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Abstract: The eddy-current (EC) testing method is frequently utilized in the nondestructive inspection
of conductive materials. To detect the minor and complex-shaped defects on the surface and in
the underlying layers of a metallic sample, a miniature eddy-current probe with high sensitivity
is preferred for enhancing the signal quality and spatial resolution of the obtained eddy-current
images. In this work, we propose a novel design of a miniature eddy-current probe using a giant
magnetoresistance (GMR) sensor fabricated on a silicon chip. The in-house-made GMR sensor
comprises two cascaded spin-valve elements in parallel with an external variable resistor to form
a Wheatstone bridge. The two elements on the chip are excited by the alternating magnetic field
generated by a tiny coil aligned to the position that balances the background output of the bridge
sensor. In this way, the two GMR elements behave effectively as an axial gradiometer with the bottom
element sensitive to the surface and near-surface defects on a conductive specimen. The performance
of the EC probe is verified by the numerical simulation and the corresponding experiments with
machined defects on metallic samples. With this design, the geometric characteristics of the defects
are clearly visualized with a spatial resolution of about 1 mm. The results demonstrate the feasibility
and superiority of the proposed miniature GMR EC probe for characterizing the small and complex-
shaped defects in multilayer conductive samples.

Keywords: nondestructive testing; eddy current; giant magnetoresistance; defect detection

1. Introduction

In recent decades, the nondestructive testing (NDT) techniques based on the eddy-
current (EC) effect have been widely applied in the manufacturing of conductive materials
to ensure structural integrity and improve product quality. The main advantage of the eddy-
current method is that it allows position-and-shape determination and the size estimation
of defects on the conductive materials without any contact between the test specimen and
the probe. It is especially important for the deep-lying defects that are not detectable by
optical inspection. Various kinds of analytical, numerical, and experimental eddy-current
techniques have been developed to detect and characterize the defects in a conductive
sample, such as the calculation of the depth and opening width of a long crack [1], the
analytic model of an ideal surface crack [2], and the impedance analysis of the coils for
testing the surface crack based on the finite-element and boundary-element models [3,4].
The tiny coil-based probe can satisfy the requirement of high spatial resolution for detecting
small defects [5,6]. However, the sensitivity is greatly reduced since the induced voltage
depends proportionally on the magnetic flux through the pickup coil’s cross-section area [7].
Therefore, a sensor based on a small coil cannot meet the high-performance requirements
and is only suitable for applications with high excitation frequencies. For both low- and
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high-frequency applications, the emerging method for evaluating structural integrity is
an EC probe comprising magnetic field sensors, such as Hall sensors [8], superconducting
quantum interference devices (SQUID) [9,10], giant-magnetoresistance (GMR) sensors, etc.
Among them, a GMR sensor featuring high sensitivity, low cost, wide frequency range, and
small size is a potential solution in many spheres, including nondestructive evaluation of
metallic materials [11,12], cancer cell detection in biomedical testing [13], and electronic
compasses in consumer electronics [14]. The most prominent applications of GMR sensors
are the detection of tiny magnetic objects, as well as the imaging of defects in a conductive
sample to characterize the shape, size, and depth of flaws and cracks. The rapid estimation
of crack geometry and corrosion detection have been demonstrated by using the eddy-
current probe with the bare-die [11,15–17] or packaged GMR sensor arrays [12]. The array
probe enhances the inspection throughput, but the linear arrangement of the array makes it
applicable only to a sample with a flat surface. In contrast, the EC probe with a single GMR
sensor is more flexible. The reliability and capability of this kind of probe with various
designs of excitation coils, including a ferrite core, long meander, planar, or flat spiral coils,
have been demonstrated by many research groups [18–22]. The unsolved problem in such
designs is the trade-off between spatial resolution and signal sensitivity, which cannot be
resolved with the limited options in the coil-sensor arrangement set by the package size of
the sensor and the diameter or thickness of the excitation coil. Besides, the performance of
the big excitation coil in inspecting small defects is limited because of the low-efficiency
interaction between the probe and the defect, which results in a decrease in the output
amplitude [23]. In comparison with the absolute probes, the GMR-based EC probe in a
gradiometer configuration exhibits higher sensitivity, as well as better spatial resolution.
When the baselines are 0.3, 0.5, and 1 mm, the defect signals can be clearly resolved
under the external field, ambient static field, and environmental disturbance [24,25]. The
gradiometer EC probes comprising the other sensor technologies have also been developed
and shown to exhibit high performance and good reliability, such as the SQUID gradiometer
with an 8.5 mm baseline [26], the anisotropic magnetoresistance (AMR) gradiometers with
baselines of 4 mm [27] and 40 mm [28], the magnetic tunnel junction (MTJ) gradiometer
with a baseline of 40 mm [29], and the biaxial gradiometer with three GMR sensors vertically
located with a baseline of 5 mm [30]. The axial gradiometer probe with a short baseline has
a better immunity to the environmental field disturbance. For detecting deep-buried defects
or metallic objects, a large baseline and a big excitation coil are preferred for enhancing the
signal sensitivity, especially for the minor defects. However, the long baseline of an axial
gradiometer results in a higher offset signal contributed by the defect-free sample surface.
For the planar gradiometers [24,27], the increased baseline does not necessarily contribute
to an increased offset level, but the crack-like defects cannot be detected with the planar
gradiometer when the baseline is parallel to the orientation of the crack. In contrast, the
defects of any planar orientation can be detected by the axial gradiometer probe.

In this work, a novel approach aiming at enhancing both the spatial resolution and
the signal-to-noise ratio is suggested. A miniature EC probe based on the in-house-made
GMR sensor in a half-bridge configuration and a tiny rectangular exciting coil is proposed.
The chip is configured as an axial gradiometer with a baseline of 1.5 mm. The 1.8 mm
opening of the tiny rectangular exciting coil fits well to the width of the GMR chip. With
the closely packed chip-coil arrangement, the lift-off distance between the probe and the
test sample is significantly minimized. The improvement in the spatial resolution and
signal-to-noise ratio of the defect signals by using the proposed probe is analyzed and
discussed. The proposed design is expected to improve the quality of the EC images in
detecting the minor and complex-shaped defects on the surface and subsurface, such as
machining tears, inclusions, and corrosion, of the metallic specimen or a short circuit in
printed circuit boards.
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2. Miniature Eddy-Current Probe with Spin-Valve GMR Sensor
2.1. Fabrication of GMR Chip in a Half-Bridge Configuration

There are several implementations of a spin-valve GMR sensor fabricated on a single
chip. With the unidirectional pinned field, the most feasible designs are the bridge layouts
with two active and two inactive GMR elements. An example of the on-a-chip bridge
design is the commercially available GMR sensor, GF708, from Sensitec GmbH, which
comprises two inactive elements covered by magnetic shielding films and two active spin-
valve elements forming a bridge configuration. In the present work, a novel half-bridge
gradiometer with two cascaded active spin-valve elements on a chip is proposed. The
fabrication method for the in-house-made GMR chip is similar to that reported in [14]. The
spin-valve elements are based on the multi-layer structure of the metallic nanometer-thick
films, including the ferromagnetic (FM) and nonmagnetic (MN) layers. The FM layers
include the free (NiFe/CoFe) and pined (CoFe/IrMn) layers separated by the NM (copper)
layer. The magnetization orientation of the pinned layer is stabilized by the IrMn film
through the exchange bias. The magnetization orientation of the free layer is easily changed
by the external magnetic field, thereby altering the current-in-plane resistance of the spin-
valve element [31]. The distance between the reference element R1 and the sensing element
R2 is 1.5 mm, which is the baseline length of the gradiometer, as shown in Figure 1. The
spin-valve GMR elements are 0.4 mm in length and 3 µm in width. The pinning direction
of the spin valve is parallel to the baseline and perpendicular to the length of the elements.
The dimensions of the chip are 2.5 mm × 1.2 mm × 0.5 mm, respectively, for the length,
width, and thickness. The zero-field resistance is R2 = 3.3 kΩ for the sensing element and
R1 = 2.8 kΩ for the reference element. Although both the reference and sensing elements
can detect the eddy-current signal, the output of the half-bridge is dominated by the change
in R2 when the object under test is close to the eddy-current probe. The change in R2 is
more significant because the minimum liftoff distance is much less than the baseline length
of 1.5 mm.

Figure 1. Top view and half-bridge layout of the fabricated GMR chip.

2.2. Development of the EC Probe Based on a Miniature Axial Gradiometer

The miniature EC probe is constructed from the in-house-made half-bridge GMR chip
as described above, a tiny printed circuit board (PCB), a 20 kΩ surface-mount-device (SMD)
variable resistor, a small rectangular excitation coil, and a stainless-steel housing tube, as
shown in Figure 2. The sizes of the excitation coil, such as the mean diameter, height, and
thickness, are critical factors directly relating to the signal sensitivity and spatial resolution
of the eddy-current probe. It has been reported that, for detecting small defects on the
surface and underlying layers, the smaller coil is preferred [27,32] because the effective
spatial range of the excitation field is smaller and hence the ratio between the defect size
and the probe diameter increases, which results in an improvement in both sensitivity
and spatial resolution. In the present study, the excitation coil is small in size and its
specifications are given in Table 1. The outside dimensions are 2.9 mm × 3.1 mm and the
height is 1.42 mm. The opening of the coil is 1.6 mm × 1.8 mm in dimension and fits well to



Sensors 2022, 22, 3097 4 of 22

the width of the half-bridge GMR chip, making it easy to adjust and locate the chip inside
the excitation coil. A tiny double-sided PCB is made by an engraving machine to form
the wirings and bonding pads for electrical connection with the GMR chip, as shown in
Figure 2b. The half-bridge GMR chip is fixed to the tiny PCB so that the sensing direction
is parallel to the length dimension of the PCB. The aluminum wire bonding method is
used to electrically connect the GMR chip to the PCB. A 20 kΩ SMD variable resistor is
connected in parallel to the GMR chip via the PCB to form a balanced bridge sensor, as
shown in Figure 2. The background output signal of the probe can be minimized by tuning
the variable resistor to avoid the saturation in the input voltage of the preamplifier. The
excitation coil is fixed at the position where the sensing and reference elements receive a
similar intensity of excitation. With this arrangement, the sensing direction of the GMR
sensor is normal to the specimen surface. This means that only the vertical component (Bz)
of the secondary fields is detected by the probe. Although the primary magnetic field can
also be detected, the contribution of the primary field is minimized by the balanced output
of the gradiometer. The remaining unbalanced signal is the background output in the
obtained eddy-current image. The constant background level resulting from the primary
field has no effect on the image quality and hence can be subtracted from the data. Since
the magnitude of Bz is independent of the in-plane orientation of the magnetic source, the
developed probe can detect the defect of any planar direction. The compact chip-and-coil
arrangement simplifies the mechanical design of the EC probe.

Figure 2. The gradiometer EC probe with a half-bridge GMR sensor chip. (a) Photographs of the
encapsulated probe. The outer diameter of the stainless-steel housing tube is 4 mm. (b) The structure
of the probe.

Table 1. Geometric parameters of the excitation coil.

Quantity Dimensions

Inside dimensions 1.6 mm × 1.8 mm
Outside dimensions 2.9 mm × 3.1 mm

Height 1.42 mm
Diameter of wire 0.05 mm

Minimum lift-off l0 0.2 mm
Number of turns 252

The magnetic field measured by the native GMR elements is usually outside the linear
working range because the offset field results from the exchange bias. To operate the sensor
at the working point with the optimal sensitivity, the DC bias and AC excitation fields
are generated by the same excitation coil at the same time, as shown in Figure 3. The DC
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current in the excitation coil shifts the working point to the center of the linear range where
the sensitivity is maximized. The AC excitation amplitude is adjusted until the magnetic
field induced is high enough to operate the probe with the best sensitivity to the flaw.
The output voltage of the probe is the difference between the field-dependent half-bridge
voltage Va and the static potential Vb of the variable resistor:

Vab = Va − Vb = Vcc ×
(

R2(H)

R1(H) + R2(H)
− R4

R3 + R4

)
(1)

where Vcc is the bias voltage, H is the applied magnetic field, R2 is the resistance of the
sensing element, R1 is the resistance of the reference element, and R3 and R4 are the
resistances of the variable resistor. The sensor output can also be predicted by relating the
magnetoresistance with the applied magnetic field H as follows:

R(H) = R0

(
1 +

r
r + 2

× tanh
(
− H

Hs

))
, (2)

where R0 is the resistance value at zero magnetic field, Hs is the saturation field, and r is
the magnetoresistance (MR) ratio defined as:

r =
RP − RAP

RP
(3)

where RP is the resistance of saturated parallel magnetization and RAP is the resistance
of the antiparallel state. When |H| ≥ Hs, the resistance of the GMR sensor will not
immediately saturate to RP or RAP. The MR ratio must be estimated for |H| ≥ 3Hs
according to the experimental data. The resistance-field (R-H) curve for the elements on the
half-bridge GMR sensor was measured in a 1 Hz sweeping field of 150 Oe generated by an
electromagnet with a current-to-field transfer coefficient of 1000 Oe/A. To set the operating
point to the zero external field, a 37 Oe DC field is applied along with the AC excitation
by the tiny rectangular excitation coil to shift the working point of the sensor. This makes
the R-H curve of each GMR element become anti-symmetric about the zero magnetic field,
as shown in Figure 4, where the red dashed lines are calculated by (2). It can be seen that
the hyperbolic tangent function fits satisfactorily to the experiment data when the small
hysteresis is neglected. The best-fit parameters are found to be Hs = 18.5 Oe and r = 5.3%
for both GMR elements. The resistance R0 at the zero magnetic field for the sensing and
reference elements is 3.3 and 2.8 kΩ, respectively.

Figure 3. Circuit diagram of the developed probe consisting of the half-bridge GMR sensor chip and
SMD VR 20 kΩ.
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Figure 4. The MR curve for the spin-valve GMR elements: (a) the sensing element R2 and (b) the
reference element R1.

3. Experiment Setup
3.1. Experimental Eddy-Current Flaw Detection System

In the GMR eddy-current system, the excitation field is induced by injecting a sinewave
signal into the excitation coil surrounding the GMR sensor. The amplitude of the excitation
signal for the proposed probe can change from 1 V to 10 V in peak-to-peak values with
various frequencies up to 1 MHz. In our experiments, the excitation coil is driven by a 6 V
peak-to-peak AC voltage and a −1.3 V DC offset, while the excitation frequency is tuned to
match the characteristics of the tested materials determined by the experiments. The typical
root-mean-square (rms) amplitude for the excitation current is 57.6 mA at 40 kHz. The
1 V DC supply voltage (Vcc) is generated by a circuit powered by a battery set. The lift-off
distance between the probe and the specimen surface is 0.2 mm and the specimen moves
under the probe with a step size of 0.125 mm. Figure 5 shows the main components of the
experimental system including the output data processing system, data acquisition (DAQ)
device, and the x-y positioning system. As the output voltage of the GMR sensor is on the
order of a millivolt and vulnerable to wiring interference, the output signals of the probe are
amplified and filtered by the low-noise pre-amplifier, model SR560 from Stanford Research
System. The pre-amplifier output is analyzed by the lock-in amplifier, model SR865A from
Stanford Research Systems. To read the output voltage of the sensor in real time while
scanning the sample surface, a DAQ module USB-6216 from National Instruments was
used to record the in-phase and quadrature eddy-current signals from the analog outputs of
the lock-in amplifier. The sampling rate of the DAQ device is 400 kS/s. The scanning speed
and sampling rate are adjusted by the C# program to provide an accurate representation of
the eddy-current signals in response to the scanning. The probe is tightly fixed to avoid the
interference induced by a bending of the signal cable in the scanning process, while the test
sample is mounted on a motor-controlled two-axis translation stage, model 08TMC-2, from
Unice E-O Services Inc. The sample is mounted on a height-and-tilt adjustment mechanism
to minimize the lift-off variation. The stepping-motor controller is connected to a computer
via a serial port. The operation parameters of the system, such as step size, scanning range,
and velocity, as well as the data-recording process, are controlled by a self-developed
C# program.
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Figure 5. The automatic scanning system for the EC probe based on a half-bridge GMR sensor.

3.2. Kinds of Specimens under Test

To verify the performance of the designed probe for detecting surface and subsurface
defects, the nondestructive inspection is implemented on three types of samples. The first
kind of specimen is an aluminum plate 90 mm × 50 mm × 5 mm in dimension. The cracks
on the specimen simulated by the machined slots of the same length (50 mm) and width
(0.5 mm) are numbered as #1 to #6 for which the depths are respectively 0.1, 0.3, 0.5, 1.0, 1.5,
and 1.8 mm, as shown in Figure 6b. The distance between the centers of adjacent cracks is
14.3 mm. For the inspection of surface defects, the probe is placed on the specimen surface
with a lift-off distance of 0.2 mm. For subsurface flaws, the specimen surface is covered
by one layer of aluminum tape, as shown in Figure 6c,d. Each layer of the aluminum
tape consists of an adhesive layer of 0.03 mm and a thin aluminum layer of 0.065 mm.
With one and three layers of aluminum tape, the buried depths of the machined cracks are
respectively h = 0.095 and 0.285 mm, where h is defined as the total thickness of the tape
layers on the sample surface.

The second kind of specimen, which is used for exploring the performance in inspect-
ing crack direction, is a copper film with machined slits on a 30 mm × 30 mm printed
circuit board (PCB), as described in Figure 7. The eight slits simulating the cracks are
made with the different angles of 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, and 150◦ against the
horizontal direction, while the length and width of the slits are constant at 6.5 mm and
0.6 mm, respectively.

The third specimen is a two-layer and three-layer square printed circuit board
50 mm × 50 mm in dimension with concentric circular and ring-shaped metal losses
made by an engraving machine. The dimensions and arrangement of the machined flaws
are depicted in Figure 8a and the geometrical dimensions of the flaws on the PCB are
shown in Table 2. Each artificial flaw contains a central circular hole of diameter D1 and
a ring-shaped flaw of inner and outer diameters D2 and D3, respectively, as described in
Figure 8a. There are four kinds of flaws with different dimensions of D1, D2, and D3 that
are designated as F1 to F4. Each kind of flaw has four in a row located on lines y1, y2,
y3, and y4, respectively. The gradual increase in the dimensions of the machined flaws is
designed to investigate the ultimate spatial resolution of the GMR-based flaw detector, of
which the performance is highly correlated with its geometrical parameters. To evaluate the
performance of the probe in detecting surface and subsurface defects, the machined flaws
are, respectively, on the first and second copper layers of the two- and three-layer PCB
samples, as shown in Figure 8b,c, for which the three-layer structure is made by attaching
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an insulation layer of 0.13 mm and a copper layer of 0.05 mm. The corresponding buried
depth of the subsurface flaws is 0.18 mm below the top surface of the three-layer PCB.

Figure 6. An aluminum plate with long machined cracks of different depths. (a) Photograph of
aluminum sample. (b) Surface flaws. (c) Subsurface flaws with an aluminum tape layer attached.
(d) Subsurface flaws with three aluminum tape layers attached.

Figure 7. The PCB specimen for testing the performance of the EC probe in determining crack
orientation: (a) photograph of the PCB with defects, and (b) illustration for the orientation angles of
the defects with the defect numbers.

Table 2. Geometrical Characteristic of Machined Holes on PCB.

Defects Number D1 (mm) D2 (mm) D3 (mm)

F1 0.75 1.75 4.75
F2 1.5 3.5 6.5
F3 2.0 4.5 7.5
F4 3.5 5.5 8.5
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Figure 8. The multilayer PCB specimen with surface and subsurface defects: (a) photograph of
the specimen and the geometrical dimensions of the machined flaws on the copper layer, (b) the
machined flaws on the first layer of the two-layer PCB, and (c) the machined flaws on the second
layer of the three-layer PCB.

4. Numerical Model and Signal Analysis

To evaluate the performance, as well as the underlying operating principle, of the
developed probe, the EC density on the test sample and the secondary magnetic field
generated by the ECs are numerically analyzed using ANSYS MAXWELL software. The
simulation model for the proposed probe is shown in Figure 9, where a rectangular exci-
tation coil located above an aluminum sample with artificial cracks is constructed using
the parameters in Table 1. The axis of the excitation coil is along the z-direction. The
specimen containing defects is placed in the x-y plane with the lift-off distance of 0.2 mm.
When the probe scans along the x-direction crossing the defect, the eddy current in the
sample is induced by the excitation coil carrying a sinusoidal alternating current. These
induced currents generate the secondary magnetic field, of which the component along
the z-direction is detected by the GMR sensors. In the simulation, a 40 mA rms sinusoidal
current of 40 kHz is injected into the excitation coil. The six cracks on the test specimen are
50 mm in length and 0.5 mm in width, while the depths are respectively 0.1, 0.3, 0.5, 1, 1.5,
and 1.8 mm, as described in Figure 6a,b.

To verify the validity of the finite-element analysis, a solenoid-coil model is employed
to compare the induced eddy currents calculated by the finite-element software and the
analytical solution. In this model, the solenoid excitation coil is above a flawless semi-
infinite conductor with the conductivity of σ. The radial distribution of the EC density
on the sample surface excited by the solenoidal-coil model can be derived from the solu-
tion of the filamentary circular excitation coil over a semi-infinite conducting sample by
superposition [33]. The obtained analytic solution is:

J(rx) = −j
reζ

δ2

∞∫
0

J1(αre)J1(αrx) ·
2(e−αL1 − e−αL2)

α+
√

α2 + j(2/δ2)
dα (4)
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where rx is the radial coordinate with the origin at the intersection of the coil’s axis and
the sample surface, re is the coil radius, L1 = 0.2 mm is the lift-off distance between the
coil bottom and the specimen surface, L2 = 0.25 mm is the distance from the coil top to
the sample surface, L2 − L1 = 0.05 is the height of the coil, ζ (A/m) is the surface current
density in the coil, J1(αre) is the Bessel first-order function of the first kind, and δ is the skin
depth defined as:

δ =

√
1

π fµσ
(5)

where f is the excitation frequency, µ is the permeability, and σ is the conductivity of
the specimen. The prediction of Equation (4) can be calculated by performing numerical
integration using the MATLAB software. The distribution of the simulated and calculated
eddy-current densities on the aluminum specimen surface along the x-axis at the 10, 20,
30, and 40 kHz excitation frequencies is presented in Figure 10, where the solid curves are
the eddy-current densities calculated by Equation (4) using the MATLAB software and the
solid circle symbols are the results obtained by the ANSYS software for re = 1.5 mm. It can
be observed that the amplitude of the eddy-current density is generally enhanced when the
higher excitation frequencies are applied. Along the rx direction, the amplitude increases
initially and reaches a peak near the coil radius, then the amplitude decreases to zero as rx
goes to infinity. It can be seen that the results obtained from the analytic solution and the
finite element method are well in agreement, indicating that the simulation based on the
finite-element software is reliable in evaluating the EC distribution in conducting samples.

Figure 9. Simulation model for inspecting cracks with different depths on an aluminum plate. The
excitation coil is placed above the sample surface with the lift-off distance of 0.2 mm.

Figure 10. Amplitude of the eddy-current density along the x-axis on the surface of a flawless
aluminum slab at frequencies of 10, 20, 30, and 40 kHz calculated by the MATLAB software (solid
curves) and the ANSYS software (solid circles). The excitation coil has a radius of 1.5 mm, a height of
0.05 mm, and a lift-off distance of L1 = 0.2 mm. The surface current density of the excitation coil is
ζ = 800 A/m.
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The simulated EC distribution in the unflawed aluminum sample and the flawed
sample with a crack of 1.5 mm depth is shown in Figure 11. The EC density is concentrated
at positions around the radius of the excitation coil and it drops rapidly for locations away
from the radius of the excitation coil. It can be found that the EC density on the flawless
aluminum slab in Figure 11a is higher than the EC density on the aluminum plate with the
crack in Figure 11b because of disturbance caused by the crack defect. This leads to the
variation of the secondary field induced by these ECs with the presence of the crack.

For the novel probe design in the present work, the component of the secondary
magnetic field orthogonal to the sample surface is detected by the GMR sensor; therefore,
only this field component is analyzed in the simulation. To estimate the waveform of
the output signals from the EC probe, the one-dimensional (1D) scanning process was
simulated by moving the rectangular excitation coil through the surface slots over the
aluminum specimen, which is similar to the sample depicted in Figure 6a,b, with a 0.25 mm
step. The amplitude and phase angle of the EC signals detected by the sensing element are
calculated and analyzed. Figure 12 shows the variation of the magnetic field component
Bz for slots with different depths of 0.1, 0.3, 0.5, 1, 1.5, and 1.8 mm. It can be seen that
the prominent peak values of the secondary magnetic field Bz occur near the cracks. The
amplitude and phase angles of Bz are correlated with the depth of cracks. The simulated
results show that the proposed probe is reliable to detect defects in the conducting material.

Figure 11. The eddy-current distribution following the depth of (a) a flawless aluminum sample and
(b) a flawed sample at the excitation frequency of 40 kHz. The crack used in (b) has a 1.5 mm depth
along the y-axis.

Figure 12. The amplitude and phase signals of the vertical component of secondary field when
scanning over cracks with different depths of 0.1, 0.3, 0.5, 1.0, 1.5, and 1.8 mm with the 40 kHz
excitation frequency. The lift-off distance is 0.2 mm.
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5. Experimental Result and Analysis
5.1. Lift-Off Effect of the Proposed Probe

The lift-off distance is an important factor that strongly affects the quality of the
EC images obtained by the GMR-based probes in nondestructive testing. For the GMR
probes with a small excitation coil, the sensitivity to the defects in conductive materials
significantly depends on the change in the lift-off distance between the probe and the
sample. To explore the lift-off effect, the response of the proposed probe for a 1.5 mm
deep crack on the aluminum specimen is collected at different lift-off distances from 0.2 to
1.3 mm with a 0.1 mm step size. The result in Figure 13 shows that the obtained amplitude
is significantly reduced by 84% when the liftoff distance increases from 0.2 to 1.3 mm.
Besides, the peak of the signals is also distorted and the obtained signals are noisier with
the increasing lift-off distance. For the samples with an uneven surface, a proper algorithm
to make a correction to the lift-off effect would be necessary. To avoid the possible error
arising from the lift-off effect in the subsequent experiments, the lift-off distance is set at
0.2 mm so as to avoid the contact between the probe bottom and the sample surface. In
addition, the inclination of the scanning surface with respect to the specimen surface is
minimized by carefully adjusting the level of the sample.

Figure 13. The signal change of the proposed probe on a 1.5 mm deep crack with different lift-off
distances from 0.2 to 1.3 mm at the 45 kHz excitation frequency: (a) amplitude distribution near the
crack, (b) reduction in the peak amplitude with increasing lift-off.

5.2. Frequency Effect for Surface and Subsurface Defect Detection

The design goal of the EC probe in the present work is to identify the characteristics of
the defect such as the geometrical dimensions and position, as well as orientation, depth,
etc. To achieve the best performance of the proposed probe for detecting defects in specific
cases, it is essential to operate the probe at the optimal excitation frequency to maximize
the signal response so that the defect information can be clearly observed to reconstruct the
geometry. The optimal frequency is determined by the experiments in which the in-phase
(Re) and quadrature (Im) output signals are recorded for the cracks buried at different
depths over a range of frequencies to calculate the corresponding amplitude and phase
values. For the multilayer PCB samples, cracks 0.8 mm in width and 15 mm in length are
located respectively on the first and second layers of the two- and three-layer PCBs. The
excitation frequency for flaw detection varies from 15 kHz to 125 kHz with an increment
of 5 kHz. For the aluminum sample, the crack of 0.5 mm width and 1.5 mm depth buried
at h = 0, 0.095, and 0.285 mm is inspected in the frequency range from 5 kHz to 50 kHz in
steps of 5 kHz.

The optimal operation frequency is affected by many factors, including the skin depth,
conductivity, and permeability of the material, as well as the shape and buried depth of the
defects. Figure 14 shows the amplitude and phase of the EC signal at the location of the
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surface and buried cracks in the aluminum samples at different excitation frequencies. It is
observed that when increasing the excitation frequency, the amplitude increases initially
but gradually reduces beyond the optimal frequency, as shown in Figure 14a. The phase
reduces continuously with increasing frequency, as presented in Figure 14b. The results
show that the optimal excitation frequency of the aluminum samples for the cracks buried
at h = 0, 0.095, 0.285 mm is 45, 40, and 30 kHz. The corresponding skin depths are 0.38,
0.41, and 0.47 mm, respectively, for the optimal frequencies of 45, 40, and 30 kHz. The
existence of the optimal excitation frequency and its reduction with the buried depth can be
explained qualitatively by the skin effect [34]. The secondary magnetic field at the sensor’s
position is contributed to by all of the ECs in the test sample following the superposition
principle. Therefore, the magnitude of the secondary magnetic field increases as long as
the ECs are enhanced at the sample surface with an increasing excitation frequency. At the
higher frequencies, the ECs decay strongly with an increasing depth and hence lead to a
reduction in the secondary magnetic field induced by ECs around the buried flaws.

The effect of the excitation frequency on the EC signal for the two- and three-layer PCB
samples is shown in Figure 15, where the optimal excitation frequency is above 125 kHz
for the surface crack on the two-layer PCB, which is higher than the optimal frequency
of the aluminum sample. The higher optimal frequency can be attributed to the much
smaller thickness of the copper layer, which is only 0.05 mm. Namely, the geometric center
of the crack is only 0.025 mm below the sample surface, which is closer to the bottom
of the EC probe in comparison with the geometric center of the simulated flaw on the
aluminum sample. The phase decreases linearly when increasing the excitation frequency
for the surface and subsurface flaws on the two- and three-layer PCB samples, as shown
in Figure 15b. In the subsequent experiments for inspecting the surface defects on the
two-layer PCB samples, the excitation frequency is chosen to be 60 kHz to maximize the
signal-to-noise ratio to ensure that the defect information can be still clearly extracted.
The corresponding skin depth is 0.27 mm, which is larger than the 0.1 mm total thickness
of the copper layers on the two-layer PCB. For testing the crack buried at the depth of
0.18 mm on the three-layer PCB, the optimal excitation frequency is found to be 40 kHz. The
corresponding skin depth at this frequency is 0.33 mm, which is larger than the 0.15 mm
total thickness of copper layers on the three-layer PCB sample.

Figure 14. The amplitude and phase response of the EC signals on a crack with a 0.5 mm width and
1.5 mm depth buried at h = 0, 0.095, and 0.285 mm on the aluminum plate with increasing frequencies.
(a) Peak amplitude and (b) corresponding phase.
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Figure 15. The amplitude and phase response of the EC signals on a crack with a 0.8 mm width and
15 mm length located respectively on the first and second layers of the two- and three-layer PCB
samples with increasing frequencies. (a) Peak amplitude and (b) corresponding phase.

5.3. Detection Limit: Surface and Subsurface Flaws on Aluminum Specimen

To assess the detection capability of the developed probe and investigate the effect
of the size and position of flaws on the test sample, the experimental studies with the 1D-
scan (B-scan) process are performed on the aluminum samples described in Figure 6. The
specimens in Figure 6b–d of the buried depths of h = 0, 0.095, and 0.285 mm are inspected
at the corresponding optimal excitation frequencies of 45, 40, and 30 kHz, respectively.
Figures 16–18 show the relationship between the amplitude and phase of the output signals
for the artificial crack-like flaws #1 to #6 at the buried depths of h = 0, 0.095, and 0.285 mm,
respectively. It is found that the signal morphology variation in the amplitude and phase
correlates strongly to the crack depth of the artificial flaws. The location of the crack
defect is indicated by the peak position of the obtained signals and the crack depth can be
distinguished by the magnitude of the amplitude or phase. All of the surface cracks with
depths of 0.1, 0.3, 0.5, 1.0, 1.5, and 1.8 mm can be clearly detected, as shown in Figure 16.
These crack-like defects are still detectable when they are buried at the depths of 0.095 and
0.285 mm beneath the aluminum tapes, as shown in Figures 17 and 18, respectively.

Figure 16. Inspection of surface cracks (h = 0 mm) at the 45 kHz optimal excitation frequency on an
aluminum specimen: (a) amplitude variation, (b) phase angle variation.
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Figure 17. Inspection of cracks buried at h = 0.095 mm at the 40 kHz optimal excitation frequency on
an aluminum specimen: (a) amplitude variation, (b) phase angle variation.

To investigate the relationship between the EC signals and the crack depths, the peak
values of the amplitude and phase in Figures 16–18 are analyzed for various buried depths,
as shown in Figure 19. It is found that both the changes in amplitude and phase increase
linearly with the crack depth for the surface and buried cracks when the crack depth is less
than 1 mm. For both the amplitude and phase signals, the detection of the surface cracks
exhibits the highest sensitivity and the sensitivity decreases gradually with the increasing
buried depth of 0.095 and 0.285 mm, as shown in Figure 19a,b. The experimental results
are qualitatively in agreement with simulated signals based on the design parameters of
the proposed probe.

Figure 18. Inspection of cracks buried at h = 0.285 mm at the 30 kHz optimal excitation frequency on
an aluminum specimen: (a) amplitude variation, (b) phase angle variation.

The obtained signals are noisier for subsurface cracks with an increasing buried depth.
For the deepest crack buried at h = 0.285 mm, the change in the amplitude and phase
signals of the 0.1 mm deep crack is not obvious as it approaches the signal noise level.
This means that the detection limit in the crack depth is around 0.1 mm at the buried
depth of 0.285 mm. Increasing the excitation amplitude may help to improve the detection
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limit as long as the response of the GMR sensor is still within the linear range under the
enhanced excitation. Table 3 shows the signal-to-noise ratios (SNRs) of the amplitude and
phase signal for inspecting a 1.8 mm deep crack buried at different depths of 0, 0.095, and
0.285 mm. It is found that the SNR of the surface crack detected by the proposed probe
is 37.8 dB for the amplitude signal and 50.9 dB for the phase signal. The SNR gradually
reduces when increasing the buried depth, but the existence of the crack is still observable
at a buried depth of up to 0.285 mm.

Figure 19. Relation of the amplitude and phase signals to crack depth for flaws buried at h = 0, 0.095,
and 0.285 mm on an aluminum specimen. (a) The change in the amplitude signal and (b) the change
in the phase signal.

Table 3. SNR in amplitude and phase for a 1.8 mm deep crack buried at different depths.

STT Buried Depth (mm) Frequency (kHz) Amplitude SNR (dB) Phase SNR (dB)

1 0 45 37.8 50.9
2 0.095 40 35.5 44.2
3 0.285 30 29.8 36.6

5.4. Determination of Crack Orientation

For measuring crack orientation, several EC techniques have been developed to im-
prove the angular accuracy, such as an excitation inducer with two orthogonal wires to
generate a pseudo-rotating magnetic field [35] and a triple-coil eddy-current sensor op-
erated on the thin-skin regime [36]. These methods can measure any crack orientation
without the mechanical rotation of the probe or the test sample. Although crack orientation
may be determined by the two-dimensional (2D) eddy-current images [20,27], the achiev-
able precision of the crack orientation extracted from the eddy-current images depends
mainly on the probe design, as well as on the configuration of the magnetic sensor. To
test the performance for detecting crack orientation with our EC probe, the cracks with
different angles of 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, and 150◦ on the PCB sample in Figure 7
are used to obtain the 2D images, as shown in Figure 20, in which the images are taken
at the excitation frequency of 60 kHz by moving the sample under the fixed EC probe to
perform a surface scan (C-scan). The amplitude and phase images are shown, respectively,
in Figure 20a,b. The orientation of cracks can be extracted from the amplitude and phase
images, as shown in Table 4. It can be seen that the directions of the cracks on the 2D
images approximate those of cracks on the tested sample with angle errors of no more
than 1.6◦ and 2.6◦, respectively, for the amplitude and phase images. The results indicate
that the direction of cracks can be clearly determined with high accuracy and reliability.
Besides, the shape and size of cracks can be determined directly from the phase images, of
which the spatial resolution is about 1 mm. The result suggests that the proposed probe
is useful for measuring the geometrical features of cracks of any orientation. The perfor-
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mance for determining crack orientation of our EC probe is better than the probes based
on the AMR planar gradiometer with the baseline of 4 mm [27] and the absolute GMR
probe [20], in which the reported experimental data reveal that the cracks aligned parallel
to the baseline of the planar gradiometers or the sensing direction of the absolute probes
are not detectable. Even if the test sample is rotated with different angles, the information
is still insufficient for accurately determining the crack orientations that can be clearly
observed by our probe without rotating the test sample or applying any algorithm and
image-processing technique.

Figure 20. 2D images of (a) amplitude and (b) phase at the 60 kHz excitation frequency for cracks of
various orientations on a PCB.

Table 4. Orientation of cracks extracted from 2D images.

Cracks
Number Real Angle (◦) Angle from

Amplitude Image (◦)
Angle from

Phase Image (◦)
Angle Error for

Amplitude Image (◦)
Angle Error for
Phase Image (◦)

A1 0 0.6 0.3 0.6 0.3
A2 30 30.4 29.8 0.4 0.2
A3 45 44.9 44.1 0.1 0.9
A4 60 59.8 58.5 0.2 1.5
A5 90 90.6 90.8 0.6 0.8
A6 120 121.6 122.6 1.6 2.6
A7 135 136 136.8 1.0 1.8
A8 150 150.8 151.1 0.8 1.1

5.5. Spatial Resolution: Flaw Inspection on the Multilayer Printed Circuit Board

To evaluate the spatial resolution of the proposed probe, the 2D EC images of the
multilayer PCB samples with artificial circular defects of the shape described in Figure 8
are analyzed. For detecting the surface flaws of the two-layer PCB sample, the amplitude
and phase images are taken at 60 kHz, as shown in Figure 21. It can be seen that the shape
and size of each of the machined flaws are clearly identified in both the amplitude and
phase images. The geometric characteristics of the flaw, including an inside circular hole, a
ring-shaped flaw, and the metallic ring between them are mostly discernible in Figure 21.
The metal losses are indicated by the deep grey color, which corresponds to the lower
amplitude or phase. Although the geometric features of all flaws are detected, the change
in the signal intensity over the inside circles of the flaws F1 and F2 is not as clear as the
flaws F3 and F4. Further reduction in the diameter of the excitation coil may improve
the performance for detecting such small and complex-shaped defects. For detecting the
surface flaws on the two-layer PCB, the proposed probe has achieved an SNR up to 30.1 dB
in the amplitude image and 67.1 dB in the phase image. The performance of the developed
probe for taking the 2D EC images of the circular flaws buried at the depth of 0.18 mm on
the three-layer PCB is shown in Figure 22, where the excitation frequency is 40 kHz. It can
be seen that the quality of the amplitude and phase images is noticeably blurred, while
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the flaw profile can still be observed in the amplitude image with a signal-to-noise ratio
of 26.9 dB. The geometrical features of flaws F3 and F4 are clearly detected, but the inside
circles of flaws F1 and F2 are not distinguished from the metallic ring around them. This
means that the spatial resolution limit of the probe for detecting the metallic ring is not
better than 1 mm when they are buried at the depth of 0.18 mm in the three-layer PCB.

Figure 21. 2D images of (a) amplitude and (b) phase at the 60 kHz excitation frequency for the surface
flaws on the two-layer PCB.

Figure 22. 2D images of (a) amplitude and (b) phase at the 40 kHz excitation frequency for the flaws
buried at the second layer of the three-layer PCB sample.

The performance of the proposed GMR EC probe is also compared with the coil-based
half-bridge probe consisting of two ferrite-core coils with 1.5 mm diameters. In the coil
probe, the two coils (a sensing coil and a reference coil) are in parallel with two resistors to
form a full bridge, as shown in Figure 23. The two resistors are the two branches of a 20 kΩ
variable resistor, which can balance the bridge by minimizing the background output of
the bridge. With the coil probe, the obtained amplitude and phase images at 60 kHz for
detecting the surface defects on the two-layer PCB are shown in Figure 24. Contrary to the
images taken by the GMR EC probe in Figure 21, it is found that the features of the defect
are better observed in the amplitude image in comparison with the phase image. Although
the coil-based probe has high SNRs of 48.6 and 60.8 dB, respectively, for the amplitude
and phase images, the metal ring between the inside circular hole and the ring-shaped
defect in flaws F1, F2, F3, and F4 cannot be distinguished and the shapes of minor defects
are not discernable in either the amplitude and phase images. From Figures 21 and 24, it
can be seen that the spatial resolution of the EC image of the surface flaws obtained by the
coil-based probe at 60 kHz is poorer than the developed GMR EC probe with an even larger
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excitation coil. The surface flaws are not visible even with the coil-based probe operated
at 45 kHz or lower, which means that the frequency above 45 kHz is already high, which
results in a significant attenuation in the eddy-current signal from the subsurface flaws. As
the sensitivity of the coil-based probe is insufficient below 60 kHz, the only way to improve
the detectivity and spatial resolution is to further reduce the coil diameter and operate
the coil-based probe at an even higher frequency, but this would make it more difficult to
detect the subsurface flaw.

Figure 23. The coil-based probe: (a) the photograph and (b) circuit diagram of the coil probe.

Figure 24. 2D images of (a) amplitude and (b) phase at the 60 kHz excitation frequency of the
coil-based probe for detecting the surface flaws on the two-layer PCB.

To compare the proposed probe and the coil-based probe in terms of spatial resolution,
signal sensitivity, and the trade-off between spatial resolution and signal sensitivity, several
other experiments were conducted. For determining the spatial resolution, a new sample
of the two-layer PCB with the 23 artificial cracks is used, in which the distance between
the cracks is gradually increased from 0.4 mm to 6.7 mm with an arithmetic progression of
0.3 mm. The experimental data are shown in Figure 25. In this way, the spatial resolution is
determined by the minimum distance between the adjacent cracks that are observable by
the EC probe. The maximum amplitude occurs for the cracks with the maximum spacing,
which is used to calculate the signal-to-noise ratio to compare the sensitivity of the GMR
and coil-based probes to the crack-like flaw. When boosting the spatial resolution by
reducing the size of the sensor or excitation coil, the sensitivity of the probe will decrease
because of the increased noise level. Therefore, the spatial resolution and sensitivity cannot
be maximized at the same time. To quantify this situation, the S/E size ratios, which are
defined as the ratio between the sizes of the sensor and excitation coil, are calculated and
found to be 0.13 and 1, respectively, for the GMR and coil-based probes, as shown in Table 5.
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These ratios can be taken as the indicator of the trade-off between spatial resolution and
signal sensitivity. According to the observed result, it can be seen that the proposed probe
has achieved a high spatial resolution of 0.4 mm with a smaller S/E ratio. The high spatial
resolution is achieved without losing too much SNR, which is indicated by the lower S/E
ratio of the GMR probe.

Table 5. The comparison between the proposed probe and the coil-based probe.

Probe Spatial Resolution (mm) SNR (dB) S/E Size Ratio

Proposed probe 0.4 29.7 0.13
Coil-based probe 1.0 39.5 1.0

Figure 25. Determining the spatial resolution of the probe. (a) The photograph of the sample with the
23 artificial cracks with the increasing distance between cracks of a 0.3 mm arithmetic progression,
(b) the 1D scanning result of the proposed probe, and (c) the 1D scanning result of the coil-based probe.

6. Conclusions

We have proposed a novel design for a miniature half-bridge GMR gradiometer EC
probe capable of locating the positions of flaws and estimating their geometrical features
on a tested sample with high spatial resolution and sensitivity. It is able to detect small
and complex-shaped defects on the surface and subsurface of highly conductive samples.
The experimental results show that the proposed probe can detect the small crack with a
0.1 mm minimum depth buried at 0.285 mm deep beneath the surface of an aluminum
sample. The proposed probe can determine the orientation of the cracks along any in-plane
direction without rotating the test specimen or applying a reverse calculation algorithm
and further image processes. From the 2D EC images taken by the axial gradiometer, one
can identify the concentric circular flaw with a 0.75 mm feature size on the surface of a
two-layer PCB sample. The achieved high spatial resolution and sensitivity of the proposed
probe provides better performance in comparison with the coil-based probe, having a
smaller diameter of 1.5 mm. The miniature GMR-based gradiometer is especially useful for
detecting minor surface and subsurface defects, including mechanical cracks, corrosion,
and short circuits, in the multilayer printed circuit boards.
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