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AUTHOR'S SUMMARY

The initiation and progression of coronary atherosclerosis, from subclinical plaque to 
plaque rupture and coronary events, and even to heart failure, seems to be driven to a large 
amount by hemodynamic factors. These factors, recently termed pulsatile hemodynamics, 
include central pressures, arterial stiffness (pulse wave velocity), and wave reflections, and 
can be measured invasively and non-invasively, even in clinical routine. The authors provide 
an overview of recent evidence on the interplay between these hemodynamic factors and 
coronary artery disease at all stages. 

ABSTRACT

Coronary artery disease (CAD) is the leading cause of human death and has a high 
prevalence throughout the world. Therefore, it is important to detect CAD early and to 
apply individualized therapy according to the patients' risk. There is an increasing interest 
in pulsatile arterial hemodynamics in the cardiovascular area. Widely used measurements 
of arterial pulsatile hemodynamics include pulse pressure, pulse wave velocity and 
augmentation index. Here, we will review underlying pathophysiology linking the association 
of arterial pulsatile hemodynamics with CAD, and the usefulness of the measurements of 
pulsatile hemodynamics in the prediction of future cardiovascular events of CAD patients. 
Clinical and therapeutic implications will be also addressed.

Keywords: Arterial stiffness; Pulse wave velocity; Wave reflections; Coronary artery disease; 
Pulsatile hemodynamics

INTRODUCTION

Coronary artery disease (CAD) is a leading cause of morbidity and mortality worldwide.1) 
For early diagnosis and individualized therapy, it is of paramount importance to understand 
the mechanism of CAD development as well as the factors determining the prognosis of 
CAD patients. Over the past century, many risk factors associated with CAD development 

Korean Circ J. 2021 Nov;51(11):881-898
https://doi.org/10.4070/kcj.2021.0227
pISSN 1738-5520·eISSN 1738-5555

State of the Art Review

Received: Jun 28, 2021
Revised: Jul 22, 2021
Accepted: Jul 26, 2021

Correspondence to
Thomas Weber, MD
Department of Cardiology, Klinikum Wels-
Grieskirchen GmbH, Grieskirchnerstrasse 42, 
4600 Wels, Austria.
E-mail: thomas.weber3@liwest.at

Copyright © 2021. The Korean Society of 
Cardiology
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0) 
which permits unrestricted noncommercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

ORCID iDs
Hack-Lyoung Kim 
https://orcid.org/0000-0002-6703-1472
Thomas Weber 
https://orcid.org/0000-0003-0617-0417

Funding
The authors received no financial support for 
the research, authorship, and/or publication 
of this article.

Conflict of Interest
The authors have no financial conflict of 
interest.

Data Sharing Statement
Data sharing is not applicable as no datasets 
were created and/or analyzed for this study.

Hack-Lyoung Kim , MD1, and Thomas Weber , MD2

1 Division of Cardiology, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National 
University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea

2Department of Cardiology, Klinikum Wels-Grieskirchen GmbH, Wels, Austria

Pulsatile Hemodynamics and Coronary 
Artery Disease

https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0002-6703-1472
https://orcid.org/0000-0002-6703-1472
https://orcid.org/0000-0003-0617-0417
https://orcid.org/0000-0003-0617-0417
https://orcid.org/0000-0002-6703-1472
https://orcid.org/0000-0003-0617-0417
http://crossmark.crossref.org/dialog/?doi=10.4070/kcj.2021.0227&domain=pdf&date_stamp=2021-08-10


Author Contributions
Conceptualization: Weber T; Writing - original 
draft: Kim HL; Writing - review & editing: 
Weber T.

have been identified and utilized for prevention and treatment.2) However, the incidence of 
CAD is still high and the prognosis is poor.1) Given that substantial portion of individuals 
without traditional cardiovascular risk factors suffering from cardiovascular events,3) more 
accurate risk predictions are needed. As the causes of initiation and progression of coronary 
atherosclerosis are multifactorial, there is still a room for improvement in the prognosis of 
CAD patients by identifying new modifiable risk factors.

Many epidemiologic studies have shown a close association between the level of blood 
pressure (BP) and cardiovascular events and mortality.4) BP reduction is very effective way to 
reduced cardiovascular risk.5)6) Specific levels of systolic and diastolic BPs have been used in 
the diagnosis and treatment of hypertension and to define cardiovascular risk.7)8) However, 
BP is a periodic phenomenon that can be divided into 2 components: steady (mean arterial 
pressure) and pulsatile (pulse pressure [PP]). The steady component is determined by cardiac 
output and small resistance arterial function. The pulsatile component is mainly determined 
by left ventricular (LV) ejection, large artery compliance (the opposite of stiffness) and 
the speed and the intensity of the reflected waves returning toward the heart from arterial 
bifurcation points (due to impedance changes).9) The large conduit arteries buffer the 
pulsating blood ejection generated by LV contraction by intermittent expansion according to 
the cardiac cycle. In the LV diastolic phase, when there is no blood ejection from the heart, 
the arteries maintain perfusion pressure to major organs and periphery by wall contraction 
through vascular recoil.10) Many studies have shown that measurements of these pulsatile 
components of BP such as PP, augmentation index (AIx) and pulse wave velocity (PWV) are 
associated with the development of future cardiovascular events independent of BP and other 
risk factors.11-20) Therefore, it is important to understand that BP is composed of pulsatile 
component as well as steady component, which may offer better insight into pathophysiology 
of the development of target organ damage and cardiovascular risk. Moreover, this in-depth 
understanding might help to evaluate and monitor patients' response to treatment, as well as 
to develop effective treatment strategies.

Here, we will review the role of arterial pulsatile hemodynamics in CAD, focused on the 
association between pulsatile hemodynamics and CAD, and prognostic value as well as 
clinical implications of pulsatile hemodynamics in CAD patients.

MEASUREMENT OF ARTERIAL PULSATILE HEMODYNAMICS

There are several non-invasive measures that allow assessment of arterial pulsatile 
hemodynamics.

Pulse pressure
PP is the result of a combination of the episodic nature of LV contraction and the elastic 
properties of the large arteries.21) Brachial PP (brPP) is the simplest and most widely used 
indicator of atrial pulsatile hemodynamics. brPP is defined as the pressure difference 
between systolic and diastolic BP of at the site of brachial artery. Many studies have shown 
that brPP is associated with target organ damage and cardiovascular outcome.11-15) However, 
it should be noted that brPP does not adequately reflect central aortic PP (aPP) or aortic 
stiffness because there is PP amplification between central and peripheral arteries.22) Central 
aPP can be obtained using non-invasive methods by analyzing the waveforms of the brachial 
or radial arteries.22) Since central aorta is located closer to the heart, brain, and kidney than 

882https://e-kcj.org https://doi.org/10.4070/kcj.2021.0227

Pulsatile Hemodynamics and CAD



brachial artery, aPP is more influential to these vital organs and may have a higher degree 
of clinical relevance than brPP.22-24) In addition to arterial stiffness, PP is greatly affected 
by factors related to cardiac function such as stroke volume, heart rate and pattern of LV 
ejection.21) Therefore, the effects of these factors should be considered and controlled 
during analysis. Moreover, PP is not a direct measure of arterial hemodynamics but just a 
mathematical difference between systolic and diastolic BP.

Wave reflections
Normally, when the pulse wave from the heart passes through the elastic arteries and reaches 
the muscular artery, a smaller reflected wave that goes backwards to the heart is generated, 
mainly at branch points or sites of impedance mismatch.21) In a compliant arterial system, 
effectively timed wave reflections (i.e. with a maximum during diastole) enhance coronary 
perfusion, which mainly occurs during diastole.9) In a stiffened arterial system, the velocity 
of reflected wave increases, thus reflected waves merge earlier with forward waves, leading 
to increase (augmentation) in late systolic BP and PP, and to a higher workload on the LV.25) 
Standard integrated measure of wave reflection is AIx, which is defined as the amount of 
pressure augmentation relative to PP. The most widely used method for evaluating central AIx 
is to first obtain a waveform by performing applanation tonometry on the radial artery, and 
then calculate the waveform and AIx of central aorta using a generalized transfer function 
(GTF).23)26) The central AIx estimated by the GTF method is very well correlated with the 
values measured by invasive catheterization.27)28) Many studies have shown that increased 
central AIx is associated with atherosclerotic burden and cardiovascular risk.16)17) However, 
while AIx is a sensitive marker of arterial aging in young individuals, AIx may underestimate 
the degree of arterial stiffness and cardiovascular risk in older people, likely associated with 
reduced impedance mismatch.29)30) Since several clinical factors such as age, height and heart 
rate affect AIx, it is important to consider the effects of these confounding variables when 
analyzing AIx-related data.31) Given that AIx is highly affected by heart rate, it is sometimes 
used after calibrating to 75 heart rate per minute (AIx@75).32-34) Also, LV function has a major 
influence of central waveforms and, thus, on AIx.35) For certain types of pulse waveforms, in 
particularly in young healthy individuals, AIx can be calculated as negative.36)

Pulse wave velocity
The pressure generated by the LV contraction is transmitted towards the periphery not only 
with the bloodstream but also in the arterial wall. Since the degree of stiffening of the arterial 
wall and the speed of the pulse wave traveling along the arterial wall are proportional, the 
pulse wave transmission speed (= PWV) is an important measure of arterial stiffness.37) PWV 
is defined as the distance between 2 specific arterial points divided by the time difference of 
the pulse wave passing through these 2 distances. The higher the PWV value, the greater the 
arterial stiffness. Of note, higher PWV is a risk factor for future cardiovascular events and 
all-cause mortality independent of traditional risk factors.18)19) Because it is non-invasive, 
relatively easily quantitated, and well supported by a wealth of outcome data, PWV is 
considered to be the most useful clinical marker of arterial stiffness.37)38) There are various 
PWVs depending on the measurement locations, but among them, aortic PWV (aPWV), 
carotid-femoral PWV (cfPWV) and brachial-ankle PWV (baPWV) are the most widely used. As 
cfPWV is the direct measures of arterial stiffness of central elastic arteries, it is considered as 
gold standard for the noninvasive measure of arterial stiffness.39) Compared to cfPWV, more 
recently developed baPWV is more simple to measure by just wrapping BP cuffs in both upper 
arms and legs, and is validated in many clinical studies.18)40)41) Thus, baPWV may be useful 
in mass screening, and it has been more commonly used in Asian countries in research and 
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clinical fields.41) Main limitation of PWV is that it is highly affected by various clinical factors, 
mainly by age and BP.39)42) When BP rises, the tension of the vessel wall increases, and the 
pulse wave transmission speed increases as if arterial stiffness increases.43) When interpreting 
PWV, the effect of these factors should be considered. In addition, for the accuracy of the 
PWV value, it is necessary to measure the distance between 2 points in the blood vessel. 
However, it is generally difficult to accurately measure the distance between these 2 points 
of vessel wall, so it is estimated by measuring the distance between 2 points on the surface of 
the human body, or by calculating with a predetermined equation.37)41)

Invasive measurements
Direct measurement of pressure by inserting an intraarterial catheter is the most accurate 
method assessing arterial pulsatile hemodynamics. However, its use is hindered due to 
invasiveness and cost. Therefore, these measurements are primarily limited to patients 
undergoing invasive coronary angiography (CAG).44-46) Although the invasive measurement 
can be performed in limited clinical conditions, information on central arterial 
hemodynamics measured invasively can be used for validation of non-invasively measured 
values.46-48) It also provides diagnostic and prognostic value of patients with undergoing 
invasive CAG.44)49-53) Invasive hemodynamic measurement may be feasible in patients 
undergoing invasive CAG because it can be performed during the procedure, so there is no 
additional cost or risk, and the measurement time is short.

PATHOPHYSIOLOGY

In a recent animal model in hypercholesteremic, transgenic minipigs, the role of elevated BP 
in facilitating the accumulation of low-density lipoprotein-cholesterol (LDL-C) and plaque 
formation in coronary arteries was nicely illustrated.54) A closer look unveils that the cyclic 
strain of the arterial wall is mainly determined by the cyclic (pulsatile) change of BP,55) playing 
an important role on every stage of the development of atherosclerosis.55) For instance, at an 
early stage, elevated PP was the driver of the activation of C-reactive protein and of the influx 
of lipids into the arterial intima, leading to oxidized LDL-C.56) Later on, through various 
mechanisms, cyclic stretch promotes plaque progression,55)57) weakening of the fibrous 
cap and plaque rupture.58) These findings may explain the consistent association between 
pulsatile hemodynamics and the presence and severity of coronary atherosclerosis outlined 
below. Figure 1 shows that pulsatile hemodynamics are deeply involved in development 
and progression of coronary atherosclerosis, plaque rupture, and subsequent myocardial 
infarction and, ultimately, heart failure.

When clinicians estimate the severity of CAD, the anatomical extent of a coronary stenosis is 
typically considered. Based on animal experiments, at diameter stenosis of 50%, maximum 
coronary flow (coronary flow reserve [CFR]) begins to fall, and at 85% diameter stenosis 
resting coronary flow begins to fall.59) Recent advances take the functional severity of a coronary 
stenosis into account, using fractional flow reserve or related measurements, which are 
based on pressure measurements proximal (in the aorta or at a coronary ostium) and distal 
to a coronary stenosis (as a measure of relative CFR), the latter with dedicated intracoronary 
wires.60) These methods are now recommended by clinical practice guidelines from major 
Cardiology societies61) and not the focus of this review. We rather address the impact of pulsatile 
hemodynamics of large arteries on coronary blood flow. A prerequisite of correct understanding 
of the physiology is the fact that—in contrast to other vascular beds in the body—perfusion 
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of the myocardium (in particular the subendocardium) occurs predominantly during diastole, 
because during systole the contracting myocardium interrupts flow in intramyocardial 
arteries.62) The ratio between myocardial oxygen demand (tension time index in systole) and 
myocardial oxygen supply (diastolic pressure time index) can be approximated by the area under 
the aortic pressure waveforms in systole and diastole, respectively.63) This ratio is well balanced 
in young, healthy individuals. With aging, arterial stiffness increases, shifting reflected waves 
towards systole, thus increasing systolic and decreasing diastolic BP, and distorting the above 
mentioned ratio to a tendency towards ischemia.62) The interplay between coronary stenosis 
and aortic stiffening was nicely shown in an animal experiment: in 10 mongrel dogs, a coronary 
stenosis was produced in the circumflex artery with a metal constrictor, while the left anterior 
descending coronary (LAD) artery was left healthy. This stenosis was not sufficient to induce 
ischemia at rest and with pacing, as long as the aorta remained elastic. When the aorta was 
stiffened with banding, however, the combination of exercise (pacing), stenosis and a stiffened 
aorta led to ischemia in the territorium of the circumflex artery,64) but not in the LAD. In 
humans, coronary blood flow was measured invasively following successful percutaneous 
coronary intervention (PCI) in 18 patients.65) Resting, but more hyperemic coronary blood 
flow was strongly and inversely related to aPWV and central PP. Moreover, the gain in coronary 
blood flow following PCI was substantial in patients with a compliant aorta, but much less so 
in patients with a stiff aorta. These results were confirmed by non-invasive studies, showing 
inverse relationships between cfPWV,66) baPWV,67)68) and AIx68) and CFR in patients without 
severe coronary stenosis. As a clinical consequence, patients with established CAD and a high 
amount of wave reflections reach the ischemic threshold earlier, as proven in a study of 96 
patients with CAD, undergoing treadmill exercise tests.69)

Furthermore, increased arterial stiffness and increased wave reflections may lead to LV 
hypertrophy, prolongation of mechanical systole70) (with consecutive reduction of diastolic time) 
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Figure 1. Pulsatile hemodynamics may promote the progression of coronary artery disease at every step.



and impairment of diastolic function10)71) (with increased LV diastolic pressures72)), all of them 
further compromising myocardial perfusion and predisposing to (subendocardial) ischemia.

Another mechanism for the relationship between pulsatile hemodynamics/arterial stiffness 
and coronary atherosclerosis is that both share common risk factors, most prominent aging, 
but also including traditional cardiovascular risk factors, endothelial dysfunction, chronic 
inflammation and oxidative stress.39)41) A summary of the association of arterial stiffening and 
increased wave reflection with CAD is shown in Figure 2.

ASSOCIATION OF PULSATILE HEMODYNAMICS 
WITH THE PRESENCE AND EXTENT OF CORONARY 
ATHEROSCLEROSIS

Many clinical studies have shown that measures of arterial stiffness and wave reflections are 
associated with CAD (Table 1).50)52)53)73-95) Most studies were conducted with patients undergoing 
invasive CAG, and CAD was assessed by the analysis of invasive CAG. In some studies, CAD 
was assessed using coronary computed tomography angiography (CCTA).74)79)88-90) Most of 
study subjects of these studies were with suspected or documented CAD, but one study 
included stroke patients.79) There were various methods of measuring arterial pulsatile 
hemodynamics used in these studies, which included brPP, cfPWV, baPWV, aPWV, AIx and 
aPP. aPWV/cfPWV and AIx, measured by tonometry, aPP measured invasively using intra-
arterial catheter monitoring, and baPWV were the most widely applied measures for arterial 
pulsatile hemodynamics in these studies. In one study, aortic distensibility was assessed 
using aortic CTA.90) Most of these studies have shown consistent findings that measurements 
of arterial pulsatile hemodynamics were associated with the presence and severity of CAD 
even after controlling for potential confounders. In a longitudinal study with cardiac CTA, 
even the progression of aortic stiffness was associated with the progression of coronary 
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Figure 2. Mechanisms explaining the association between arterial stiffening and coronary atherosclerosis. 
AIx = augmentation index; PP = pulse pressure.
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Table 1. Summary of studies showing the association of arterial pulsatile hemodynamics and CAD

Source (year) Population test Number of 
subjects

CAD 
assessment

Measure 
of arterial 

hemodynamics
Result Summary of findings

Li et al.76) (2020) Patients 654 Invasive CAG brPP + Risk of multivessel CAD ⇑ with brPP ≥60 mmHg (multiple-
adjusted OR 1.69).

Yannoutsos et al.78) 
(2018)

Patients 42 Invasive CAG aPWV by app tono + aPWV and CAD severity positively correlated (p=0.001).

Kim et al.75) (2017) Patients 632 Invasive CAG brPP + (women) Risk of obstructive CAD ⇑ with brPP ≥50.5 mmHg in women 
(multiple-adjusted OR, 2.83), but not in men.

Kim et al.74) (2015) Patients 470 Coronary CTA baPWV + Risk of obstructive CAD ⇑ with baPWV ≥1.547 cm/sec (multiple-
adjusted OR, 2.56).

Duman et al.73) (2015) Patients 103 Invasive CAG aPWV by app tono + Highly positive correlation between CAD severity and aPWV 
(r=0.838).

Tanindi et al.77) (2014) Patients 145 Invasive CAG AIx by app tono + Risk of moderate/severe CAD (SYNTAX Score >23) ⇑ with AIx 
>24.45 (multiple-adjusted OR 2.94).

Hofmann et al.83) 
(2014)

Patients 
scheduled for 

CABG

155 Invasive CAG cfPWV + cfPWV associated with CAD extent after controlling for 
confounders.

Kim et al.84) (2014) Patients 201 Invasive CAG baPWV + Significant correlation of baPWV and modified Gensini stenosis 
score.

Hayashi et al.82) (2014) Patients 120 Invasive CAG AIx by app tono − No significant difference in AIx between CAD and non-CAD groups.
Calvet et al.79) (2014) Patients with 

ischemic stroke
300 Coronary CTA cfPWV + Risk of ≥50% asymptomatic CAD ⇑ with cfPWV >9.6 m/sec 

(multiple-adjusted OR 2.3).
Chung et al.81) (2014) Patients 703 Invasive CAG baPWV + baPWV significantly associated with SYNTAX score.
Cho et al.80) (2013) Patients 80 Invasive CAG AIx and PP 

amplification by 
app tono

+ (<65 yrs) Risk of triple-vessel CAD ⇑ per 5% increase of AIx (multiple-
adjusted OR, 2.15) and per 0.05 increase of PP amplification 
(multiple-adjusted OR, 2.02) in pts <65 yrs, but not in pts ≥65 yrs.

Bechlioulis et al.85) 
(2013)

Male patients 303 Invasive CAG cfPWV and AIx by 
app tono

+ (cfPWV) Increased cfPWV associated with CAD in overweight and obese 
pts. No association of AIx with CAD.− (AIx)

Kotecha et al.87) (2013) Patients 531 Invasive CAG Central AIx by 
radial artery tono

+ Lower central AIx (<24 mmHg) associated with angiographically 
normal coronary arteries (multiple-adjusted OR, 2.0).

Oberoi et al.90) (2013) Patients 164 Coronary CTA Aortic 
distensibility 
index by CTA

+ Longitudinal evaluation: Decrease in aortic distensibility index 
associated with increase in segment involvement score.

Nam et al.89) (2012) Subjects health 
check-up

615 Coronary CTA baPWV + Risk of significant occult CAD ⇑ with baPWV ≥1,426 cm/s 
(multiple-adjusted OR, 3.3).

Xiong et al.91) (2012) Patients 321 Invasive CAG baPWV + baPWV associated with SYNTAX score in multiple regression 
analysis.

Liu et al.88) (2011) Subjects health 
check-up

654 Coronary CTA baPWV + Risk of coronary stenosis ⇑ with baPWV 1,400–1,800 cm/s 
(adjusted OR, 2.48) and baPWV >1,800 cm/s (adjusted OR, 3.16).

Fischer-Rasokat et 
al.86) (2009)

Male patients 152 Invasive CAG Radial AIx by 
radial artery tono

+ (<60 yrs) Risk of CAD ⇑ with radial AIx in multivariable regression analysis 
in patients ≤60 years but not in those >60 years.

Alarhabi et al.92) 
(2009)

Patients 92 Invasive CAG cfPWV + Significant association between the severity of CAD and cfPWV.

Koji et al.93) (2007) Patients 396 Invasive CAG baPWV + baPWV significant determinant of the number of diseased 
coronary arteries in multiple regression analysis.

Nair et al.94) (2005) Postmenopausal 
women with 

angio-confirmed 
CAD

309 Invasive CAG brPP + Longitudinal study: Progression of coronary stenosis 
independently associated with higher baseline brPP.

Guray et al.50) (2005) Female patients 262 Invasive CAG Invasive aPP and 
aortic pulsatility

+ Risk of CAD ⇑ per 10 mm Hg aPP (multiple-adjusted OR, 1.3) and 
per 0.1 aortic pulsatility (multiple-adjusted OR, 1.8).

Weber et al.95) (2004) Patients 465 Invasive CAG AIx by app tono of 
radial artery

+ Risk of CAD ⇑ with higher AIx (multiple-adjusted OR, 4.06 for 
comparison first vs. fourth quartile).

Philippe et al.53) (2002) Patients 99 Invasive CAG Invasive aPP + Independent association between aPP and extent of CAD.
Nakayama et al.52) 
(2000)

Patients 
underwent PTCA

53 Invasive CAG Invasive PPf + Risk of restenosis after PCBA ⇑ per 0.1 PPf (multiple-adjusted OR, 
1.88) and per 0.1 aortic pulsatility (multiple-adjusted OR, 1.8).

AIx = augmentation index; aPP = aortic pulse pressure; app tono = applanation tonometry; aPWV = aortic pulse wave velocity; AUC = area under curve; baPWV 
= brachial-ankle pulse wave velocity; brPP = brachial pulse pressure; CABG = coronary artery bypass graft; CAD = coronary artery disease; CAG = coronary 
angiography; cfPWV = carotid-femoral pulse wave velocity; CI = confidence interval; CTA = computed tomography angiography; OR = odds ratio; PCBA = 
percutaneous coronary balloon angioplasty; PPf = fractional pulse pressure; SYNTAX = Synergy Between Percutaneous Coronary Intervention With Taxus and 
Cardiac Surgery.



atherosclerosis.90) However, another study showed a neutral result indicating that there was 
no significant difference in AIx in patients with and without CAD.82)

PROGNOSTIC VALUE OF ARTERIAL PULSATILE 
HEMODYNAMICS IN CORONARY ARTERY DISEASE 
PATIENTS

The prognostic value of arterial pulsatile hemodynamics in CAD patients has been reported 
in several studies (Table 2).34)44)49)51)96-108) In these studies, non-invasive measurements for 
arterial pulsatile hemodynamics included AIx assessed by radial artery applanation tonometry, 
baPWV, cfPWV and brPP. Invasive assessment of aPP, aPWV, AP and AIx were also used as 
indicators of arterial pulsatile hemodynamics. During about 1–5 year of clinical follow-up, 
these measurements were independently associated with the occurrence of cardiovascular 
events or mortality in multivariable analyses. To be more specific, in recent a study of 1,040 
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Table 2. Summary of studies showing the prognostic value of arterial pulsatile hemodynamics in patients with CAD

Source (year) Population Number of 
subjects

Follow-up 
duration

Measure 
of arterial 

hemodynamics
Result Summary of findings

Hametner et al.44) (2021) Patients with susp. CAD 1,040 4.3 years Invasive aPWV + Risk of MACE ⇑ with aPWV (multiple-adjusted HR per SD, 1.18).
Kaolawanich et al.99) 
(2020)

Patients with susp. CAD 520 3.9 years aPWV by CMR + Risk of MACE ⇑ with aPWV ≥10.54 m/s (multiple-adjusted HR, 
2.42).

Siasos et al.104) (2018) Patients with successful PCI 262 1 year cfPWV + Risk of MACE ⇑ with cfPWV (multiple-adjusted HR per SD, 1.29).
Hwang et al.97) (2018) Patients with susp. CAD/

CCTA
523 1.8 years baPWV + Risk of composite endpoint ⇑ with baPWV ≥1,619 cm/sec 

(multiple-adjusted HR, 4.7).
Maruhashi et al.102) 
(2018)

Patients/CAD 462 5.3 years baPWV + Risk of coronary events ⇑ with baPWV >1,731 cm/sec (multiple-
adjusted HR, 1.86).

Feistritzer et al.96) (2017) Patients with STEMI 160 1.2 years aPWV by CMR + Risk of MACE ⇑ with aPWV >7.3 m/sec (adjusted HRs, 3.5–5.3).
Lin et al.51) (2016) Patients/PCI 1,126 2.5 years Invasive aPP + Risk of repeated PCI ⇑ with aPP (multiple-adjusted HR per mm 

Hg, 1.014).
Tokitsu et al.106) (2015) Patients/CAD 401 2.9 years brPP + Risk of cardiovascular events ⇑ with aPP >60 mm Hg m/sec 

(adjusted HR, 1.71).
Lee et al.101) (2015) Patients susp. CAD/MPI 350 1.2 years baPWV + Risk of cardiovascular events ⇑ with baPWV ≥1,790 cm/s 

(multiple-adjusted HR, 2.03).
Ki et al.100) (2014) Patients/PCI 372 2 years baPWV + Risk of cardiac death ⇑ with baPWV ≥1,672 cm/s (multiple-

adjusted HR, 6.77).
Sugamata et al.105) (2014) Patients with stable CAD 923 4.1 years baPWV + Risk of coronary events ⇑ with baPWV (multiple-adjusted HR per 

SD, 1.52).
Kaneko et al.98) (2013) Patients/PCI 275 6–12 months baPWV + Risk of progression of new coronary lesion ⇑ with baPWV 

(multiple-adjusted OR per 1 cm/sec, 1.02).
Weber et al.108) (2010) Male patients/invasive CAG 520 4.1 years AIx, AIx@75, 

and PWTT by 
radial app tono

+ Risk of combined clinical endpoint ⇑ with AIx (multiple-adjusted 
HR per 10%, 1.26), AIx@75 (multiple-adjusted HR per 10% 1.27), 
and ⇓ with PWTT (multiple-adjusted HR per 10 msec, 0.84).

Nakamura et al.103) 
(2010)

Diabetic patients/CAD 564 3 years baPWV + Risk of MACE ⇑ with baPWV ≥1,730 cm/s (multiple-adjusted HR, 
1.97).

Chirinos et al.49) (2005) Male patients/invasive CAG 297 3.2 years Invasive aPP 
and AIx

+ Risk of MACE ⇑ with AIx (multiple-adjusted HR per 10%, 1.28) 
and AP (multiple-adjusted HR per 10 mm Hg, 1.19).

Weber et al.34) (2005) Patients/PCI 262 2 years AIx@75 by app 
tono of radial 

artery

+ Risk of MACE ⇑ with AIx@75 (multiple-adjusted HR per 
increasing tertile 1.8).

Tomiyama et al.107) 
(2005)

Patients/ACS 215 1.1 years baPWV + Risk of MACE ⇑ with baPWV >1,700 cm/s (multiple-adjusted HR, 
9.22).

ACS = acute coronary syndrome; AIx = augmentation index; AIx@75 = AIx corrected by heart rate 75 bpm; aPP = aortic pulse pressure; app tono = applanation 
tonometry; aPWV = aortic pulse wave velocity; baPWV = brachial-ankle pulse wave velocity; brPP = brachial pulse pressure; CAD = coronary artery disease; 
CAG = coronary angiography; CCTA = coronary computed tomography angiography; cfPWV = carotid-femoral pulse wave velocity; CI = confidence interval; 
CMR = cardiac magnetic resonance imaging; CTA = computed tomography angiography; HR = hazard ratio; MACE = major adverse cardiovascular event; MPI = 
myocardial perfusion imaging; OR = odds ratio; PCI = percutaneous coronary intervention; PWTT = pulse wave transit time; SD = standard deviation; STEMI = ST-
elevation myocardial infarction; susp. = suspected.



patients undergoing invasive CAG, aPWV was invasively measured during CAG, and it was 
associated with cardiovascular events during the follow-up after CAG.44) cfPWV could predict 
1-year cardiovascular outcome in patients with successful PCI.104) In patients after a first acute 
ST-elevation myocardial infarction, those with a higher aPWV measured by cardiac magnetic 
resonance imaging had a worse prognosis.96) Higher value of baPWV was an independent 
predictor of adverse cardiovascular events in patients with or suspected CAD in Asian 
countries.97)98)100-103)105)107) Non-invasively measured AIx using radial artery tonometry were also 
useful in the prediction of cardiovascular events in patients undergoing invasive CAG.34)108) All 
this data suggests that the measurements of arterial pulsatile hemodynamics in CAD patients 
is valuable in the prediction of future cardiovascular events.

THERAPEUTIC CONSIDERATIONS

Since the measures of arterial pulsatile hemodynamics are closely related to the occurrence 
of cardiovascular events, efforts to find ways to improve arterial elastic properties have 
continued (examples are given in Table 3). The association between weight gain and 
arterial stiffness, as well as between weight loss and arterial stiffness regression has been 
suggested in healthy young adults.109) Also, improved aortic distensibility by weight reduction 
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Table 3. Typical examples of studies on methods to improve arterial pulsatile hemodynamics

Source (year) Population Number of 
subjects Intervention Measure of arterial 

hemodynamics Summary of findings

Ikonomidis et al.110) 
(2007)

Obese individuals (BMI 
≥40 kg/m2)

120 Bariatric surgery 
(gastric bypass)

Aortic root distensibility 
by echocardiography

Reduction in BMI at 3 months and 3 years after surgery 
was related to the concomitant increase in aortic root 
distensibility.

Wildman et al.109) 
(2005)

Healthy young adults 152 Weight change 
(observational study)

cfPWV Weight change showed a direct relationship with cfPWV 
change.

Na et al.112) (2009) Subjects with never-
treated hypertension

84 Sport index by 
questionnaire

hfPWV Sport index was significantly correlated with hfPWV 
even after controlling for potential confounders.

Seals et al.119) (2001) Postmenopausal women 35 Aerobic exercise 
(walking)

aPWV and carotid AIx by 
app tono

Three months of aerobic exercise did not alter aPWV 
and carotid AIx.

Ferrier et al.118) (2001) Subjects with isolated 
systolic hypertension

20 Aerobic exercise 
training

cfPWV Eight weeks of moderate intensity cycling did not 
reduce cfPWV.

Tanaka et al.111) (2000) Healthy men 151 Habitual exercise Carotid artery compliance 
and β stiffness index by US 

and app tono

Correlations were observed of maximal oxygen 
consumption with carotid artery compliance and β 
stiffness index.

Lee et al.117) (2020) Male subjects w/o CV 
disease

1,169 Cigarette smoking Radial AIx by app tono Dose-response elevation of smoking cessation and AIx.

Takami et al.115) (2011) Subjects/smoking 
cessation treatment

70 Cigarette smoking Radial AIx@75 by app tono 
and baPWV

radial AIx@75 and baPWV showed greater decrease in 
the smoking cessation group.

Jatoi et al.116) (2007) Subjects with never-
treated hypertension

554 Cigarette smoking Aortic AIx and PWTT by 
app tono and cfPWV

Significant multiple-adjusted linear relationship 
between smoking status and cfPWV, AIx, and PWTT.

van den Berkmortel et 
al.120) (2004)

Smokers 127 Cigarette smoking Carotid distensibility by US Two years of smoking cessation did not reduce carotid 
distensibility.

Mahmud et al.114) (2003) Healthy young subjects 185 Cigarette smoking Aortic AIx and PP 
amplification by app tono

AIx was significantly higher in smokers, and was 
significantly increased within 15 minutes after smoking.

Ikonomidis et al.125) 
(2020)

Subjects with type 2 
diabetes mellitus

160 Liraglutide and 
empagliflozin

cfPWV Empagliflozin (+/− liraglutide) showed greater decrease 
of cfPWV than insulin or liraglutide alone.

Ait-Oufella et al.124) 
(2010)

Pts with treated 
hypertension

97 Routine clinical 
practice

Carotid PP by app tono 
and cfPWV

During 5.3 years FU cfPWV decreased by 3.17 m/s (22%) 
in parallel with only minor decrease in brachial BP.

Williams et al.123) (2009) Subjects with untreated 
hypertension

891 Atorvastatin vs. 
placebo

aPP and aortic AIx by 
radial app tono

Atorvastatin did not influence aPP and AIx.

Mitchell et al.121) (2007) Patients with stable CAD 300 Perindopril vs. 
placebo

cfPWV Perindopril was associated with decreased cfPWV.

AIx = augmentation index; AIx@75 = AIx corrected by heart rate 75 bpm; aPP = aortic pulse pressure; app tono = applanation tonometry; aPWV = aortic pulse 
wave velocity; baPWV = brachial-ankle pulse wave velocity; BMI = body mass index; BP = blood pressure; CAD = coronary artery disease; cfPWV = carotid-femoral 
pulse wave velocity; CV = cardiovascular; FU = follow up; hfPWV = heart-femoral pulse wave velocity; PP = pulse pressure; PWTT = pulse wave transit time; SBP = 
systolic blood pressure; US = ultrasound.



after bariatric surgery in obese patients has been reported.110) Exercise training has been 
suggested as an another effective way to improve arterial stiffness in healthy individuals,111) 
hypertensives,112) and in patients with CAD.113) The beneficial effect of exercise training on 
arterial stiffness may be additive to the effect of medication in CAD patients.113) Arterial 
stiffness is increased in smokers,114) and smoking cessation decreases arterial stiffness.115-117) 
Therefore, healthy lifestyle habits such as weight loss, exercise, and smoking cessation 
can help reduce arterial stiffness, although there were some studies showing that such 
lifestyle modifications have little effect on arterial stiffness.118-120) Healthy lifestyle therapy 
is a basic and important treatment method that should be emphasized for the primary and 
secondary prevention of CAD. In particular, for subjects with high arterial stiffness, these 
lifestyle modifications should be better followed to lower arterial stiffness and further 
reduce cardiovascular risk. Although study sample size was small and the results are still 
inconsistent, several studies have reported that renin-angiotensin system blocker or statin 
have favorable effects on arterial pulsatile hemodynamics.121-124) Therefore, the use of these 
drugs should be actively considered in high-risk patients. Recently, there have been reports 
that new anti-diabetic drugs known to have protective effects on cardiovascular system 
(glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors) 
effectively lower arterial stiffness.125-127) Additional studies on the effects of these drugs on 
lowering arterial stiffness should be followed. It has been suggested that continuous positive 
airway pressure in patients with sleep apnea was associated with a significant improvement 
in arterial stiffness measured by PWV or AIx.128)

CLINICAL IMPLICATIONS

The onset of atherosclerosis occurs at an early stage and progresses to CAD over a period 
of decades.129) The speed of progress is determined by the individual risk factor burden 
of each person. Therefore, it is very effective to identify high-risk individuals for CAD 
early and implement strong primary preventive strategy. However, risk prediction based 
on traditional cardiovascular risk factors is limited,3) requiring additional risk prediction 
tools. Measurements of arterial pulsatile hemodynamics are correlated with the presence 
and extent of CAD. Also, these measurements are good surrogate markers for future 
cardiovascular events and mortality in patients with CAD. Since information on arterial 
pulsatile hemodynamics can be obtained through non-invasive methods, it may be useful 
in predicting the occurrence of future cardiovascular events in both primary and secondary 
setting. Also, invasively measured indicators of arterial mechanics such as aPP, aPWV and 
AIx could predict cardiovascular events, and thus, it is worth considering measuring these 
parameters during the procedure of invasive CAG. However, we should keep in mind that 
it is not known to which extent such a strategy influences cardiovascular risk and clinical 
outcome. In this regard, additional studies should be supported.

CONCLUSIONS

Information on arterial pulsatile hemodynamics, such as arterial stiffness and wave 
reflections, is useful in the estimation of the risk of having coronary atherosclerosis. Also, 
it provides prognostic information on the development of future cardiovascular events in 
CAD patients. Noninvasive assessment of arterial pulsatile hemodynamics may be valuable 
tool in risk stratification. For patients undergoing invasive CAG, measuring pulsatile aortic 
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parameters requires little additional risk, cost, effort, or time, so it may be recommended 
to measure it during CAG. Further research is needed on whether nonpharmacologic and 
pharmacologic approaches that have favorable impact on arterial pulsatile hemodynamics 
improve the patients' clinical outcome.
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