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Background: Left ventricular (LV) mechanics are impaired in patients with severe aortic

stenosis (AS). We hypothesized that there would be differences in myocardial mechanics,

measured by global longitudinal strain (GLS) recovery in patients with four subtypes of

severe AS after transcatheter aortic valve replacement (TAVR), stratified based upon flow

and gradient.

Methods: We retrospectively evaluated 204 patients with severe AS who underwent

TAVR and were followed post-TAVR at our institution for clinical outcomes. Speckle-

tracking transthoracic echocardiography was performed pre- and post-TAVR. Patients

were classified as: (1) normal-flow and high-gradient, (2) normal-flow and high-gradient

with reduced LV ejection fraction (LVEF), (3) classical low-flow and low-gradient, or (4)

paradoxical low-flow and low-gradient.

Results: Both GLS (−13.9 ± 4.3 to −14.8 ± 4.3, P < 0.0001) and LVEF (55 ± 15 to 57

± 14%, P = 0.0001) improved immediately post-TAVR. Patients with low-flow AS had

similar improvements in LVEF (+2.6 ± 9%) and aortic valve mean gradient (−23.95 ±

8.34 mmHg) as patients with normal-flow AS. GLS was significantly improved in patients

with normal-flow (−0.93 ± 3.10, P = 0.0004) compared to low-flow AS. Across all types

of AS, improvement in GLS was associated with a survival benefit, with GLS recovery in

alive patients (mean GLS improvement of −1.07 ± 3.10, P < 0.0001).

Conclusions: LV mechanics are abnormal in all patients with subtypes of severe AS and

improve immediately post-TAVR. Recovery of GLS was associated with a survival benefit.

Patients with both types of low-flow AS showed significantly improved, but still impaired,

GLS post-TAVR, suggesting underlying myopathy that does not correct post-TAVR.

Keywords: aortic stenosis, echocardiography, global longitudinal strain, transcatheter aortic valve replacement,

valve disease
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INTRODUCTION

Aortic valve (AV) replacement in patients with symptomatic
severe aortic stenosis (AS) improves survival and has the
potential to reverse left ventricular (LV) systolic dysfunction
(1, 2). Mortality following surgical valve replacement (3) and
transcatheter AV replacement (TAVR) (4) is higher in the
subset of patients with low-flow severe AS; in this subset, LV
systolic dysfunction can be due to both increased afterload from
the stenotic valve (which is reversible) and intrinsic myopathy
(which may not be reversible). Despite higher procedural
mortality in low-flow severe AS, these patients still demonstrate
improved longevity with AV replacement compared withmedical
management. There is now greater awareness that there are not
two, but four subtypes of severe AS, based upon flow and mean
gradient, and that these subtypes may have different patterns of
myocardial recovery and long-term clinical outcomes (5–7).

Myocardial recovery traditionally has been assessed
as improvement in LV ejection fraction (LVEF) after AV
replacement. LVEF has limitations as a marker of LV function
as it represents the gross change in LV volume and fails to
encompass complex, subtle structural changes in the LV.
Speckle-tracking has emerged as a useful technology to detect
subclinical LV dysfunction. Strain, a dimensionless measure of
deformation of a solid object, is a novel technique that allows
assessment of segmental myocardial deformation. Longitudinal
strain has been shown to be more sensitive than LVEF in the
detection of subclinical myocardial dysfunction in severe AS
(8, 9). Global longitudinal strain (GLS) has been noted to
improve after surgical AVR, and lack of improvement has been
associated with adverse clinical outcomes (10, 11). GLS has
also been shown to improve post TAVR (12) in patients with
severe AS independent of LVEF. Although the relationship of
GLS recovery to clinical outcomes has been previously studied
(10, 13), the relationship to the four AS subtypes is unknown.

We investigated myocardial recovery in a large series of
patients with symptomatic severe AS who have undergone
TAVR, classifying them according to four AS subtypes (14). We
hypothesized that GLS recovery was different across AS subtypes
and that this would correlate with clinical outcomes.

MATERIALS AND METHODS

Patient Population
We studied 204 patients with symptomatic severe AS who
underwent TAVR from 2012 to 2016. Patients were referred
to our high-volume tertiary care center and evaluated by
the Structural Heart Program, composed of interventional
echocardiographers, interventional cardiologists, cardiac
surgeons, and nurse practitioners.

Patients were selected for TAVR based upon transthoracic
echocardiography (TTE) criteria for severe AS in combination
with a formal Heart Valve Team assessment. TAVR was
performed in patients with symptomatic severe AS who were
deemed at high or inoperable risk for surgical valve replacement.
Patients were excluded from this study if they underwent valve-
in-valve procedures for prior bioprosthetic AV replacement

degeneration or had poor transthoracic image quality that
precluded assessment of GLS either pre- or post-TAVR. All
patients who had TTE available pre-TAVR and post-TAVR
(either prior to discharge or up to one month after) with GLS
performed were included in this analysis.

Clinical variables including age, sex, and comorbidities were
queried from the electronic medical chart (EPIC Systems,
Madison, WI), as well as long-term outcomes at one year post-
TAVR including congestive heart failure hospitalization and
death. Additional echocardiographic variables were collected
pre-TAVR and post-TAVR. This study was approved by the
Aurora Health Care Institutional Review Board. As this was
a retrospective study, the requirement for written, informed
consent was waived.

Echocardiographic Data
TTE was performed pre-TAVR, prior to hospital discharge,
and 1 month after the procedure using GE Vivid E9 and E95
platforms (GE Healthcare, Pewaukee, WI). Two-dimensional,
color, and continuous- and pulsed-wave Doppler images were
acquired from the standard acoustic windows. The severity of
AS was quantified by measurement of the peak velocity across
the native AV using continuous-wave Doppler to calculate peak
and mean gradient, and AV area was calculated according to the
continuity equation. AS patients were placed according to peak
velocity, mean gradient across their native AV, baseline LVEF,
and LV stroke volume index (LVSVI) into one of four previously
established groups: (1) normal-flow and high-gradient (NFHG;
normal LVEF, LVSVI >35 ml/m2, and a mean transvalvular
gradient ≥40 mmHg), (2) normal-flow and high-gradient with
reduced LVEF (NFHG-rEF; LVEF<50%, LVSVI>35ml/m2, and
a mean transvalvular gradient ≥40 mmHg), (3) “classical” low-
flow and low-gradient (LFLG; LVEF <50%, LVSVI <35 ml/m2,
and mean transvalvular gradient <40 mmHg), or (4) paradoxical
low-flow and low-gradient (pLFLG; LVEF ≥50%, LVSVI <35
ml/m2, and mean transvalvular gradient <40 mmHg) (14).
Echocardiographic variables (e.g., linear LV dimension, LVEF,
stroke volume, and cardiac output) were acquired and measured
as outlined in American Society of Echocardiography guidelines
(15). LVSVI and LV outflow track (LVOT) cardiac index were
calculated as stroke volume and cardiac output normalized to
body surface area, respectively. Echocardiographic characteristics
of TAVR, particularly paravalvular regurgitation, were evaluated
according to previously established guidelines (16).

GLS Analysis
LV systolic function was further evaluated by two-dimensional
speckle-tracking echocardiography and assessment of peak
systolic GLS. To obtain GLS, two-, three-, and four-chamber
apical views were obtained on GE Vivid E9 and E95 platforms
at frame rates >60 frames/sec. A region of interest was defined
and manually adjusted as needed to ensure proper tracking of
all segments. If one or more segments could not be adequately
measured, then GLS analysis was not performed. Longitudinal
systolic strain was measured in each of the 16 segments, and the
software algorithm calculated an overall GLS value.
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Statistical Analysis
Continuous variables are summarized as mean ± standard
deviation (SD) or median and interquartile range (IQR) as
appropriate. Categorical variables are described as frequency
and percentage. For two-group comparisons, unpaired t-, chi-
squared, or Kruskal-Wallis tests were used. Logistic or linear
regression models were used for comparisons among three or
more groups. To assess LV function and outcomes, patients
were divided into groups: cardiac death vs. alive and congestive
heart failure hospitalization vs. no hospitalization. GLS recovery
was defined as ≥15% relative increase in GLS post-TAVR,
and LVEF recovery was defined as ≥10% increase in LVEF
post-TAVR. Kaplan-Meier plots were used to describe time to
post-TAVR survival, with the log-rank test used to compare
subgroups. All tests were two-sided and P < 0.05 was considered
statistically significant. All statistical analyses were performed in
Stata (StataCorp, Version 16, College Station, TX USA).

RESULTS

Baseline Characteristics
Two hundred four patients underwent TAVR during the study
period. The median age of the patient population was 85 years
(IQR 79–87), and 94 patients (46%) were male. The average
Society of Thoracic Surgeons (STS) score was 6.9 (IQR 4.8–9.5);
80% of the patients were New York Heart Association (NYHA)
functional class III/IV.

Patients were classified based on hemodynamic parameters
into four subtypes of AS. There were 114 patients (56%)
categorized as NFHG, 31 (15%) as NFHG-rEF, 32 (16%) as LFLG,
and 27 (13%) as pLFLG. The clinical and echocardiographic
characteristics of the subgroups are presented in Table 1. All
subgroups were comparable in terms of comorbidities with
the exception that the normal-flow AS groups (NFHG and
NFHG-rEF) were more likely to have a cerebrovascular accident
compared to the low-flow AS groups (LFLG and pLFLG). In
terms of echocardiographic characteristics, patients in the NFHG
and pLFLG AS groups showed better LV function (both LVEF
and LV GLS).

TAVR Procedure
A transfemoral approach was used in the majority of patients
(176 patients, 86%). CoreValve and Evolut R valves (Medtronic,
Minneapolis, MN) were deployed in 185 patients (91%), and the
Sapien XT valve (Edwards Lifesciences Corp., Irvine, CA) was
utilized in 19 patients (9%). All patients underwent a successful
TAVR procedure, and access site and type of TAVR valve used
were comparable among AS subgroups. At post-TAVR follow-
up, there was reduction of AV mean gradient (pre 41.8 ± 12.9
mmHg, post 9.12 ± 5.5 mmHg, 1 −32.7 ± 13.2 mmHg, P <

0.0001) and increase in AV area (pre 0.77 ± 0.29 cm2, post 2.01
± 0.54 cm2, 1 1.24 ± 0.64 cm2, P < 0.0001). Improvement in
AV mean gradient was expectedly higher in the normal-flow AS
groups than the low-flow AS groups (1−36 vs.−24 mmHg, P <

0.0001). The valve area was comparable among subgroups.

Change in LV Systolic Function Post-TAVR
Among the entire cohort, LVEF (1 2.6 ± 9.3%, P = 0.0001)
and GLS (1 −0.91 ± 3.10, P < 0.0001) improved significantly.
The greatest improvement in LVEF and GLS was seen in patients
with NFHG-rEF AS (1 GLS −2.05 ± 3.42, P = 0.02, 1 LVEF
9.2 ± 10.6, P < 0.0001). A significant improvement in LVEF was
demonstrated in both the normal-flow AS groups (1 2.6± 9.3%,
P= 0.001) and low-flow AS groups (1 2.6± 9.4%, P= 0.040). A
similar pattern of improvement was seen in GLS, with significant
improvement in the normal-flow AS groups (1 −0.93 ± 3.10, P
< 0.001) and improvement in the low-flow AS groups (1 −0.87
± 3.10, P = 0.036).

GLS recovery was not associated with coronary artery disease
(66 vs. 71%, P = 0.5) or hypertension (68 vs. 74%, P = 0.3).
GLS recovery was associated with effective orifice area indexed to
body surface area (EOAi). Those with GLS recovery had higher
EOAi post-TAVR (1.2 ± 0.37 cm2/m2) than those without GLS
recovery (1.0 ± 0.29 cm2/m2, P = 0.0025). GLS recovery was
associated with lower patient-prosthesis mismatch (defined as
EOAi <0.85 cm2/m2). Only 15% of patients with GLS recovery
had patient-prosthesis mismatch vs. 32% of patients without GLS
recovery (P = 0.016).

Clinical Outcomes
There were no major procedural complications (including
cerebrovascular accident, major vascular complications, and
operative death) at the time of intervention. One patient in the
NFHG AS group and one in the NFHG-rEF AS group required
a pacemaker at discharge. The median length of hospital stay
was six days (IQR 4–8) and was similar across all subgroups. At
one year, 32 of the 204 patients (16%) had died, with 11 (5%) of
these deaths due to cardiac causes. Subgroup analysis at one year
showed cardiac mortality was higher in the low-flow AS groups
than in the normal-flow AS groups (14 vs. 2%, P = 0.003). At
one year, hospitalization for congestive heart failure occurred in
30% (n= 61) of the overall study population. It was lowest in the
NFHG AS group (24%) and was more than 30% in the rest of the
subgroups (Table 2).

To assess how LV function affected outcomes, patients were
divided into two groups based on one-year mortality due to
cardiac causes (Table 3). GLS recovery did not occur in patients
who died due to cardiac causes during the first year, whereas the
opposite was true in the survivors (1 2.0 ± 2.1 vs. −1.1 ± 3.1,
P = 0.002). A similar pattern was seen in LVEF (1 −4.5 ± 9.7
vs. 3.0 ± 9.2, P = 0.009). All patients without GLS recovery and
LVEF recovery died within one year due to a cardiac cause. Post-
TAVR GLS, the overall change in GLS, post-TAVR LVEF, and the
overall change in LVEF were significantly associated with cardiac
mortality (Figure 1). Patients were then divided into two groups
based on one-year congestive heart failure hospitalization. There
was no significant difference in either GLS recovery or LVEF
recovery between groups (Table 3).

On univariate analysis of cardiac death, male sex (HR 5.5, CI
1.19, 25.42, P = 0.029) and post-TAVR GLS (HR 1.22, CI 1.05,
1.42, P = 0.009) were significantly associated with poor cardiac
survival. For every 1 percentage point worsening in GLS, the
odds of death increased by 1.4 (IQR 1.1–1.8). On Kaplan-Meier
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TABLE 1 | Patient characteristics stratified by subtypes of aortic stenosis (n = 204).

Aortic stenosis type

Characteristic Normal-flow,

high-gradient

Normal-flow &

high-gradient, reduced EF

Classical low-flow,

low-gradient

Paradoxical low-flow,

low-gradient

N = 114 N = 31 N = 32 N = 27 P-value

Men 48 (42%) 12 (39%) 25 (78%) 9 (33%) 0.001

Age, years 85 (79–88) 85 (81–88) 84 (80–87) 84 (80–87) 0.96

Comorbid disease

CAD 78 (68%) 24 (77%) 22 (69%) 17 (63%) 0.68

COPD 44 (39%) 12 (39%) 10 (31%) 8 (30%) 0.75

CVA 22 (19%) 6 (19%) 1 (3.1%) 0 0.006

HTN 86 (75%) 22 (71%) 22 (69%) 16 (59%) 0.40

PAD 56 (49%) 12 (39%) 12 (38%) 12 (44%) 0.57

DM 39 (34%) 11 (36%) 9 (28%) 8 (30%) 0.89

Creatinine 1.16 (0.90–1.62) 1.23 (1.01–1.79) 1.27 (1.05–1.49) 0.95 (0.82–1.29) 0.020

NYHA class III/IV 90 (80%) 28 (90%) 27 (84%) 19 (70%) 0.26

Pre-TAVR

LVEF 63.9 ± 7.5 38.3 ± 10.3 34.9 ± 11.0 59.1 ± 8.5 <0.0001

AV mean gradient 46.16 ± 12.67 45.49 ± 9.45 30.01 ± 9.67 32.85 ± 5.79 <0.0001

GLS −15.65 ± 3.57 −10.84 ± 3.11 −9.50 ± 2.54 −15.35 ± 4.11 <0.0001

Stroke volume index 43.95 ± 10.26 37.60 ± 13.47 33.86 ± 8.38 33.36 ± 5.94 <0.0001

LV e’ septal velocity 4.45 ± 1.45 (n = 94) 3.63 ± 1.34 (n = 28) 4.44 ± 1.35 (n = 15) 4.99 ± 1.98 (n = 21) 0.016

AVA 0.79 ± 0.33 (n = 107) 0.65 ± 0.27 (n = 30) 0.78 ± 0.21 (n = 29) 0.77 ± 0.17 (n = 25) 0.14

LA volume index 50.12 ± 16.06 (n = 103) 48.66 ± 15.22 (n = 27) 49.38 ± 8.98 (n = 15) 47.58 ± 21.58 (n = 21) 0.92

LVOT cardiac index 48.51 ± 14.23 (n = 103) 42.82 ± 16.68 (n = 30) 36.20 ± 18.16 (n = 26) 41.65 ± 9.85 (n = 25) 0.0010

PA systolic 46.95 ± 17.34 (n = 84) 49.75 ± 15.24 (n = 23) 45.10 ± 16.08 (n = 16) 52.71 ± 17.94 (n = 19) 0.48

Post-TAVR

LVEF 64.7 ± 7.8 47.5 ± 12.1 38.1 ± 12.9 60.9 ± 9.3 <0.0001

AV mean gradient 10.20 ± 6.26 8.80 ± 4.49 7.47 ± 3.89 7.23 ± 3.01 0.013

GLS −16.27 ± 3.63 −12.88 ± 4.11 −10.38 ± 2.95 −16.20 ± 3.73 <0.0001

Stroke volume index 44.60 ± 11.81 (n = 101) 38.64 ± 13.53 (n = 26) 39.88 ± 9.93 (n = 26) 35.77 ± 10.8806 (n = 24) 0.0027

LV e’ septal velocity 4.73 ± 1.27 (n = 74) 4.78 ± 1.71 (n = 21) 4.40 ± 1.97 (n = 16) 5.83 ± 1.88 (n = 16) 0.041

AVA 2.00 ± 0.48 (n = 105) 1.96 ± 0.77 (n = 26) 2.11 ± 0.44 (n = 28) 2.01 ± 0.58 (n = 23) 0.75

LA volume index 49.09 ± 15.47 (n = 107) 48.56 ± 14.21 (n = 29) 53.92 ± 15.25 (n = 31) 49.08 ± 21.09 (n = 24) 0.38

LVOT cardiac index 55.21 ± 18.76 (n = 105) 45.09 ± 17.52 (n = 26) 43.85 ± 18.32 (n = 28) 45.06 ± 14.31 (n = 22) 0.0021

PA systolic 46.92 ± 15.86 (n = 100) 49.07 ± 11.04 (n = 25) 45.16 ± 14.84 (n = 29) 44.88 ± 15.42 (n = 27) 0.72

TAVR access type 0.83

Transfemoral 98 (86%) 26 (84%) 29 (91%) 23 (85%)

Transapical 7 (6%) 1 (3%) 0 1 (4%)

Direct aortic 9 (8%) 4 (13%) 3 (9%) 3 (11%)

Data presented as n (%), mean ± SD, or median (IQR). Where the number of events was <2, only n is given. AV, aortic valve; AVA, aortic valve area; CAD, coronary artery disease;

COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident; DM, diabetes mellitus; EF, ejection fraction; GLS, global longitudinal strain; HTN, hypertension; IQR,

interquartile range; LA, left atrial; LVEF, left ventricular ejection fraction; LVOT, left ventricular outflow tract; NYHA, New York Heart Association; PA, pulmonary artery; PAD, peripheral

artery disease; SD, standard deviation; TAVR, transcatheter aortic valve replacement.

survival analysis, improvement in LVEF did not predict cardiac
death; however, lack of GLS recovery was associated with cardiac
death (Figure 2).

DISCUSSION

Our study demonstrates the following findings: (1) GLS is
abnormal in severe AS across all subtypes, (2) GLS does not
return to normal values one month post-TAVR, suggesting that

adverse LV remodeling persists even after relief of the stenotic
valve, (3) improvement of GLS occurs in normal-flow AS groups
and low-flow AS groups, with the greatest improvement seen in
the NFHG-rEF AS group, and (4) improvement in GLS post-
TAVR is directly related to survival from cardiac mortality—for
every 1 percentage point worsening in GLS, the odds of death
increased by 1.4 (IQR 1.1–1.8).

GLS is a well-known prognostic marker in severe AS. GLS
detects subclinical dysfunction and has incremental prognostic
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TABLE 2 | Clinical outcomes stratified by subtypes of aortic stenosis (n = 204).

Aortic stenosis type

Characteristic Normal-flow,

high-gradient

Normal-flow &

high-gradient, reduced EF

Classical low-flow,

low-gradient

Paradoxical low-flow,

low-gradient

n = 114 n = 31 n = 32 n = 27 P-value

Length of stay (days) 6 (5–8) 7 (5–9) 6 (4–8.5) 6 (4–7) 0.65

Death in 1 year 14 (12%) 4 (13%) 7 (22%) 7 (26%) 0.23

Cardiac death in 1 year 2 (2%) 1 (3%) 6 (19%) 2 (7%) 0.004

CHF hospitalization in 1 year 27 (24%) 11 (36%) 14 (44%) 97 (33%) 0.13

Data presented as n (%) or median (IQR). CHF, congestive heart failure; IQR, interquartile range.

TABLE 3 | Baseline characteristics for TAVR patients who were alive vs. those who died of cardiac causes at 1 year and those hospitalized for CHF vs. those with no CHF

hospitalization at 1 year.

Cardiac death Alive OR (95% CI) P-value CHF hospitalization No hospitalization OR (95% CI) P-value

N 11 193 61 143

Age (per 10 years) 85 (79–87) 84 (79–88) 1.32 (0.50, 3.47) 0.58 82 (79–87) 85 (80–88) 0.94 (0.63, 1.40) 0.75

Male sex 9 (82%) 85 (44%) 5.72 (1.20, 27.2) 0.028 29 (48%) 65 (45%) 1.09 (0.60, 1.98) 0.78

Pre-GLS −13.4 ± 4.1 −13.9 ± 4.3 0.97 (0.84, 1.12) 0.69 −13.6 ± 4.7 −14.0 ± 4.1 0.97 (0.91, 1.05) 0.48

Post-GLS −11.4 ± 3.7 −15.0 ± 4.2 0.81 (0.69, 0.95) 0.010 −14.2 ± 4.5 −15.1 ± 4.1 0.95 (0.89, 1.02) 0.19

Change in GLS 2.0 ± 2.1 −1.1 ± 3.1 0.71 (0.57, 0.89) 0.002 −0.63 ± 3.4 −1.0 ± 3.0 0.96 (0.87, 1.06) 0.40

Pre-LVEF 48.5 ± 14.2 55.2 ± 15.1 0.97 (0.94, 1.01) 0.16 51.6 ± 16.1 56.2 ± 14.5 0.98 (0.96, 0.999) 0.047

Post-LVEF 43.9 ± 14.6 58.2 ± 13.7 0.94 (0.90, 0.98) 0.003 53.4 ± 15.3 59.1 ± 13.2 0.97 (0.95, 0.99) 0.008

Change in LVEF −4.5 ± 9.7 3.0 ± 9.2 0.91 (0.84, 0.98) 0.009 1.8 ± 9.9 2.9 ± 9.1 0.99 (0.95, 1.02) 0.42

Data presented as n (%), mean ± SD, or median (IQR). CHF, congestive heart failure; CI, confidence interval; GLS, global longitudinal strain; IQR, interquartile range; LVEF, left ventricular

ejection fraction; OR, odds ratio; SD, standard deviation; TAVR, transcatheter aortic valve replacement.

value over traditional risk markers, including hemodynamic
severity, symptom class, and LVEF in patients with AS. Prior
studies have shown that abnormal GLS is a subclinical marker
of LV dysfunction in severe AS even when there is no change
in LVEF (17, 18). Kempny et al. (8) importantly observed
a longitudinal strain of −13.3% as the optimal cutoff value,
with a sensitivity of 66.7% and a specificity of 86.3%, for
predicting post-interventional GLS normalization. In their study,
change in GLS correlated with improvement in NYHA class
but did not show significant association with major adverse
cardiovascular events or 30-day mortality. D’Andrea et al. (19)
calculated an LV GLS cutoff of −12.0% to identify LFLG
AS patients with lack of remodeling post-TAVR. A recent
meta-analysis observed a cutoff of −14.7% as a trigger to
consider early interventions (20). In our study of severe AS
patients presenting with TAVR, mean GLS was uniformly
abnormal (−13.9% ± 4.3), although more abnormal in low-flow
AS groups.

LV dysfunction detected by GLS in patients with AS has
been correlated with fibrosis on endomyocardial biopsies,
indicating myocardial damage, presumably from chronic
increased afterload. After AV replacement, longitudinal strain
improved in those with less fibrosis; in those with more
extensive fibrosis, longitudinal strain did not improve (21).

Puls et al. (22) performed myocardial biopsies at the time
of TAVR in 100 patients. They noted that patients with
myocardial fibrosis had increased cardiovascular mortality
post-TAVR compared with those patients with no myocardial
fibrosis (26 vs. 2%, P = 0.00003). Thus, myocardial fibrosis,
correlated to GLS, is associated with cardiovascular death.
We noted similar findings in our study: cardiovascular
death was associated with lack of GLS recovery post-TAVR.
Myocardial fibrosis represents an end-state pathway in
myocardial damage.

These findings likely explain the heterogeneity in GLS
recovery post-TAVR. This has been studied in prior literature.
At an intermediate follow-up of three months post-TAVR,
Giannini et al. (12) and Al-Rashid et al. (23) demonstrated
an improvement in longitudinal strain despite any significant
change in LVEF. Lozano et al. (24) and Alenezi et al.
(25) demonstrated an improvement in GLS at one year
post-TAVR with no significant change in LVEF, suggesting
strain may be a more sensitive measure for changes in
LV recovery.

Kamperidis et al. (26) studied 68 patients with LFLG
AS post-TAVR. They reported significant improvement in
GLS over a period of one year; the improvement was the
greatest in the first six months post-TAVR and then plateaued.
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The improvement in GLS was influenced by baseline GLS
and patient prosthesis mismatch, a finding different from
our study, in which baseline GLS did not predict GLS
recovery or clinical outcomes. We noted similar findings
with regard to patient-prosthesis mismatch in our study, with
greater GLS recovery in patients without patient-prosthesis
mismatch post-TAVR. Løgstrup et al. (27) assessed 100

FIGURE 1 | Forest plot of echocardiographic variables that predict cardiac

death or congestive heart failure hospitalizations. CHF, congestive heart failure;

GLS, global longitudinal strain; LVEF, left ventricular ejection fraction; OR, odds

ratio; SD, standard deviation; TAVR, transcatheter aortic valve replacement.

patients undergoing TAVR and found that GLS improved
in patients with baseline LVEF >50% and improved but
was still impaired in patients with LVEF <50%. In our
study, we demonstrated immediate improvement of GLS post-
TAVR, with the greatest improvement seen in the normal-
flow AS groups compared with the low-flow AS groups.
This differential improvement of GLS suggests that a low-
flow state indicates advanced AS with underlying myopathy
due to negative remodeling. This cardiomyopathy does not
immediately resolve even with resolution of increased afterload
post-TAVR.

There are several limitations to this study, including the
retrospective nature of the review and it being a single-center
study. The sample size is also a limitation, although the total
sample size is large, a few of the subgroups are relatively
small. The patients were selected based on availability of pre-
and post-TAVR GLS measurements. The time interval from
TAVR to follow-up (one month) may be too short to evaluate
the complete recovery of LVEF, GLS recovery, and possible
reverse remodeling.

In a recent study by Vollema et al. (28), LV GLS was associated
with all-cause mortality independent of the stage of cardiac

damage, and, when included in the classification, it showed
incremental prognostic value over clinical characteristics and

staging of cardiac damage. In conclusion, GLS is an important

adverse prognostic marker in severe AS. Yet, fixing AS by

TAVR does not normalize GLS. In smaller studies, baseline GLS
has improved post-TAVR but still remained impaired. In our
study, we noted this finding in low-flow AS groups. Lack of
GLS recovery was associated with cardiovascular death. From
this, we can surmise that GLS is a marker of severe damage
in AS that is often irreversible. Future research is needed
to determine if there are other, earlier imaging markers of

FIGURE 2 | Kaplan-Meier survival analysis of GLS recovery and LVEF recovery. (Left) GLS recovery associated with cardiac death. (Right) LVEF recovery not

associated with cardiac death. GLS, global longitudinal strain; LVEF, left ventricular ejection fraction.
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subclinical LV dysfunction that can be reversed with treatment
of AS (29).
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