demonstrated a similar right-
sided asymmetry centered on the temporal and middle cingulate
gyri in schizophrenia relative to healthy subjects (Figures 1–3).
Decreased effective connectivity from a region near the calcarine
sulcus to the fusiform, temporal and middle cingulate gyri was
also detected in theta band activity in schizophrenia patients
compared to healthy subjects. The bidirectional increased
interaction between the right middle cingulate gyrus and right
middle temporal gyrus was also seen in theta band activity
in schizophrenia patients relative to healthy subjects. Increased
effective connectivity from the right fusiform gyrus to the right
middle frontal gyrus was seen in schizophrenia relative to
healthy subjects.

Alpha Band Activity (8–14Hz)
The overall pattern of alpha connectivity is similar with those
observed in theta band activity (Figures 1–3). Increased effective
connectivity from the right middle cingulate gyrus to the
Rolandic operculum (a region that includes auditory cortex and
spans Broadmann areas 41 and 42) was detected in schizophrenia
relative to healthy subjects. Increased effective connectivity from
the right fusiform gyrus to the right middle frontal gyrus and
the bidirectional increased interaction between the right middle
cingulate gyrus and the right middle temporal gyrus were also
seen in schizophrenia relative to healthy subjects.

Beta Band Activity (14–30Hz)
Abnormal patterns of connectivity were observed among
temporal, middle cingulate and occipital regions. These networks
overlapped across beta and alpha band activity in schizophrenia
patients compared to healthy subjects (Figures 1–3). Increased
effective connectivity from the right middle cingulate gyrus to
the Rolandic operculum was also seen in schizophrenia relative
to healthy subjects. Increased bidirectional information flows
between the right middle frontal gyrus and the right fusiform
gyrus were detected in schizophrenia patients compared to
healthy subjects.

Gamma Band Activity (30–50Hz)
The increased bidirectional information flows between the right
middle frontal gyrus and the right fusiform gyrus were also
detected in gamma band activity in schizophrenia patients
compared to healthy subjects (Figures 1–3). Although the
abnormal neural network was overlapped across gamma and
beta band activity in patients compared to healthy subjects, the
overall structure was simpler and more localized for gamma vs.
beta band activity. This relatively simpler structure for gamma
band suggests that higher frequency abnormal networks in
schizophrenia compared to healthy subjects consisted of more
independent local networks that therefore did not connect with
other regions.

DISCUSSION

Schizophrenia patients showed broad and widespread hyper-
connectivity of cortical networks underlying resting-state EEG

activity. Specifically, the following findings were detected; (1)
decreased information flows from a region near the right
calcarine sulcus to the right fusiform gyrus in delta band
activity, and bidirectionally increased interactions between the
right fusiform gyrus and the right middle frontal gyrus in beta
and gamma band activity (i.e., “visual network”; Figure 4); (2)
Increased information flow from the right middle cingulate
gyrus to the Rolandic operculum across alpha and beta bands
in schizophrenia patients compared to healthy subjects (i.e.,
“auditory network”; Figure 4); With few minor exceptions, these
results were largely confirmed in a subgroup of schizophrenia
patients who were not on anxiolytics or anticholinergics.

The present results replicate abnormal effective connectivity
between frontotemporal regions in schizophrenia patients (22).
Increased functional connectivity of alpha band activity at the
superior parietal and the occipital lobe area at scalp levels of EEG
in schizophrenia patients (N = 28) were previously reported by
Liu et al. (49); we successfully replicate and extended the results
showing the involvement of frontotemporal regions. We also
previously reported that abnormal spontaneous gamma band
activity measured via a spatial PCA of scalp channel data was
associated with verbal memory performance (24). Although the
PCA method used in the prior study provides a data-driven
approach for characterizing macroscale/global oscillatory effects
at the scalp, the neural interactions among sources were not
assessed. The current results suggest that the spontaneous global
gamma band abnormalities observed in schizophrenia patients
at the scalp level appear to be generated by interactions between
prefrontal and temporal regions.

A previous study by Andreou reported increased theta-
band resting-state connectivity across midline, sensorimotor,
orbitofrontal regions and the left temporoparietal junction in
schizophrenia patients (N = 19) (50), consistent with our
findings of right dominant increased effective connectivity
among the temporal and middle cingulate gyri in broad band
EEG activity including theta band activity. Inconsistencies in the
laterality of effects, however, may be due to the difference of age
or clinical severity. For example, the mean age of schizophrenia
patients in the Andreou et al. study (50) was 23.5 vs. 44.6 years in
the current study. Despite this difference in theta, our finding of
increased alpha connectivity at the right temporal region at scalp
levels of EEG in schizophrenia patients is fully consistent with the
findings of Liu et al. (49).

Of note, despite the temporal differences between neural
activity detected by very low frequency blood oxygenation-
dependent (BOLD) hemodynamic responses and EEG, our
resting-state EEG connectivity findings are also fully compatible
with functional magnetic resonance imaging study (fMRI)
findings of default mode network abnormalities in schizophrenia
patients (51). The present findings of greater connectivity
between the middle frontal, anterior cingulate and middle
temporal gyri regions, is consistent with greater default mode
network activation in schizophrenia (52).

Networks Centered at the Visual Cortex
The effective connectivity networks centered in the calcarine
sulcus and the fusiform gyrus in broad band EEG activity
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FIGURE 4 | Two major abnormal networks associated with either visual and auditory information processing detected in schizophrenia patients at rest.

were unexpected. The calcarine sulcus is a deep fissure
that starts in the temporal lobe that continues into the
occipital lobe with the primary visual cortex (V1) centered
in this region. The fusiform gyrus is large region in the
inferior temporal cortex that also has a functional role in
visual information processing (53), including object and
face recognition, and the recognition of facial expressions
(Figure 4). Indeed, despite these unexpected associations,
results are consistent with Morita et al. (54) findings of
associated eye movement impairments with gray matter cortical
thickness in schizophrenia patients in the middle frontal
and fusiform gyri and the lateral occipital cortex. Although
speculative, patients with schizophrenia may show abnormal
excessive simultaneous activation of various perception-
related brain regions, which may ultimately contribute to
clinical symptoms such as hallucinations, aberrant salience,
and delusions.

Networks Centered at the Auditory Cortex
Increased information flows were detected in schizophrenia
patients from the right middle cingulate gyrus converging on
the right Rolandic operculum (Figure 4). In the current analysis,
primary auditory cortex is located in the region labeled the
Rolandic operculum. Previous studies have demonstrated that
deficits in early auditory information processing in schizophrenia
patients as indexed by mismatch negativity (48, 55) and gamma-
band auditory steady-state responses (9, 56, 57) are supported
by distributed networks where the genesis of the responses
are detected in the superior temporal gyrus (a region that
includes auditory cortex) which subsequently propagate across
other temporal and frontal brain regions. The present results
suggest that resting state abnormalities in schizophrenia patients
are present across multiple frequency bands and over relatively
large spatial networks. Measures of network connectivity from
cingulate gyrus to the auditory cortex may be therefore
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account for multiple neurophysiologic biomarkers and show
promise as a future candidate biomarker of abnormalities in
schizophrenia patients.

Limitations
Results of this study should be considered in the context
of several limitations. First, this is a cross-sectional cohort
study of a heterogeneous sample of schizophrenia patients,
the majority of whom were prescribed complex medication
regimens. While comparisons of patients prescribed vs. not-
prescribed medications that are known to impact resting state
scalp responses (i.e., anxiolytics or anticholinergics) and healthy
subjects showed similar patterns of results, it is possible that
other medications including antipsychotics or symptoms may
contribute to the observation of abnormal network dynamics.
Carefully controlled prospective randomized controlled trials are
needed to disentangle medication effects. Despite efforts were
made to obtain medical/prescription records for all subjects,
self- and informant reports of medication compliance, ultimately
medication compliance could not be confirmed for the majority
of patients in this study. As such, more rigorous analyses of
medication doses and connectivity analyses were not pursued.
Second, only 40 EEG channels were used for the analyses in
this study. Future studies may benefit from the use of high-
density EEG recordings with at least 64 channels (58), individual
MRI data, and digitized scalp sensor locations rather than
template head models and reliance on standardized electrode
locations for potentially improved accuracy of source dynamics.
Third, while we believe that elaboration of neural system
dynamics reported here will be broadly applicable to multiple
neuropsychiatric disorders, we acknowledge the possibility that
results from schizophrenia patients with an established illness
may not generalize to other populations like clinical high risk
or first episode psychosis. Nonetheless, given improvements in
medical care and life expectancy, patients with more chronic
schizophrenia are likely to represent an increasing proportion of
the total schizophrenia population; characterization of abnormal
network dynamics among real-world patients via data-driven
approaches for assessing network dynamics may ultimately
be useful for application as biomarkers the development of
therapeutics for this largely underserved population.

CONCLUSIONS

Results of this study provide evidence that abnormal
resting-state EEG oscillations are driven by patterns of
hyper-connectivity across multiple frequency bands and a

distributed network of the frontal, temporal and occipital brain
regions that are involved in visual and auditory information
processing in schizophrenia patients. Future studies of the
neural mechanisms underlying the networks detected in
this study, in both future clinical and animal studies, are
needed to clarify the pathophysiology of neuropsychiatric and
neurological diseases in support of the development of novel
therapeutic interventions.
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