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Abstract

Background

The mechanism by which Ethiopians adapt to altitude is quite unique compared to other

Highlanders with respect to increased oxygen saturation of hemoglobin. Although the

effects of altitude on cardiorespiratory and hematological quantities on athletics perfor-

mances are well known, but there is little information about its underlying effect on chrono-

type orientations.

Methods

In this cross-sectional study 60 male college students with mean age 20±1.3 years from

high and low altitude regions living in a tropical setting in Ethiopia were included. The partici-

pants’ chronotype was determined using the self-administered Horne and Ostberg Morning-

ness-Eveningness Questionnaires (MEQ). Measurements and estimations of

hematological and cardiorespiratory parameters were performed from 7:00–9:00 AM, East

African time zone, in order to minimize any variations that might occur in the course of the

day. A multivariate binary logistic regression model was fitted to analyze the underlying

chronotype predictors.

Results

28 (93.9%) of participants from high altitude were mainly intermediate type (I-type) dominant

with (MEQ = 42–58). While, 16 (55.2%) of participants from low altitudes were morning type

(M-type) dominant chronotype with (MEQ = 59–69). Our main finding confirmed that altitude

is an independent predictor of chronotype orientations of the participants (p<0.015). Thus,

the results of the multivariate analysis seem to indicate that, participants from low and high

altitudes may be uniquely oriented towards either M-type or I-type chronotype respectively

(adjusted odds ratio [AOR] 4.772, 95% CI = 3.748–4618458). However, no significant
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difference on cardiorespiratory and hematological quantities between I-type and M-type

chronotype of students from low altitude living in the same setting was reported (p > 0.05).

Conclusion

Our finding, reported for the first time that, the human chronotype varies according to the

altitude, with no underlying effect of cardiorespiratory and hematological quantities.

Introduction

Altitude adaptation in humans is an instance of evolutionary modification in certain popula-

tions, like the Tibetans, Andean inhabitants and Ethiopians [1]. This is perhaps due to their

migration to the highland was relatively early [2]. The adaptation to high altitude among dif-

ferent Highlanders also arose independently of convergent evolution [3]. The analysis of spe-

cific genes that influence adaptation to high altitude seems to be expressed highly among

Ethiopians compared to other Highlanders [4]. These genes are known to produce hypoxia

induced factors known to regulate production of red blood cells and oxygen saturation of

hemoglobin [5]. However, a sustained exposure to hypoxia may alter body composition [6],

raise stress hormones [7], affects the volume of maximum oxygen consumption (Vo2Max) and

sleep patterns [8–10].

Further studies have highlighted differences between populations living in high and low

altitudes based on morphophysiological characteristics [11,12]. Thus, people living at high alti-

tudes have been reported to be thinner and shorter than those from the sea level. This is due to

the effects of altitudes on oxygen saturation of hemoglobin [5], Vo2Max, stress hormones [7]

and blood compositions and circulation [13]. Hence, the irreversible, long-term physiological

responses are associated with heritable behavioral changes in chronotype orientations

[3,14,15]. Although the effects of altitude on cardiorespiratory and hematological quantities on

athletics performances are well known [11–15], but there is little information about its under-

lying effect on chronotype orientations.

Chronotype refers to individual’s time-of-day preferences of activities that can be classified

as ‘‘M = morning type”, ‘‘E = evening type “and “I = intermediate types” [16–18]. However,

peoples’ preference of activity schedules may not be possible to match with their chronotype

orientations [16,19,20]. This is in spite of the reported impact of a person’s chronotype orien-

tation on their response to exercise [21,22], academic achievement and other activities [23–

25]. Furthermore, recent studies have reported that the observed chronotype in athletes may

be different to that of non-athletes [26–30] and varied either by longitudes or latitudes [31].

The underlying influence of longitudes and latitudes on chronotype orientations has been

related to scotopic periods (i.e., the time interval between sunset and sunrise) and photopic

periods (i.e., the time interval between sunrise and sunset) [32–34]. Therefore, the exposure to

bright sunlight may affect the phase position of the main sleep episode, leading to different

sleep-wake patterns [35].

In our previous study, we reported that the chronotype preferences of college students may

vary according to their altitude backgrounds [36]. However, the underlying parameter by

which altitudes may influence chronotype orientations is still unknown. Hence, cross-sectional

study design was used to assess cardiorespiratory and hematological quantities of 60 untrained

male college students from high and low altitude living in tropical settings of Ethiopia. To asso-

ciate the influence of altitude on chronotype orientations in relation to cardiorespiratory and
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hematological quantities, a multivariate binary logistic regression analysis was used. Thus, the

outcome of this study may be important to exercise physiologists, coaches and athletes while

scheduling training and competition for participants from either high or low altitude back-

grounds living in tropical settings.

Materials and methods

Study setting and ethical approval

Ethical approval was obtained from Mekelle University College of Health Sciences; Health

Research Ethics Review Committee (HRERC) with Ref. ERC 1078/2017 dated 26/06/2017 and

conducted in accordance with the declaration of Helsinki. In addition a written consent to par-

ticipate in the study was obtained from participants. The study was conducted in Arba Minch

town South-West Ethiopia, with an elevation of 1286 meters above sea level [37,38], which is

categorized as low altitude tropical setting [39]. It is located at 6.0206˚N and 37.5641˚E, lati-

tude and longitude coordinates with an average annual temperature of 25.2˚C, (average high

and low temperature of 28.7˚C and 21.8˚C respectively) [36].

Study design and participants

A cross-sectional study design was used, to assess the chronotype, cardiorespiratory and hema-

tological quantities of 60 male college students with mean age 20±1.3 years from high and low

altitude regions living in tropical settings of Ethiopia (Fig 1). The number of participants was

based on a formula for sample size of the mean [40]; assuming 95% confidence interval, 5%

margin of error and 0.1 standard deviation obtained from previous studies [41,42]. A self-

reported demographic questionnaire was used to determine, among other things the places of

their origin and growth before joining the college within the study setting. Therefore, based on

the altitude classification by the Canadian Academy of Sport and Exercise Medicine (CASEM)

[39], participants who originated and grew up from areas between 500–2000 meters above sea

level were grouped under low altitude backgrounds. While those from areas above 3000 meters

above sea level were grouped under high altitude backgrounds [36,39]. However, participants

who reported to be from neither high nor low altitude backgrounds were excluded from the

study. Based on the information obtained, participants were grouped either to high (n = 30) or

low altitude backgrounds (n = 29) with (n = 1) missing. Then after, data about chronotype ori-

entations, hematological and cardiorespiratory parameters were obtained. The participants’

chronotype was determined using the self-administered Horne and Ostberg Morningness-

Eveningness Questionnaires (MEQ) [43].

Procedures

All students participating in the study had no any preceding intense exercise, declared as healthy

and in good physical condition. Measurements and estimations of hematological and cardiore-

spiratory parameters were performed from 7:00–9:00 AM, East African time zone, in order to

minimize any variations that might occur in the course of the day [41,44–47]. Vo2max as an

indicator of cardiorespiratory endurance (CRE) [48], was estimated using maximal exercise test

(20 meter multistage shuttle run test) or beep test [49–50]. The test has been shown to be an

accurate method to estimate Vo2Max in young adults with (r = 0.9) [51]. The test was employed

as outlined by the American College of Sports Medicine [52]. Generally, it was taken at 8.5 km/

hr (level-1) and increased by 0.5km/hr at each level. The result was obtained by using online

beep test calculator (BTC) based on the number of shuttles attained at each level. The calculator

appears to be accurate within 0.1 ml/kg/min of the published values [53].
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Blood sampling was done according to the procedures explained by Simundic et al. 2017.

Participants were left to sit for 15 minutes prior to sampling. 5 ml venous blood was drawn

from the ulnar vein of the non-dominant hand using a 20 G x 1½@–0.9 x 40 mm syringe after

application of a tourniquet and cleansing the site. The blood was introduced into a tube with

Ethylene Di-amine Tetra Acetate (EDTA) to determine the concentration of erythrocytes, leu-

kocytes and thrombocytes using a hematology analyzer (BC-3000Plus Mindray Medical,

Andheri East, Mumbai, Maharashtra India) [54].

Data analysis

All data were tested for normality using the Pearson normality test. Descriptive statistics were

expressed either as mean ± standard deviation or frequency (proportion) for continuous and

categorical variables respectively. To associate the influence of altitude on chronotype

Fig 1. Study design and data collection procedures.

https://doi.org/10.1371/journal.pone.0219836.g001
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orientations in relations to cardiorespiratory and hematological parameters, a multivariate

binary logistic regression analysis was conducted. Independent sample t-test was used to com-

pare the mean morningness-eveningness questionnaire results (MEQR), V.o2Max, body mass

index (BMI) and hematological parameters between students from high and low altitude back-

grounds. Similarly, we used the above test to compare MEQR of V.o2Max and hematological

quantities between intermediate type (I-type) and morning type (M-type) chronotype orienta-

tions of students from low altitude backgrounds. All statistical analyses were performed using

IBM-SPSS version 20 (IBM, Armonk, NY, United States of America). All reported p-values are

two tailed and confidence intervals are calculated at 5% alpha value.

Results

No between-group differences (Age, height, body mass and BMI) existed at baseline, so the

groups were well matched at entry level (Table 1). The chronotype preferences of participants

from high compared to low altitudes indicated significant differences (P<0.001). Thus, 28

(93.9%) of participants from high altitude were mainly (I-type) dominant chronotype

(MEQ = 42–58). While 16 (55.2%) of participants from low altitudes were (M-type) dominant

chronotype (MEQ = 59–69) (Figs 2–4).

The mean cardiorespiratory and hematological quantities of participants from high com-

pared to low altitudes also indicated significant differences except for MCV and PLT (p<

0.05). However, there was no significant differences in the mean hematological and cardiore-

spiratory quantities between I-type and M-type chronotype orientation of participants from

low altitude backgrounds (p> 0.05) Tables 1 and 2.

The predictor variables of chronotype orientation of students from varied altitude back-

grounds are given in Table 3. The only significant predictor of the chronotype orientations

was the altitude background of the participants (p<0.015). Thus the results of the multivariate

analysis seem to indicate that, participants from low and high altitudes may be uniquely

Table 1. Comparison of demographic, hematological, cardiorespiratory and chronotype orientations between participants from high and low altitudes (n = 59).

Variables High Altitude Backgrounds (n = 30)

(Mean ± SD)

Low Altitude Backgrounds (n = 29)

(Mean ± SD)

p-value

Age 19.93±1.45 20.28±1.16 0.319

Height 1.68±0.05 1.70±0.08 0.285

Body mass 61.70±4.70 61.91±4.82 0.864

BMI 21.49±1.95 22.05 ± 1.57 0.223

Chronotype preferences I-type = 28 (93.9%) M-type = 16 (55.18%)

MEQR = 53.10±4.94 MEQR = 59.31±5.83 0.001

Cardiorespiratory Parameters (Vo2Max) 51.84 ± 7.64 47.25 ± 9.41 0.044

Hematological quantities

HGB in g/dL 16.43 ± 1.19 15.69 ± 0.91 0.010

RBC in (x106 / μL) 5.33 ± 0.31 5.15 ± 0.32 0.034

HCT in % 49.16 ± 2.96 47.20 ± 2.49 0.008

MCV in fL 92.45 ± 3.69 91.8 ± 3.17 0.501

PLT in (x103 / μL) 234.37 ± 39.58 254.06 ± 57.96 0.132

WBC in (x103 / μL) 7.01±2.00 5.74 ±0.70 0.015

Vo2Max = volume of maximum O2 consumption in ml/(kg�min), MEQR = MEQ results, BMI = body mass index, HGB: hemoglobin count, RBC: red blood cell count,

HCT: hematocrit, MCV: mean corpuscular volume, PLT: platelet, WBC: white blood cell count

https://doi.org/10.1371/journal.pone.0219836.t001
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oriented towards either be M-type or I-type chronotype respectively (AOR 4.772: 95%

CI = 3.748–4618458).

Discussion

This is the first study to our knowledge that investigated the effects of altitude on chronotype

orientations in relation to cardiorespiratory and hematological quantities of students from

high and low altitude backgrounds living in a tropical setting. Our main finding confirmed

that altitude is an independent predictor of chronotype orientations of the participants [36].

Based on the cited studies [55–62] one might hypothesize that the effects of acclimatization

on sleep are altitude dependent. Early, studies have suggested that a pronounced sleep frag-

mentation was a characteristic change occurring with exposure to hypoxia [63]. As suggested

previously by Ashkenazi et al 1982, hypoxia may act as real phase-shift inducer of the circadian

system [64]. This effect may be related to a delayed phase of sleep-wake cycle. Consequently,

we found that participants from low and high altitudes living in a tropical setting may be

uniquely oriented towards either be M-type or I-type chronotype respectively. Since, increase

in sleep onset latency (SOL) after hypoxic exposure at high altitude seems to depend on the

evening decline of core body temperature and plasma melatonin [65–67]. Therefore, our find-

ing is consistent with the study by, Coste et al., 2004a that significant negative association

between the SOL and the age-correlated Horne & Ostberg score reflects a close relation

Fig 2. MEQ scores of students from high and low altitudes living in tropical settings.

https://doi.org/10.1371/journal.pone.0219836.g002
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between an elevated morningness preference and short SOL. However, further studies are

required to better quantify the effects of different levels of altitude on sleep in persons of both

sexes and of various ages and to elucidate the underlying physiological mechanisms.

Most surprisingly, we did not report E-type dominant chronotype orientations, despite the

young adults participating in the study. Considering that changes from M-type to E-type take

place according to age, with higher prevalence of M-type occurring during childhood and

higher prevalence of E-type during adolescence [23,68,69]. The adolescence age group is

known to poorly tolerate altitude related stresses [8–10], which may affect their sleep patterns.

Thus, in our study, the absence of E-type chronotype might be obscured by the unique evolu-

tionary adaptation to altitude by the participants. Our finding further reported no significant

difference on Vo2Max and hematological quantities between I-type and M-type chronotype

among students from low altitude living in a tropical setting. However, previous studies

reported a better VO2max in E-types than M-types [68,70–72]. This might be reflective of bet-

ter aerobic participation in energy metabolism during the evening time, leading to both mental

and physical activeness among E-type than other chronotype [16,36,73]. Although our finding

is not consistent with previous studies, but this might be due to absence of E-type among com-

pared chronotype orientations. Furthermore, participants in our study are homogenous in

their altitude backgrounds (low only) and may similarly adapt to increased blood plasma and

oxygen volume.

Fig 3. MEQ scores of studens from high altitude backgrounds.

https://doi.org/10.1371/journal.pone.0219836.g003
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Evidence supports the notion that performance can be improved if individuals are matched

with their preferred chronotype [17,36]. Our finding that human chronotype varies according

to altitude may be useful for exercise physiologists, coaches and athletes while either

Fig 4. MEQ scores of students from low altitude backgrounds.

https://doi.org/10.1371/journal.pone.0219836.g004

Table 2. Mean hematological and cardiorespiratory parameters between I-type and M-type chronotype orienta-

tions of participants from low altitudes backgrounds (n = 29).

Variables Low Altitude Backgrounds

I-type (n = 13)

(Mean ± SD)

M-type (n = 16)

(Mean ± SD)

p-value

Cardiorespiratory parameters (Vo2Max) 49.09±10.09 45.75±8.86 0.352

Hematological quantities

HGB in g/dL 15.85±0.62 15.57±1.10 0.413

RBC in (x106 / μL) 5.17±0.30 5.13±0.34 0.757

HCT in % 47.47±1.75 46.97±3.01 0.600

MCV in fL 92.06±3.43 91.66±3.04 0.738

PLT in (x103 / μL) 246.53±46.23 260.18±66.87 0.538

WBC in (x103 / μL) 5.70±0.80 5.78±0.64 0.765

Vo2Max = volume of maximum O2 consumption in ml/(kg�min), HGB: hemoglobin count, RBC: red blood cell

count, HCT: hematocrit, MCV: mean corpuscular volume, PLT: platelet, WBC: white blood cell count

https://doi.org/10.1371/journal.pone.0219836.t002
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scheduling training or competition for participants. Since, altitude effects on blood composi-

tions and circulation may lead to an altered cardiorespiratory and hematological quantities

[13]. Thus, the strength of this study is that we evaluated if the above underlying parameters of

students from varied altitude background that might influence their chronotype orientations.

However, students from high altitude background were majorly I-type dominant and we

could not compare their chronotype orientation in relation to cardiorespiratory and hemato-

logical quantities. Furthermore, it would be interesting to assess the underlying effect of alti-

tude on chronotype of participants from low living in high altitude in order to give

bidirectional relationship. Whether our findings indicate the uniqueness of Ethiopians to alti-

tude adaptation in tropical setting in relation to chronotype orientation needs further

investigation.

Conclusion

Our finding, reported for the first time that, the human chronotype varies according to the alti-

tude, with no underlying effects of cardiorespiratory and hematological quantities.
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