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Telomeres at the termini of human chromosomes are shortened with each round of

cell division due to the “end replication problem” as well as oxidative stress. During

carcinogenesis, cells acquire or retain mechanisms to maintain telomeres to avoid

initiation of cellular senescence or apoptosis and halting cell division by critically short

telomeres. The unique reverse transcriptase enzyme complex, telomerase, catalyzes

the maintenance of telomeres but most human somatic cells do not have sufficient

telomerase activity to prevent telomere shortening. Tissues with high and prolonged

replicative potential demonstrate adequate cellular telomerase activity to prevent

telomere erosion, and high telomerase activity appears to be a critical feature of most

(80–90%) epithelial cancers, including endometrial cancer. Endometrial cancers regress

in response to progesterone which is frequently used to treat advanced endometrial

cancer. Endometrial telomerase is inhibited by progestogens and deciphering telomere

and telomerase biology in endometrial cancer is therefore important, as targeting

telomerase (a downstream target of progestogens) in endometrial cancer may provide

novel and more effective therapeutic avenues. This review aims to examine the

available evidence for the role and importance of telomere and telomerase biology in

endometrial cancer.
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INTRODUCTION

Telomeres are specialized structures that are found at the ends of linear chromosomes,
containing a tandemly repeated specific DNA sequence and associated protective proteins. The
protective function of telomeres in preventing the loss of genomic DNA in proliferating cells
is well-established (1–3). As telomeres shorten with each cell division, critically short telomeres
initiate cellular senescence or an apoptotic pathway, leading to cessation of cell division, therefore
telomere shortening is a major tumor suppressor mechanism (4, 5). In addition, oxidative
stress is an important additional cause for telomere shortening (6, 7). Telomerase is a unique
reverse transcriptase enzyme (8) that is able to add repetitive telomeric sequences de novo onto
telomeric ends (9) that are continually lost during DNA replication due to oxidative stress and the
“end replication problem” in mitotic cells. Thus, telomerase prevents shortening and maintains
telomeres. However, most human somatic cells do not have significant levels of telomerase activity
whereas cells, such as embryonic stem cells and most cancer cells exhibit high telomerase activity
while adult tissue stem cells are potentially able to up-regulate telomerase upon activation (10–12).
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Human endometrium is a unique somatic organ that contains
a relatively high yet dynamic pattern of telomerase activity
that changes according to the menstrual cycle, correlating with
endometrial cellular proliferation (13, 14). Further evidence from
benign endometrium also suggests that telomerase activity is a
fundamental requirement for endometrial cell proliferation and
survival (15). The involvement of telomerase in most cancer-
related cellular abnormalities in cell fate regulatory pathways
prompted many studies into telomerase and telomeres in a
variety of cancers including endometrial cancer (16–18).

Endometrial cancer is the fourth common cancer in women
in the UK and is the commonest gynecological cancer (CRUK).
Increasing obesity and longevity have both caused the incidence
of EC to increase at an alarming rate. For example, in the
United Kingdom, the incidence of EC increased by more than
40% since 1993. European estimates predict a 100% increase in
the incidence by 2025 not only in older post-menopausal women
but also in younger women (19). Figures from the UK report that
mortality associated with EC has risen by 21% over the last decade
in an era of improving survival rates for most other cancers,
highlighting the inequality and lack of translation of advances in
cancer research to EC (CRUK) (20). The survival rates for high-
grade EC are exceptionally poor, similar to ovarian cancer; and
the traditional surgical treatment is associated with significant
morbidity and mortality for many women even when presented
with early disease due to frequently occurring co-morbidities
and obesity (21). Urgent novel therapeutic options are therefore
needed to prevent, treat as well as to avoid progression of EC.

Although EC is an important disease with a significant
clinical and economic consequence, the molecular biology of
endometrial carcinogenesis is not well-described or understood
when compared with other female-specific malignancies, such
as breast or ovarian cancer. Human endometrium is a unique
organ with a massive regenerative potential (22) and is the main
target organ for ovarian steroid hormone action (23). While
being a hormonally responsive tissue, endometrium responds
rather differently to the same steroid hormones than other
hormone responsive organs, such as breast tissue (23, 24). This
has made it difficult to translate the pioneering discoveries made
in other cancers to EC management and therapy. Unlike most
other somatic tissue, benign endometrial tissue demonstrate
high telomerase activity, and telomerase has a pivotal functional
role in healthy endometrial cell proliferation (14, 15). High
telomerase activity is observed in most epithelial cancers, and
the carcinogenesis process in those tissues involved ectopic
expression of telomerase components and genetic alterations,
such as activation mutations in promotors of the vital genes.
In the endometrium however, the high telomerase activity is
a feature even without being associated with driver mutations.
It is therefore intriguing to explore the distinctive endometrial
telomerase biology relevant to EC and we hypothesize EC to
have a unique telomerase biology that is different to the other
cancers. Furthermore, EC is a hormone driven disease and
advanced and recurrent ECs are treated with progesterone which
regress these tumors albeit without extending survival (24).
It is therefore of particular interest to examine telomerase as
a downstream progesterone target in the endometrium (15)

which can be manipulated for therapeutic utility in progesterone
resistant ECs. This review therefore focuses on the significance
and role of telomerase and telomere biology in EC, highlighting
recent findings proposing some aspects of telomerase biology as
potential therapeutic targets for EC (25).

METHOD

We performed systematic PubMed (Medline) and Ovid searches
using a combination of relevant controlled vocabulary terms
and free-text terms related to telomeres and telomerase. The
key words used included: telomerase, telomeres, telomere
length, telomerase reverse transcriptase (TERT), telomeric RNA
component (TERC), shelterin proteins, telomerase associated
proteins, with endometrium, endometriosis, endometrial
hyperplasia, endometrial cancer (EC), endometrial carcinomas,
uterine cancer, cancers. All studies investigating telomerase
or telomere biology in endometrium in women or animals or
respective cell lines, either primary cells or tissue explants in
culture, and published from database inception until December
2018, were included in this review.

TELOMERES

Structure
Human telomeres consist of a repetitive TTAGGG
hexanucleotide sequence bound by six-proteins forming
the shelterin complex [(26) Figure 1]. In normal somatic cells
the average length of telomeres is around 5–15 kilobases and
they shorten in vitro by 30–200 base pairs (bp) during every
cell division depending on the cell type and environmental
conditions (34). Under increased oxidative stress telomere
shortening rate per cell division can increase substantially, up-to
500 bp (6).

Most of the non-coding telomeric DNA is double-stranded
whilst the terminal nucleotides (nt) form the single stranded 3′ G-
rich overhang, which serves as the primer for telomerase action
(35) and also protect telomeres from being recognized as DNA
damage. This forms a D-loop (Displacement loop) facilitating
repetitive DNA sequences to be added by telomerase (36).

Another mechanism to protect telomeres from being
recognized as DNA damage is the formation a t-loop, which is
a specific higher order conformation. This large duplex loop-
back structure is formed via invasion of the single-stranded
telomeric 3′ overhang into the double stranded telomeric repeat
array (37). The authors suggested that the t-loops are the
basic mechanism by which the telomeric nucleoprotein complex
sequesters chromosome ends from the DNA damage pathway,
preventing inappropriate DNA repair and telomerase action (37).

The shelterin complex (Figure 1) includes telomeric repeat
binding factor 1 and 2 (TRF1 and TRF2), which are homodimeric
proteins that bind specifically to double-strand telomeric DNA
(27, 37). In contrast, Protection of telomeres 1(POT1) binds
to the single-stranded region of the telomere (28) and forms
a heterodimer with TPP1 (38). The Repressor/activator protein
1 (RAP1) is recruited through its relation with TRF2 (31)
and TRF1-interacting protein 2 (TIN2) is the central part of
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FIGURE 1 | Schematic illustration of the telomere and main telomerase complex components. The human telomere and telomerase enzyme complex (only one half of

the dimeric holoenzyme complex is shown for clarity), adapted from Hapangama et al. (14). From all sheltrin proteins only telomere repeat binding factors 1 (TRF1) and

2 (TRF2) (27) bind directly to the double-stranded telomeric sequence, and protection of telomeres protein-1 (POT1) (28) binds to the single-stranded overhang; hence

these are termed as telomere binding proteins and they interact with remaining shelterin proteins TIN2 (binds to TRF1 and TRF2) (29, 30), RAP1 (binds to TRF2) (31)

and TPP1 (binds to POT1) (32). The TERC H/ACA region located at the 3′ end binds to dyskerin and the other telomerase associated proteins: NOP10, NHP2, and

GAR1 (14). The hTERC at the 3′ end binds also to telomerase Cajal body protein 1 (TCAB1) (33).

the shelterin complex (29) and it interacts with TRF1, TRF2
(30), and POT1/TPP1 (32) to assure structural integrity of the
complex. Removal of individual shelterin proteins has been
shown to stimulate a DNA damage response (DDR) pathway:
TRF1 prevents the stimulation of both ataxia-telangiectasia
mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR)
pathways (39); TRF2 and RAP1 inhibit the activation of the ATM
pathway (40, 41) and homology-directed recombination (HDR)
(42) while TPP1 bound POT1 (POT1a/b in mouse) inhibit
the ATR pathway (43). TRF2 plays a vital role in facilitating
this t-loop formation (44). Super-resolution fluorescence light
microscopy visualization of the t-loop has shown that the strand
invasion point can be located at almost any point along the
duplex DNA, resulting in highly variable t-loops sizes (45).

Functions of Telomeres
The main function of telomeres is to protect chromosomal
ends from degradation and end-to end-fusion (1) as well as to
prevent the ends of chromosomes being recognized as DNA
damage by the DNA damage response machinery of the cell
(37). However, when telomeres are critically short, they activate
the apoptosis/senescence pathways, thereby preventing genetic
material being lost by inhibiting inappropriate continuous DNA
replication in the context of short telomeres. The telomere
structure described above, prevents inappropriate DNA repair at
these sites, for example the loop conformation (D-loop) masks

the single stranded terminal DNA and enables its protection from
the DNA damage response pathway (37).

The shelterin complex supports the chromosome protective
function of telomeres and stabilization of telomere lengths, and
the complex interaction of shelterin proteins at the chromosomal
ends have a key role in telomere maintenance via a negative
feedback loop which also has an inhibitory effect on the
telomerase enzyme (46).

In cells which have replicative capability, telomere shortening
can lead to chromosomal instability by promoting end-to-end
fusions leading to multiple chromosomal aberrations, such as
breakages, fusions, and translocations rendering the genome
aneuploid and therefore promoting carcinogenesis. To maintain
telomere length, the homeostasis mechanism that involves
telomerase, uses both TRF1 and TRF2 as negative regulators
that stabilize and limit telomere length elongation (47, 48).
Overexpression of both TRF1 and TRF2 was reported to cause
telomere shortening (47) and this could be due to the binding of
TRF1 and TRF2 along the length of the double stranded telomeric
repeat array which measures telomere length as demonstrated in
yeast (47, 48). POT1 can either facilitate or inhibit telomerase
accessing telomeres depending on its position relative to theDNA
3′-end (49). Examining the high-resolution crystal structure of
the human POT1-TTAGGGTTAG complex suggested that it
would not be elongated by telomerase. When POT1 is bound at
one telomeric repeat before the 3′-end, leaving an 8-nucleotide
3′-tail, the resulting complex is elongated with increased activity
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and processivity (50). Replication protein A (RPA) is another
ssDNA binding protein which has an important role in telomere
replication by facilitating telomerase enzyme at the telomeres
(51, 52). It also recruits the ATR-ATRIP protein kinase complex
to DNA damage sites and initiates the checkpoint signaling
(53, 54). Collectively, the available evidence demonstrates that
shelterin and other telomere-binding proteins are involved in the
regulation of telomere length.

Gene regulation is another reported function of telomeres
but with limited evidence available for it. Telomeric attrition
extensively alters expression of some genes, and the difference
in expression of genes proximal to telomeres may result from
chromatin modifications, a conserved phenomenon termed as
telomere position effect (TPE). TPE is a silencing mechanism
spreading from the telomeres toward subtelomeric regions
(55). In humans, only a limited number of endogenous
genes (e.g., ISG15) has been mentioned to be affected by
TPE (56, 57), however, microarray data suggests that the
expression of many other genes close to telomeres to be
also altered with the aid of a telomere length-dependent and
DNA damage-independent mechanism, and this is known as
telomere position effect–over long distance (TPE-OLD) (58). For
example, the looping of chromosomes brought long telomeres
closer to some genes which are over 10Mb away from
the telomere, but these same loci were completely separated
from the telomeres when the telomeres were short (58).
Further microarray data supports the notion that telomere
length-dependent chromosome conformation can affect the
transcription of non-subtelomeric genes (58). At the genome-
wide level, the effect of this mechanism on gene expression
has been proposed to occur earlier than replicative senescence
and that could potentially explain the increased incidence of
age-related pathologies that are associated with old age without
necessarily imposing a DNAdamage signal from a critically-short
telomere (59, 60).

Telomere length is the main determinant of a cell’s replicative
life span. Dysfunctional telomeres which result from either
progressive telomere shortening, internal DNA damage (61) or
shelterin complex loss, provoke a strong DNA damage response
and genomic instability (62). A plethora of experimental data has
shown that tumorigenesis can be caused by genome instability
resulting from telomere shortening (4, 63). Nevertheless, in
late generation telomerase knock-out mouse models, telomere
attrition was also a tumor suppressor mechanism through the
induction of replicative senescence or apoptosis that repress
tumorigenesis. Telomere shortening and telomere uncapping
in metazoans stimulate ATM/ATR kinases to phosphorylate
downstream kinases CHK1 and CHK2, which initiate p53-
dependent replicative senescence and apoptosis pathways which
inhibit tumor formation (4).

TERRAs (Telomeric Repeat Containing
RNAs)
Telomeres were initially thought to be transcriptionally silent, but
recently they have been found to be transcribed into telomeric
repeat containing, long non-coding RNAs, termed TERRAs

(64). TERRAs have a role on telomere regulation and also
regulate telomeric access of telomerase as described below in
more detail.

REGULATION OF TELOMERE LENGTH
AND TELOMERE MAINTENANCE
MECHANISMS (FIGURE 2)

The most widely known classical telomere maintenance
mechanism is dependent on telomerase reverse transcriptase
activity. However, another telomerase-independent telomere
maintaining pathway has been described in cells that do not have
measurable telomerase activity, termed alternative lengthening
of telomeres (ALT) pathway (69). TERRAs also have a role in
telomere length regulation by mainly managing telomeric access
of telomerase.

Telomerase
Structure of Telomerase (Figure 1)
Telomerase, the only RNA dependent DNA polymerase in
mammals, was first discovered in protozoans in 1985 (70), and
subsequent studies demonstrated mammalian/human species
in 1989 (71). The telomerase holoenzyme contains three core
components: the RNA component harboring the template region
for telomere synthesis (hTR or hTERC), a catalytic protein with
reverse transcriptase activity, hTERT (72) as well as dyskerin
(Figure 1). However, only the RNA component (TERC) and the
catalytic subunit (TERT) are necessary and sufficient for in vitro
telomerase activity (73). Table 1 lists some of the well-known
telomerase associated proteins.

Telomerase RNA component (hTERC or hTR)
The human telomerase RNA (TERC or hTR) consists of 451 nt
and is an essential constituent of the telomerase catalytic core
complex. Although the length is variable among eukaryotes, the
structure of TERC remains conserved. For example, the length
ranges from ∼150 nt in ciliates, 400–600 nt in vertebrates to
∼1,300 nt in yeast (114). Additionally, in ciliates, polymerase
III transcribes the telomerase RNA (115), whereas it is RNA
polymerase II in yeast and vertebrates (116).

Vertebrate TERC’s secondary structure has four conserved
elements: a pseudoknot domain (CR2/CR3), a CR4/CR5
(conserved region 4 and conserved region 5) domain, box
H/ACA (CR6/CR8) domain and a CR7 domain (114, 117). The
proximal template/pseudoknot domain and the distal CR4/5
domain represent the essential regions of TERC for telomerase
activity (118).

As mentioned before, an active telomerase enzyme can
be generated by combining the two RNA domains from the
TERC subunit with the TERT protein on oligodeoxynucleotide
substrates in vitro (73, 119–121). The human/vertebrate TERC
has a third, conserved component, the H/ACA domain located
at the 3′ end that has homologies to small nucleolar (sno)
and small Cajal body-specific (sca) RNAs. The TERC H/ACA
region binds to telomerase associated proteins, such as dyskerin,
NOP10, NHP2, and GAR1 (14), and this region is essential
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FIGURE 2 | Telomere maintenance mechanisms. Cells can maintain their telomeres via either telomerase-dependent pathway or a telomerase-independent ALT

pathway. Activated Wnt signaling pathway can maintain telomere length by activating both these maintenance mechanism and by maintaining the level of TRF2 and

POT1 sheltrin components that are essential for telomere protection (65). ATM and ATR also have stimulatory effect on telomerase enzyme via triggering its

recruitment and enhancing the assembly of this enzyme (66). TERRA binds independently to hTERC and hTERT telomerase subunits with an inhibitory effect on

human telomerase enzyme (67) or it acts as a recruiter of telomerase enzyme rather than an inhibitor (68).

for telomerase biogenesis, and are important for RNA stability.
Additionally, in the 3′ stem-loop of the H/ACA, there is another
domain, the Cajal body localization box (CAB), for binding
the telomerase Cajal body protein 1 (TCAB1) (33). Mutations
in the H/ACA region decrease TERC accumulation, whereas
mutations in the CAB cause TERC to accumulate in nucleoli
instead of Cajal bodies (122, 123). Although this mutant TERC
has the capacity of forming catalytically active telomerase in vivo,
it is highly impaired in telomere elongation because of the
decreased association of telomerase with telomeres (124). This
result emphasizes that sub-nuclear localization of telomerase
as an important regulatory mechanism for the homeostasis of
telomere length in human cells (124). TERC therefore, not
only provides the template, which identifies the telomere repeat
sequence, but it also comprises motifs, which are crucial to
reconstitute telomerase activity (125). Furthermore, it plays a role
in stability, maturation, accumulation, and functional assembly
of the telomerase holo-enzyme.

hTERT
TERT is the catalytic component of the telomerase enzyme
and as described above, together with TERC, it is essential for
telomerase activity and thus for the maintenance of telomere
length, chromosomal stability, and cellular immortality. The
human TERT gene (hTERT) is located at chromosome 5p15,
and encompasses more than 37 kb and contains 16 exons
(126). The TERT protein consists of four conserved structural
domains, the telomerase essential N-terminal (TEN) domain,
the telomerase RNA binding domain (TRBD), the central
catalytic reverse transcription (RT) domain, and the C-terminal
extension (CTE). Mutations in the RT conserved residues
prevent telomerase enzymatic activity in vitro (127). These

mutated TERT proteins fail to maintain telomere lengths in
vivo (128), and many of these mutations have been identified in
individuals with telomere-mediated disorders or telomeropathies
(129). As already stated above, telomerase activity can be
reconstituted by hTERC and hTERT co-expression in yeast and
mammalian extracts (73, 130). Telomerase activity is established
in Saccharomyces cerevisiae via reconstitution of telomerase by
hTERC and hTERT co-expression (130). Therefore, hTERC and
hTERT are the minimal requirement for telomerase activity
(72). However, biochemical telomerase activity as measured by
the telomere repeat amplification protocol (TRAP) assay does
not always mean that the enzyme has necessarily telomere
elongation capacity in vivo. This was demonstrated when the
hTERT protein was modified by attaching a hemagglutinin
(HA) epitope tag to the C terminus: while the catalytic
activity of telomerase enzyme remained unaffected telomere
maintenance function was lost in vivo due to loss of access
to the telomere (131). Telomerase associated proteins are also
essential for the full biological function of the enzyme but
hTERT is the primary determinant of enzyme activity in most
cells (120, 132).

Dyskerin
Dyskerin is a highly conserved, nucleolar, 514-amino-acid long
protein, also known as NAP57 in rat (133) or Cbf5 in yeast
(134) and has been proposed to be the third core component
of the telomerase holoenzyme. Dyskerin is an essential member
of the telomerase complex (but not required for biochemical
telomerase activity as stated above); it binds to the telomerase
RNA component (TERC) and participates in stabilizing the
telomerase enzymatic complex (135). It is a pseudouridine
synthase, encoded by the DKC1 locus at Xq28 (136), which is
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TABLE 1 | Telomerase associated proteins [adapted from Hapangama et al. (14)].

Protein Function in Cancer

hTERT ASSOCIATED PROTEINS

Hsp 90, P23 Hsp90 is an essential modulator for the proper folding and stabilization of several client proteins and it is a major contributor to

carcinogenesis. Hsp90 and P23 act together to regulate telomerase DNA binding. Since heat shock protein 90 (Hsp90) client

proteins have major cancer biological hallmarks, targeting Hsp90 provides the prospect for simultaneous disturbance of multiple

oncogenic pathways. In triple-negative breast cancer, inhibition of Hsp90 has shown to be a promising therapeutic avenue

(74–76)

Protein 14-3-3 These proteins are involved in regulating multiple cellular functions via their interaction with phosphorylated partners. An elevated

level of 14-3-3 proteins facilitates tumor progression in a variety of malignancies. The observations of Seimiya et al. identified the

14-3-3 signaling proteins as human TERT (hTERT)-binding partners and suggested that 14-3-3 improves nuclear localization of

TERT. A dominant-negative 14-3-3 redistributed hTERT into the cytoplasm, which was normally localized in the nucleus (77)

DHX36 (DEAH-Box Helicase

36)

It mediates AU-rich element mRNA degradation and as a resolvase for G-quadruplex DNA in vitro (78, 79). It involves in TERT

stabilization and Correction of the positioning of the template domain of hTERT (80), it also Regulates p53 Pre-mRNA 3′-End

Processing Following UV-Induced DNA Damage (81) and Prevents migration of colon cancer cells (82)

Pontin and reptin Pontin and Reptin are conserved proteins belong to AAA + ATPases family, they have a role in various cellular processes that are

critical for oncogenesis, such as transcriptional regulation, chromatin remodeling, DNA damage signaling and repair, assembly of

macromolecular complexes, regulation of cell cycle/mitotic progression, and cellular motility, all of which contribute to their

central roles in activating cell proliferation and survival (83–85). They also act together in telomerase assembly. Pontin and/or

Reptin implicated in cancers of the esophagus, stomach, colon, and pancreas (86–90)

Their exact functions are still entirely unclear as they interact with many molecular complexes with vastly various downstream

effectors, with overexpression relating to factors, such as response to treatment, prognosis and outcome, reviewed in (91)

Pontin and reptin have a well-established role in hepatocellular carcinoma (HCC), both were overexpressed in HCC tissues and

associated with poor outcome (92, 93)

Pontin and/or Reptin expression in both non-small cell lung cancer (NLSCLC) and small cell lung cancer (SCLC) with potential

use as biomarkers in lung cancer (94–98). Pontin identified in screens of biomarker/autoantigen panels in breast cancer (99, 100)

and both proteins are essential in cancers of white blood cells, resulting in lymphomas and leukemia (101)

hTERC ASSOCIATED PROTEINS

Dyskerin Dyskerin is one of H/ACA ribonucleoproteins (RNPs) which also include (NOP10, NHP2, and GAR1) (102), it is suggested in

rRNA modification and processing, impaired dyskerin function in X-DC patients and DKC1 hypomorphic mutant model causes a

decrease in the protein production which results in a reduction in tumor suppressor proteins (P53 and P27) reviewed in

Montanaro (103). Dyskerin binds to the telomerase RNA component (TERC); thus dyskerin allows TERC stabilization and

enhances telomerase activity. As a consequence, impaired dyskerin reviewed in Montanaro (103) Dyskerin protects from genetic

instability. Loss and gain of dyskerin function may play critical roles in tumorigenesis (104)

NOP10 NOP10 as an H/ACA RNP contributes to telomerase enzyme assembly and stabilization, post-transcriptional processing of

nascent ribosomal RNA and pre-mRNA splicing. Therefore, it is essential for ribosome biogenesis, pre-mRNA splicing, and

telomere maintenance (105, 106)

NOP10 mRNA level was reported to be decreased in patients with chronic lymphocytic leukemia (CLL) relative to controls (105)

NHP2 NHP2 has the same function as other H/ACA RNPs, increased NHP2 protein in gastric and colorectal cancer relative to healthy

controls (107)

Significant upregulation of the NHP2 protein encoding gene in colonic cancer, specifically those with high clinical stage (108)

GAR1 GAR1 is one of the four H/ACA RNPs. It also involved in telomerase assembly and stabilization, post-transcriptional processing

of nascent ribosomal RNA and pre-mRNA splicing. All these RNPs are concentrated in nucleoli and Cajal bodies of mammalian

cells, reflecting the location of H/ACA RNPs. GAR1 binds only to Dyskerin and it is crucial for the nucleolar localization and

function of the RNP complex. In CLL patients, a significant decrease of GAR1 mRNA level in patients with CLL compared to

controls (105)

TEP1 (telomerase protein

component 1)

TEP1 is overexpressed in tumor cells compared to normal cells and it contributes to carcinogenesis and progression of renal cell

carcinoma, bladder and prostate cancer (109). Additionally, Findings of Kohno study suggest TEP1 plays a role as a tumor

suppressor gene in the genesis and progression of human lung cancer (110)

TCAB1 (telomerase and

Cajal body protein 1,

encoded by WRAP53)

TCAB1 is a subunit of active telomerase and is essential for the telomerase holoenzyme to be accumulated in Cajal bodies and

to elongate telomeres (111), so it is involved in Cajal body maintenance, telomere maintenance and ribonucleoprotein

biogenesis. Overexpression of TCAB1 seen in head and neck carcinoma clinical specimens as well as in carcinoma cell lines

while depletion of TCAB1 decreased cellular proliferation and invasion potential both in vitro and in vivo (112)

A1/UP1 Findings of Nagata et al. suggested that UP1, a proteolytic product of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1),

can unfold the quadruplex structure of telomeric DNA into a single-stranded structure. Therefore, UP1 may enhance the

telomerase activity via unfolding of the quadruplex structure of telomeric DNA and resultant provision of the accessible overhang.

The authors assumed that both unfolding and recruitment by hnRNP A1/UP1 contribute to improve telomerase activity and

maintain proper telomere length. Thus, hnRNP A1/UP1 may be promising targets to control telomerase activity which is

associated with several cancers (113)

Hsp90, heat shock protein 90; CLL, chronic lymphocytic leukemia.
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responsible for the conversion of uridine to pseudouridine in
non-coding RNAs, a vital step in rRNA and ultimately ribosomal
synthesis (103).

Complete dyskerin depletion is lethal in mice, Drosophila
(they do not have telomerase activity therefore a non-telomerase
related function) and yeast (137–139). In humans, germline
mutation in the DKC1 gene is the causative factor for X-linked
dyskeratosis congenita (140).

Functions of Telomerase
Telomerase is a specialized reverse transcriptase, which
maintains and elongates telomeres at the 3′-single strand in
the absence of a DNA template while using the inherent RNA
(TERC) for the template function and is thus a RNA dependent
DNA polymerase. In the subsequent S-phase of the cell cycle,
the conventional DNA replication machinery can then replicate
the complementary C-rich strand. Thus, telomerase ascertains
chromosomal stability and cellular proliferation in proliferative
somatic cells, tissue progenitor cells and in cancer cells (141).
When telomeres shorten beyond a critical threshold length,
normal healthy cells in humans which are devoid of telomerase
activity, will assimilate a cellular senescence phenotype with
an irreversible growth arrest and the classical morphological
alterations (142). Somatic human cells lacking measurable
telomerase yet expressing certain viral oncoproteins can
overcome the senescence checkpoint and continue to proliferate,
but they then accumulate chromosomal instability including
aneuploidy, polyploidy and chromosomal fusions. On these
grounds, high telomerase activity has been assigned a role in
maintaining genome stability by preventing telomere shortening.
Telomerase fulfills this important role via interaction with many
key cellular pathways as detailed below.

ATM/ATR pathway
Ataxia-Telangiectasia Mutated (ATM) and ATM and Rad3
related (ATR) DNA damage response kinases have essential
roles in telomerase-mediated telomere maintenance (66). The
conserved ATM and ATR family of serine-threonine kinase
proteins mediates DNA damage and replication stress checkpoint
responses (143, 144), therefore, play a crucial role in DNA repair,
cell apoptosis, and cell senescence, and are closely associated
with the development and progression of cancer in humans
(145, 146). ATM is required for the addition of new repeats
onto telomeres by telomerase (147) and evaluation of bulk
telomeres in both immortalized human and mouse cells showed
that ATM inhibition suppressed elongation of telomeres while
ATM stimulation through PARP1 led to an increase in telomere
length (147).

Stalled replication forks increased telomerase localization to
telomeres in an ATR-dependent manner (66). Additionally,
increased telomerase recruitment was observed upon
phosphorylation of the shelterin component TRF1 at an
ATM/ATR target site (S367) (66) and this led to TRF1 loss
from telomeres and may therefore increase replication fork
stalling (148). ATM and ATR depletion reduced assembly of
the telomerase complex, and ATM was required for telomere
elongation in cells expressing POT11OB, an allele of POT1

that causes disruption in telomere length homeostasis (66).
Hence from this data it can be concluded that ATM and ATR are
involved in triggering telomerase recruitment and facilitating its
assembly (66).

WNT pathway
Wnt family proteins are essential for regulating cell proliferation,
cell polarity, and cell fate determination during embryonic
development and tissue homeostasis (149). A dysregulated
Wnt/β-catenin signaling pathway is also associated with human
tumourigenesis (149). Due to the intricate relationship of
telomeres and telomerase with similar cellular functions, their
close interaction is not a surprise. An activated Wnt signaling
pathway can reinforce the stability of telomeres by coupling
and enhancing the two main telomere maintenance pathways:
telomerase-dependent and ALT pathways. A Wnt-mediated
telomere protective effect is particularly expected to have an
important role during development, in adult stem cell function
and oncogenesis (65).

The Wnt pathway may regulate telomere maintenance via its
effect on several essential shelterin components, including TRF2
and POT1. Recently, in human somatic and cancer cells as well as
in mouse intestinal tissue, activation of canonical Wnt/β-catenin
pathway activated TRF2 and also increased telomere protection
were demonstrated (65). In mice lacking telomerase, apoptosis
of the Wnt-dependent intestinal crypt stem cell niche could be
rescued by administration of Wnt agonists (150). Additional
evidence demonstrates that the Wnt pathway triggers APC- and
β-catenin induced regulation of TRF2 and TCF4 which further
regulate TRF1 and POT1 (150, 151).

Further to the enhancement of shelterin protection, the
Wnt/β-catenin signaling pathway also activates TERT (152).
Importantly, the use of Wnt pathway agonists can rescue
telomere uncapping, suppress apoptosis and lead to elevated
Ascl2 transcripts as well as Sox9 protein levels (150) suggesting
a therapeutic strategy for some conditions with aberrations
in telomerase.

Non-canonical functions of TERT
Non-canonical functions of TERT have been discovered later
than telomerase activity, and they also play a role in
tumorigenesis, for example via TERT’s role in regulating theWnt
signaling as a cofactor for the β-catenin pathway (153). TERT
has been shown to be inducible in ischemic brain cells and to
prevent apoptosis via a non-telomeric action via shift of the
cytosolic free Ca2+ into the mitochondria (154). Despite having
normal telomere lengths, lack of hTERT impairs the cellular
capability to repair damaged DNA and fragmented chromatin
(155). TERT also is demonstrated to have RNA dependent RNA
polymerase function by interacting with the RNA component of
mitochondrial RNA processing endoribonuclease (RMRP) and
forming ribonucleoprotein complexes. These complexes produce
double-stranded (ds) RNAs that serve as substrates for the
generation of siRNA which may regulate the expression of other
genes related to stem cell biology (156). Further to the above,
there are many other additional non-telomeric functions of
TERT active in cancer, such as improved DNA repair, increased
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apoptosis resistance, changes in chromatin structure and altered
gene expression (157).

Hormone Regulation of Telomerase in
Hormone Responsive Tissues
There is evidence from multiple studies that telomerase is under
the regulation of steroid hormones in hormone responsive
tissues. This corroborates with the known direct regulation
of cell fate and proliferation in such tissues by steroid
hormones, for example the ovarian hormone, estradiol, induces
a mitotic response in endometrial epithelial cells (23, 158). In
different studies, telomerase is induced by estrogen in various
macaque and human cell lines (15, 159, 160). Androgens also
upregulate telomerase in an ovarian cancer cell line (161) but
progesterones down regulate telomerase in the endometrium
(15). ATM silencing also down regulated proteins, such as ChK2,
p53, and caspase 3, which were stimulated by the synthetic
progestogen, medroxyprogesterone acetate (MPA) (162). This
result suggested that MPA exerts its effects via the ATM-Chk2-
p53-caspase-3 pathway protecting against carcinogenesis (162).
The progestagenic effect on telomerase may also be mediated
through this pathway. Hormonal regulation of telomerase in the
healthy endometrium was recently reviewed in detail (14).

Telomerase-Related Telomere Regulation
by TERRAs
Telomerase regulation by TERRAs has initially been examined
in yeast although recent work also suggests a similar regulation
in human cells. In yeast cells, TERRAs were found to sequester
and direct telomerase to the specific telomeres which were
the shortest (68). In addition, TERRA was found to bind to
hTERC and hTERT components of telomerase independently, to
function as an inhibitor of human telomerase enzyme (67). In
telomerase negative cells with shortened telomeres, increase in
TERRA levels trigger homology directed repair (HDR) whereas
in telomerase positive cells, it results in recruitment of telomerase
to the short telomeres (163). Absence of both telomerase and
HDR accelerates the cell senescence pathway (164). Due to loss
of Rat1 function, in yeast free TERRA accumulates at critically
short telomeres which helps in recruiting the telomerase enzyme
to that telomere and elongation of that telomere (165).

TERRA was found to be induced in cells with short
telomeres and acted as a scaffold for spatial organization of the
telomerase components forming a TERRA-telomerase complex
which helped in recruitment of telomerase to the telomere of its
origin hence TERRAwas proposed to be a recruiter of telomerase
enzyme rather than an inhibitor (68). Contrary to some in
vitro studies, in human cancer cells, telomerase-led telomere
elongation was not affected by the transcription of the telomere.
In these cells, it was suggested that shortening of telomeres may
not have been due to telomerase inhibition, but due to impaired
replication due to integrity of the chromosomes affected by high
levels of TERRAs (166). In general, the interaction of TERRAs
and telomerase is complex and might depend on cell type and
conditions, such as cell cycle phase, or telomere length.

Telomere Maintenance by Alternative
Lengthening of Telomeres (ALT)
Cells can maintain their telomeres via a telomerase dependent
pathway or a telomerase independent ALT pathway (69). New
telomeric DNA is synthesized from a DNA template in ALT
(167) by homologous recombination (HR) (168). The template
could either be the telomere of another chromosome, another
region of the same telomere by t-loop formation or sister
telomere recombination.

The first evidence for the presence of an ALT mechanism
was described in several immortalized human cell lines
that did not have telomerase activity but maintained
telomere lengths for hundreds of population doublings,
and this mechanism occurs in ∼15% of cancers including
osteosarcomas, soft tissue sarcoma subtypes, and some glial
brain tumors (169, 170).

In human cells, where ALT activity is elevated to a
degree sufficient for telomere length maintenance, telomeres
are characterized by their highly heterogeneous length, but the
average length (>17 kb) is about double that of most cells where
telomeres are elongated by telomerase (171).

Mutations in the ATRX/DAXX chromatin remodeling
complex have been observed in cancers and cell lines that use
the ALT mechanism, suggesting that ATRX may suppress the
ALT pathway (172). In mortal cells or immortal telomerase-
positive cells, knockout or knockdown of ATRX does not
stimulate ALT (172). However, ATRX loss in SV40-transformed
fibroblasts together with one or more unidentified genetic or
epigenetic alterations was attributed to either a marked increase
in the proportion of cells with an activated ALT (instead of
telomerase) or significant decrease in the time taken for ALT
activation (172). Loss of ATRX protein and mutations in the
ATRX gene are also characteristic features of ALT-immortalized
cell lines (172). In addition, ALT is associated with marked
genome rearrangements, extensive micronucleation, a defective
G2/M checkpoint and alteration in double-strand break (DSB)
repair (173).

ROLE OF TELOMERES AND TELOMERASE
IN PRE-MALIGNANT AND MALIGNANT
PROLIFERATIVE DISORDERS

Alteration of Telomere Biology in
Premalignant Conditions and in Cancers
Limitless proliferation is a cardinal feature of cancer cells, whist
increased proliferation is common to all premalignant changes
including hyperplasia. The excessive proliferation observed
in these malignant/premalignant conditions is maintained by
avoiding senescence and crisis/apoptosis. Senescence/apoptosis
exist as barriers for mitosis, thus they are tumor suppressor
mechanisms in normal cells, which are regulated intricately by
telomeres and checkpoint activation (Figure 3). The unrestricted
proliferation of cancer cells is therefore thought to be sustained
by telomere maintenance mechanisms which were detailed
above. Since high telomerase activity is reported in over 85% of
cancers, telomerase dependent telomere lengthening is believed
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FIGURE 3 | The involvement of telomeres and telomerase activity in epithelial cancers. The initial acquisition of tumor promoting mutations is promoted by short

dysfunctional telomeres which are subsequently stabilized by high telomerase activity levels that is characteristic for most cancer cells, with the overall result being

pre-requisite for unregulated proliferation capacity.

to be the most common telomere maintenance mechanism
relevant to carcinogenesis.

Evidence for Altered Telomere Lengths in Cancers
During ongoing proliferation in normal somatic cells without
telomerase or other telomere-maintenance mechanisms,
telomeres shorten until reaching a certain minimal length.
Beyond this, when tumor suppressor checkpoints, such as
p53 are functioning, senescence or apoptosis can be induced. In
contrast, when p53 or other important DNA damage checkpoints
are not functioning, cells can enter a crisis state where ongoing
proliferation promotes further telomere shortening and telomere
dysfunction (174). This can cause various genomic instabilities,
such as end-to-end fusion of telomeres resulting in anaphase
bridges in subsequent cell division cycles. Most of these cells
usually die due to apoptosis and gross genomic instabilities.
However, some rare cells acquire mutations in the TERT
promoter that increase telomerase activity resulting in re-
stabilization of telomeres, Importantly, as long as telomeres
are capped and protected, they can be rather short and this
situation is frequently found in epithelial cancer cells compared
with adjacent healthy tissue. Several studies using telomere
PNA-FISH have shown that breast, prostate, and pancreatic
cancers are associated with telomere shortening (175–177).
Furthermore, around 40 to 97% of colorectal tumors have
shorter telomeres compared with normal tissue, and telomere
shortening is therefore considered to be one of the early events
in tumourigenesis (178, 179).

However, importantly, acquiring telomerase activity can
stabilize even short telomeres in genetically unstable cells and
provide sufficient capping for them to attain an unlimited
proliferation potential. Thereby, telomerase re-activation
conserves genomic mutations and instabilities and contributes
further to tumourigenesis (Figure 2).

Significant telomere length shortening results in end-to-end
fusion, thus increasing the potential for genome instability
and carcinogenesis. There are few other generic associations
which lead to telomere attrition, such as oxidative stress,
lifestyle choices, environmental factors, smoking and obesity
(180) and some of these also increase the risk of developing
a variety of cancers. Telomere shortening can influence the
progression of premalignant breast tissue to malignancy and
premalignant breast lesions had short telomeres leading to non-
clonal chromosome aberrations (181).

Meta-analyses of available studies also revealed that shorter
peripheral blood mono-nucleocyte (PBMC) telomeres are
associated with a significant increase in the risk of developing
cancer (OR = 1.35, 95% CI = 1.14–1.60) than longer telomeres
(182, 183). Shorter PBMC telomeres could be related to oxidative
stress endured by an organism, which is in agreement with the
established mediatory role that oxidative stress plays between
inflammation and cancer (184). When PBMC mean telomere
lengths were prospectively studied in the general population
in Denmark, shorter telomere lengths were also associated
with decreased survival after cancer rather than the cancer
risk itself (185). Another systematic review has also reported a
consistent inverse relationship between age and PBMC telomere
length (186).

Telomere dysfunction may also be a resultant of altered
telomere-associated proteins that are also essential for regular
end-capping function (187, 188). For example, mutations in the
C-terminal of POT1 can initiate genomic instability permissive
for tumourigenesis (189). TRF1 flox/flox × K5-Cre transgenic
mice, do not have TRF1 in stratified epithelia. These mice
demised perinatally and showed skin hyperpigmentation and
epithelial dysplasia and were associated with telomere initiated
DNA damage, p53/p21 and p16 pathway activation and in vivo
cell cycle arrest. Deficiency of p53 rescues mouse survival but
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causes increase in the incidence of squamous cell carcinomas
(39). Alteration of the levels of TRF1, TRF2, TIN2, and POT1 has
also been described in some human tumors (190). A dysregulated
expression of TRF1, RAP1, and TPP1 has been reported in
patients with chronic lymphocytic leukemia (191). Likewise,
TIN2, TRF1, and TRF2 mutations have been associated with
some cases of Dyskeratosis congenita and aplastic anemia (192–
195) and both these conditions increase the risk of developing
some cancers. Defects in shelterin components naturally cause
dysregulation of telomere homeostasis as explained above.
This may operate as a tumor suppressor mechanism when it
initiates the p53/pRb pathways which in turn triggers senescence
and prevents the tumorigenesis process. Alternatively, it can
contribute to carcinogenesis with the fusion of dysfunctional
telomeres or fusion between dysfunctional telomeres and double
strand breaks which trigger breakage-fusion-bridge cycles (196).
In hepatocellular carcinomas, longer telomeres, increased hTERT
expression and higher levels of TRF2 protein as “stemness
markers” were associated with poorer prognosis and more
chromosomal instability (197). Further studies have confirmed
that different causal factors, such as hepatitis B and C, and
alcohol lead to telomere dysfunction in hepatic cells hence
initiating the carcinogenesis process (198). A significant decrease
in POT1 and RAP1 protein levels are described in familial
papillary thyroid cancers (199). TP53 disruption in hematological
malignancies has been associated with the downregulation of
expression in shelterin genes and severe telomere dysfunction
and genomic instability (200). Therefore, genetic mutations
resulting in functional alterations in the essential components
of the telomerase enzyme or shelterin components may
repress telomerase activity and thus shorter telomeres will
be the consequence. The available evidence also suggests a
concerted dysregulation in the expression of shelterin genes and
protein levels with the commonly observed removal of cellular
tumor suppressor mechanisms in premalignant conditions can
lead to alteration in telomere lengths that can trigger the
tumourigenesis process.

Evidence for Altered Telomerase in Cancers

Polymorphism in genes of the telomerase complex
Such as hTERT and hTERC has been reported to affect individual
susceptibility to cancers (201, 202). Variants in chromosome
5p15, the region that harbors the hTERT gene, have been
identified by Genome-wide association studies (GWAS) to be
associated with the risk of bladder, pancreas, brain, testicular,
breast, prostate, skin, and lung cancers (203–207).

hTERT promotor mutations
Tumors with high hTERT promoter mutation frequencies have
almost always originated in tissues with relatively low cell
turnover rates. Contrastingly, tissues with rapid cell turnover
seem to have different mechanisms to elongate telomeres and
seem less likely to benefit from activating hTERT expression
by mutations (208). Mutations that result in increased hTERT
expression, telomerase activity or longer telomere lengths have
been identified in cancers of the central nervous system, thyroid,
bladder, liver, tongue, adipose tissue and skin (208–210). In

thyroid cancers, when hTERT and BRAF mutations coexist, such
tumors express high levels of hTERT (211).

Common inherited variants of telomere related genes, such
as TERC, TERT, and rare POT1 mutations have been found
to be associated with higher risk of developing gliomas.
TERT promoter and ATRX mutations were found to be the
most recurrent somatic events which led to glioma associated
lengthening of telomeres (212).

A high frequency of hTERT promoter mutations was also
reported in follicular cell-derived thyroid carcinomas (213). An
over-representation of hTERT promoter mutations had been
detected in advanced thyroid cancers and these mutations were
more prevalent in advanced disease (51%) compared with well-
differentiated tumors (22%). Thus, hTERT promoter mutations
have been suggested as biomarkers of tumor progression
(213). hTERT promoter mutations usually cause an increased
expression of the hTERT gene and paradoxically, these mutations
were reported to occur together with short telomeres in tissues
with low-rates of self-renewal and were also associated with
poor patient survival in primary melanomas (210). Tissue stem
cells are reported to have active telomerase and daughter cells
produced by these switch off telomerase upon differentiation,
and subsequent reactivation of telomerase in these tissues
have been proposed to be the reason for the observed short
telomeres in thyroid cancers with high telomerase expression
(210). Rachakonda et al. showed that mutations of the hTERT
promoter were also the most common somatic lesions in
bladder cancer (214). The authors also found that a common
polymorphism rs2853669 in the hTERT promoter acts as
modulator of the mutations effect on survival and disease
recurrence. The patients with the mutations had poor survival
outcome in the absence but not in the presence of the variant
allele of the polymorphism. The mutations without the presence
of the variant allele were markedly correlated with tumor
recurrence in patients with non-invasive and invasive T1 bladder
tumors (214). Polymorphisms in the hTERT gene were also
associated with an increased lung cancer risk in the Chinese Han
population (215).

Telomerase activity in cancers
The early observation that telomerase activity is absent in
most human somatic tissues during differentiation but strongly
upregulated in tumors, agrees with the hypothesis that telomerase
playing an important role in the carcinogenesis process (216).
In pancreatic ductal cell carcinoma, levels of telomerase activity
were higher compared to other types of pancreatic cancer and
benign pancreatic tissues (217). In gastric cancers, tumors with
high telomerase activity had poorer prognosis and the authors
concluded that detecting telomerase activity might be useful as
a prognostic indicator of clinical outcome (217). Telomerase
activity was also detected in 90% of head and neck squamous cell
cancers, in 100% hyperplastic squamous epithelium but not in
normal mucosa (218). Colorectal cancers with high telomerase
activity had poorer prognosis in spite of curative surgery in
apparently disease free patients, thus the survival seems to have
been associated with the level of telomerase activity (219). A
systematic analysis of telomerase activity levels in many cancer
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types performed by Bacchetti and Shay in 1997 demonstrate high
telomerase being a common observation in most of them (220).

hTERC alterations in cancer: Recent work has proposed that
hTERC maturation involves the poly(A)-specific ribonuclease
(PARN) which is localized in the nucleolus and in the Cajal
body (CB). The enzyme trims hTERC precursors by removing
poly (A) tails and may be involved in impairment of telomerase
activity (221). Individuals with biallelic PARN mutations and
PARN-deficient cells showed a reduction of expression of genes
encoding several key telomerase components, such as TERC,
and DKC1. These cells also have critically short telomeres
(222). Improper hTERC processing and telomere dysfunction
in premalignant diseases, such as Pontocerebellar Hypoplasia 7
(PCH7) and dyskeratosis congenita had been proposed to have
a mechanistic link (221). hTERC amplification was associated
with the aggressive progression of cervical cancer, and authors
suggested that hTERC may serve as a surrogate marker for
cancer progression and form a potential therapeutic target for
cervical cancer (223). However, it is important to appreciate that
most cervical cancers initiated in a background of persistent
papilloma virus infection in the transformed epithelial cells.
hTERC over-expression has been reported in many other cancers
including prostate (224); breast (225); and oral squamous cell
carcinoma (226).

Dyskerin alterations in cancer: Dyskeratosis congenita is a
rare multisystemic syndrome characterized by low telomerase
activity already during development and consequently, shorter
telomeres in many tissues resulting in a high susceptibility to
develop a subset of cancers, therefore, wild type dyskerin protein
has been suggested to act as a tumor suppressor. Conversely,
wild-type dyskerin protein is upregulated in a number of human
cancers, such as in breast, prostate, colon and hepatocellular
carcinomas (108, 227–229) and in these cancers, high levels of
dyskerin were associated with an aggressive histopathological
feature and poor prognosis (229). Acute loss of dyskerin function
by RNA interference led to marked reduction of steady-state
levels of H/ACA RNAs, disruption of the morphology and
repression of anchorage-independent growth of telomerase-
positive and telomerase-negative human cell lines. The levels of
dyskerin in cancer cells modulate telomerase activity through the
regulation of TERC levels, independently of TERT expression
(227). The function of telomerase associated proteins in cancer
is summarized in Table 1. Dyskerin might also contribute to
tumor development through mechanisms where the presence
of cellular telomerase activity is not essential, and which may
be only partially dependent upon the protein’s role in rRNA
processing (104).

ENDOMETRIUM

The endometrium is the inner mucosal lining of the uterus
that contains several cell types including tissue specific epithelial
and stromal cells, as well as leucocytes and blood vessels
(22, 230–233). It is the primary target organ for ovarian
steroid hormone action (24) and healthy human endometrium
is characterized by its regenerative and remodeling capacity

that undergoes repetitive monthly cycles of proliferation,
secretory changes, break-down and regeneration. These cycles
of changes occur ∼400 times in a female’s reproductive life
(22, 230) and are regulated by ovarian steroid hormones (23).
Telomerase activity as well as mean telomere length change
according to ovarian cycle in whole healthy endometrial samples
(15, 234) suggesting an ovarian regulation and correlation
with proliferative activity (15). Epithelial cells demonstrated
significantly higher telomerase activity, but contrastingly, shorter
telomeres compared with stromal cells across the cycle (14,
15) (Figure 4). In the endometrium, Estrogen upregulates
telomerase activity. Whilst progesterone inhibits telomerase
activity and hTERT expression (15). The telomere and telomerase
biology of normal endometrium has recently been reviewed in
detail (14).

The Role of Telomeres and Telomerase in
Benign Endometrial Disorders (Table 2)
The role of telomeres and telomerase in benign endometrial
disorders was recently reviewed in detail in Hapangama et al
(14). There are various benign gynecological disorders, such as
endometriosis (243), recurrent reproductive failure, subfertility
with reported abnormal telomerase activity and telomere length
aberrations (13, 235). High telomerase activity, high hTERT
mRNA and protein levels with longer mean endometrial
telomere lengths are characteristics of the eutopic secretory
endometrium (13, 235, 242, 244), whereas epithelial cells
of ectopic lesions also demonstrated longer mean telomere
length (15).

The progesterone dominant window of implantation
in healthy women has shown virtually no hTERT
immunoreactivity (235) and lowest telomerase activity
(13, 234). However, immunostaining for hTERT was
significantly and differentially increased in various
endometrial cellular compartments in women with recurrent
reproductive failure (235). These observations suggest that
particular aberrations in cellular proliferation or causative
dysregulation of telomerase to be important in endometrial
pathologies. Furthermore, normal telomerase activity
seems to play a pivotal functional role in ensuring normal
endometrial function.

Alteration of Telomere Biology in
Endometrial Premalignant Conditions and
in Endometrial Cancer
Endometrial Hyperplasia
Endometrial epithelial hyper-proliferation with increased
glandular to stromal cell ratio is defined as endometrial
hyperplasia. Pathogenesis of endometrial hyperplasia is virtually
always associated with relative predominance of the mitotic
estrogen signal, due to direct excess of Estrogen or due to
insufficient levels of progesterone (24). Anovulatory cycles in
premenopausal women, extra-ovarian aromatization of adrenal
androgens in to estrogenic compounds in obese women and
iatrogenic interventions, such as Tamoxifen and Estrogen
only hormonal replacement therapy are common examples
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FIGURE 4 | From Valentijn et al. (15). Telomerase inhibitor, Imetelstat affects Telomerase Activity and cell proliferation, but not viability of endometrial epithelial cells. (A)

Epithelial cells and (B) stromal cells were maintained in monolayer culture for the indicated times prior to harvesting for TRAP assay. For each time point, n ≥ 4; Patient

group 2. (C) Epithelial cells maintained in long-term culture had a phenotype consistent with senescence. Note the enlarged cells and positive blue stain for

β-galactosidase in the micrographs (representative of n = 5). (D) Epithelial cells were isolated from an adenocarcinoma of the human endometrium and maintained in

culture as a cell line. The cells were treated with the concentrations of Imetelstat indicated for 72 h prior to TRAP. TRAP activity is expressed as a percentage relative to

the activity of the mismatch control (mean ± SEM for n = 3 separate experiments). (E) Epithelial cells were maintained in culture for up to 3 days and then treated with

1µM Imetelstat or mismatch control oligonucleotide for a further 72 h prior to TRAP assay. TRAP activity is expressed as a percentage of the mismatch control

(n = 4). T-test, *p = 0.02. (F) EEC (n = 5) were directly seeded into 96-well dishes, allowed to attach and treated the next day with Imetelstat or the mismatch control

at the concentrations indicated for 72 h. Cell viability was assessed by MTT assay. Note significant loss in cell viability at 100µM (Mann Whitney test, p = 0.002). (G)

Cultures of normal epithelial cells and an adenocarcinoma of the endometrium treated with Imetelstat or mismatch control as before, and immunoblotted for

phospho-H3 [phosphohistone H3 (Ser10)]. Histone H3 is only phosphorylated on Ser 10 during mitosis. Shown is a representative blot (top) of normal epithelial cells

(n = 5) and the adenocarcinoma (representative of two separate experiments) and densitometric analysis (bottom). T-test, **p = 0.009. (H) Stromal cells were grown

for 24 h and then treated with 1µM Imetelstat or mismatch control oligonucleotide for 72 h prior to TRAP assay. Telomerase activity is expressed as a percentage of

the mismatch control. T-test, ***p = 0.0004. This previously published figure in human reproduction (15) is reused with permission.

of conditions related to endometrial hyperplasia. Importantly,
the premalignant endometrial hyperplasia, which includes the
category of atypical hyperplasia/endometrial intraepithelial

neoplasia according to the 2014 World Health Organization
(WHO) classification is the typical precursor of endometrioid
endometrial cancers (245).
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Alterations in telomere lengths in endometrial hyperplasia
The involvement of telomere shortening in chromosomal
instability has been associated with the initiation of
carcinogenesis (246). There are only 2 studies that have
examined telomere lengths in endometrial hyperplasia. A
study using a telomere-FISH (telo-FISH) assay to measure
telomere lengths, compared chromosomal arm loss or
gain in premalignant endometrial lesions with normal
endometrium, and reported telomere lengths to be stable
with the pathological transformation in endometrial hyperplasia
and in endometrial carcinoma (247). Albeit using a small
sample size, the authors conclude that unlike in cervical
precancerous lesions, endometrial hyperplasia did not have
widespread chromosomal alterations, implying that endometrial
carcinogenesis involves mechanisms distinct from those of
cervical carcinogenesis, which is almost always induced by viral
infection (247). However, close scrutiny of the data presented
on different endometrial hyperplasia subtypes suggested that
atypical endometrial hyperplasia may be associated with higher
telomere length heterogeneity. This may be also suggestive
of the involvement of ALT mechanism in this premalignant
condition, but larger studies are needed to confirm the ALT
mechanism in the true pre-malignant endometrial hyperplasia
subtype with atypia. Importantly, the analysis method utilized
in the Maida study did not allow inter-patient comparison of
tissues samples (of different women) but was only suitable to
compare adjacent cells of a single tissue sample. Therefore,
the study presented insufficient data to conclude if there
was a definite change in the telomere length in precancerous
endometrial hyperplasia when compared with either normal or
cancerous endometrium.

By using a three-dimensional (3D) imaging technique, a
specific 3D arrangement of telomeres was revealed in tumor cell
nuclei (248). Unlike the non-overlapping nature of telomeres
in normal nuclei, telomeres of cancer nuclei have the tendency
to form aggregates (248). Different numbers and sizes of
such telomere aggregates can be found in tumor nuclei (248).
Telomere aggregate formation does not depend on telomere
length and telomerase activity (249).

The existence of telomere aggregates in precancerous lesions,
such as in human cervical intraepithelial neoplasia supports the
notion that changes in the organization of the 3D nucleus may
facilitate tumorigenesis (250). The “telomere-driven genome-
instability” can happen as a result of the close contiguity of
telomeres forming aggregates of different numbers and sizes that
increase the risk of end-to-end telomeric fusions followed by
cycles of breakage-bridge-fusion (249). A significantly increased
number of telomere aggregates was observed in atypical
hyperplastic cells in a mouse models which is also a specific
feature of cancer cells. Moreover, the PTEN heterozygous mouse
model further demonstrated that 3D telomere architectural
changes occur before the complete loss of PTEN and prior
to the development of histological characteristics of atypical
hyperplasia and endometrial carcinoma (251). Therefore, the
presence of telomere aggregates in hyperproliferative lesions with
atypical nuclei may render them to be precancerous changes.
Further studies including larger sample size and both types of

endometrial hyperplasia are warranted to examine and conclude
on changes in telomere length in precancerous endometrial
hyperplasia lesions.

Telomerase in endometrial hyperplasia
High hTERT levels and elevated telomerase activity were
reported in all types of endometrial hyperplasia, including
simple, complex and complex with atypia subtypes (252–
256). This early observation prompted some investigators to
propose that telomerase activity measured by TRAP assay
to be a suitable tool to screen the endometria of post-
menopausal women with post-menopausal bleeding (257). The
authors proposed that this method will determine endometrial
premalignant and malignant conditions (257) from benign
endometrium, since telomerase activity was rarely detected
in normal post-menopausal women, while the majority of
endometrial hyperplasia and cancers contained high telomerase
activity. However, there are other studies that reported a lack
of measurable telomerase activity by TRAP assay in benign
endometrial hyperplasia (258). Further work also found that it
was possible to use hTERT immunohistochemical (IHC) analysis
(259) as a marker for premalignant (atypical) endometrial
hyperplasia. However, it is difficult to conclude on the diagnostic
feasibility of telomerase activity or hTERT protein (IHC) in
endometrial hyperplasia considering these studies, because of
the inadequate sample sizes which were only n = 12 atypical
endometrial hyperplasia in Brustmann (259) and n = 18 simple
and atypical endometrial hyperplasia in Maida et al. (257) and
Brustmann (259). In addition, the studies did not clarify whether
the existence of endometrial hyperplasia cells were confirmed
in the analyzed samples, particularly with TRAP assay and
since endometrial hyperplasia can co-exist with either normal or
cancerous endometrium, this may affect the results. Progesterone
is one of the main current pharmacological therapies for
treating endometrial hyperplasia (24) and telomerase being
a (albeit indirect) downstream target of progesterone in the
endometrium is of interest. This justifies future studies exploring
the therapeutic utility of directly targeting telomerase in the
treatment of endometrial hyperplasia.

Endometrial Cancer
Traditionally, EC had been divided into two major groups:
estrogen-dependent, type-I (endometrioid type) and estrogen-
independent, type-II (non-endometrioid), with the former
accounting for 80% of ECs. Five-years survival rates are
exceptionally poor for advanced type-I and type-II (high grade)
EC at 23% which is a far worse rate than for most other
common cancers, such as breast cancer (CRUK). However, the
recent trend had been to apply for an alternative classification
system that more accurately defines ECs into prognostically
distinct molecular subtypes that reflect the underlying molecular
alterations with well-described underlying genomic aberrations
(260). EC is a disease of post-menopausal women, however,
obesity associated unopposed estrogen action is an established
cause for the trend toward increasing incidence of this cancer
even in younger women (23, 24, 261). ECs are hormone
responsive tumors and even high grade ECs retain some
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hormone responsiveness as depicted by the expression of steroid
hormone receptors (261).

Evidence for telomere alterations in endometrial cancer

(Figure 5) (Table 3)
A study in 1992 found that endometrial adenocarcinomas have
reduced telomeric repeat sequences suggesting shorter telomeres
compared with normal tissue (262). A decade later a second
study demonstrated changes in telomere lengths in 17/23 (73.9%)
of endometrial cancers using a Southern blot technique (269).
Another study by Menon and Simha (273), using the same
telomere restriction fragment (TRF) measurement, found that
mean TRF lengths became shortened when normal endometrium
underwent neoplastic changes (273). A study which used a
telomere-oligonucleotide ligation assay demonstrated erosion
of the telomere overhang length, rather than overall telomere
length, and proposed that this might play a role in endometrial
carcinogenesis and may be related to tumor aggressiveness
(274). All these studies utilized techniques that assess the
average telomere length values of a tissue sample. However,
when endometrial samples were harvested and frozen, they
did not examine if the proportion of the endometrial sample
examined for telomere length actually contained cancerous
cells. Subsequently, 12 years ago, Maida et al. (247) employed
a telomere-FISH (telo-FISH) assay that assessed the relative
telomere length in normal and pathological cells in intact tissue at
the cellular level and no significant difference was found between
the telomere length of normal endometrium and endometrial
cancer (247). That study however did not specify the normal
cell type that they used as the control (stromal/epithelium) and
included only adenocarcinomas (Type I). A similar, but slightly
modified version of telomere chromogenic in situ hybridization
method was subsequently used by Akbay et al. and the authors
demonstrated a significant telomere shortening in both type I
and type II endometrial cancers in comparison with normal
stromal cells (270). They also reported that the adjacent normal
stromal cells were compared with epithelial cancer cells to
demonstrate telomere shortening only in type II cancers. The
authors expanded the study to confirm their hypothesis in a
rodent model. These animals were generated with shortened
telomeres to show that telomere attrition contributes to the
initiation of type II endometrial cancers and progression of
Type I endometrial cancers (270). This is of interest, but
caution should be taken when interpreting these results, as the
endometrial stromal cells are known to possess longer telomeres
when compared even with healthy epithelial cells (14, 15) and
that has been hypothesized to be due to the difference in the
cell proliferation rates, telomerase activity levels and different
regulation of telomere maintenance in these two cell types
(14). Therefore, the data may simply reflect cell type specific
difference in relative telomere lengths but not demonstrating a
true endometrial cancer associated change in telomere lengths.
Hashimoto et al. (274) found that endometrial cancers show short
3′ single-strand telomeric overhang length compared to normal
endometrium (274). They also found that poorly differentiated
cancers or deeply invading endometrial cancers had a longer
overhang length in comparison with well-differentiated cancers
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FIGURE 5 | The role of telomere and telomerase activity in endometrial cancer. Hormonal imbalance (excess of Estrogen or insufficient levels of progesterone) will

increase telomerase and elevate telomerase activity was described in all types of endometrial hyperplasia and in endometrial cancer. Dysfunctional telomeres results in

genomic instability, the first step in endometrial carcinogenesis. Telomerase dependent pathway is the most widely reported classical telomere length maintenance

mechanism but ALT pathway; telomerase independent telomere maintenance was described in some cancer types that lack telomerase activity.

or superficial invading cancers and this may suggest that the 3′

overhang may have a role in tumor progression (274).
A recent paper that considered germline genetic variants

in a genome wide association study (GWAS) as instrumental
variables to appraise the causal relevance of telomere length for
the risk of cancer, demonstrated that their predicted increase
in telomere lengths was strongly associated with some specific
cancers, such as gliomas, low grade serous ovarian cancers, lung
adenocarcinomas, neuroblastomas, bladder cancers, melanomas,
testicular cancers, and also endometrial cancers (275). However,
this study did not measure the exact telomere length of the tissue
of origin of cancers but assumed the particular genetic variance
may promote longer telomere lengths. With that assumption,
the authors calculated a stronger association of presumed longer
telomere lengths and rarer cancers and cancers with a lower
stem cell division rate (275). However, this data should be
considered with caution, since age associated tissue/cell specific
telomere length change is a well-established fact but that was not
considered by the authors. Therefore, the postulated prediction
in telomere length change may be relevant to the effect of genetic
variants that were examined, in increasing cancer risk, but it
does not provide direct or compelling evidence for a role for
tissue telomere length change in endometrial carcinogenesis.
When telomere lengths were estimated for cancer cohorts in The
Cancer Genome Atlas (TCGA) dataset; sarcomas, testicular germ
cell tumors and low grade gliomas were associated with longer
telomeres whilst cervical and endometrial cancers had shortest
average telomere length (276). This observation has also been
explained as a result of some tumors having high telomerase
activity, thus shorter telomere lengths that are stabilized [e.g.,

in testicular tumors (277)], and others have long telomere
lengths accompanied by increased activity of the ALTmechanism
(e.g., in low grade gliomas and sarcomas). Longer telomere
length in PBMC has also been associated with a significantly
increased risk of endometrial cancer in a group of Caucasian
Americans (272). Since endometrial cancers are known to have
high telomerase activity, the ALT mechanism is less likely to be
active in those cancers. Considering the above evidence, it is
likely that endometrial cancers have relatively shorter telomere
lengths that are maintained by high telomerase activity compared
with normal tissue. Further studies are warranted to examine
subtype specific telomere length aberrations and the relationship
of telomere lengths with the telomerase activity in the different
types of endometrial cancers.

The protein and/or mRNA levels of the most conserved out
of all shelterin proteins, POT1 (26) were increased in many
different cancers including gastric, thyroid, breast (199, 278,
279) and in endometrial cancers (280). Higher levels of point
mutations in the POT1 gene were observed in endometrial
cancers, revealing that genetic variations in POT1 may lead
to carcinogenesis in the endometrium (280). Simultaneous
conditional inactivation of the shelterin protein POT1a with
the tumor suppressor p53 in endometrial epithelial cells in
a murine model, induced type II metastatic adenocarcinomas
in 100% of the animals by 15 months (281). This suggests
that telomere dysfunction and loss of tumor suppressor genes
can produce Type II endometrial cancers. This will obviously
need to be accompanied by telomerase re-activation observed
in most endometrial cancers supporting the cancer-associated
increased cellular proliferation. The loss of POT1 proteins
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activates ATR (282) and ATR activation requires Replication
Protein A (RPA), which binds single stranded (ss) DNA (282);
the POT1-TPP1 heterodimer protects telomere ends from being
detected as DNA damage by excluding RPA from binding
telomeric ssDNA. Therefore, the loss of POT1 described in
endometrial cancer may cause inappropriate telomere access
of telomerase resulting in compromised telomere capping and
sustained telomere dysfunction facilitating genetic instability.

There are no published studies examining the expression or
function of other shelterin proteins or TERRAs in EC to date.

Evidence for a role of telomerase in endometrial cancer

(Figures 5, 6)
Kyo et al. examining 13 endometrial cancers and 5 cell
lines derived from endometrial cancers using a Telomerase
Repeated Amplification Protocol (TRAP) assay reported that
92% of cancer samples displayed detectable telomerase activity
(263). At that point in time, the general consensus was that
only specialized cells or cancer cells would have detectable
telomerase activity. A year later, the same group increased their
endometrial samples to 17, included 60 normal endometrial
samples, and reported that being a somatic organ, the benign
human endometrium, expresses dynamic levels of telomerase
activity (measured by TRAP assay), with the highest levels
observed in the late proliferative phase endometrium which
was comparable to endometrial cancer. They also indicated
that endometrial telomerase levels are closely associated with
proliferation and likely to be regulated by estrogen (264). During
the same year, Saito et al. examined a larger and more diverse
endometrial cancer sample set and reported that activation of
telomerase was found in most of these cancers, similar to the
reports on gastric, prostate, bladder, and skin cancers (252,
283–286). Saito et al. further confirmed the earlier work by
Kyo et al. that 28/30 endometrial cancers had high telomerase
activity and late proliferative phase to have the highest telomerase
activity levels in the benign endometrial samples. Additionally,
the authors found that endometrial hyperplasia demonstrated
high telomerase activity similar to cancer, whereas no activity was
detected in healthy post-menopausal endometria with or without
bleeding problems, indicating telomerase activity to be a suitable
diagnostic test for identifying post-menopausal endometrial
pathology (252). The authors also noted that telomerase activity
was increased by estrogen which induced cell proliferation and
was reduced in progesterone dominant conditions, indicative
of an ovarian steroid hormonal regulation. The finding of high
telomerase activity in endometrial cancers has been subsequently
confirmed by many other groups (15, 25, 159, 239, 247, 267–
269). In addition to the high telomerase activity measured by
the gold standard test, the TRAP assay, some authors studied
expression levels of components of the telomerase holoenzyme
using qPCR to detect gene expression levels. They concluded
that hTERT levels correlated well with TRAP assay data (159,
268) and both seem to be related to endometrial epithelial
proliferation (15). In a relatively small study, Bonatz et al. (287)
have shown a significant correlation between higher telomerase
activity and higher International Federation of Gynecology and
Obstetrics (FIGO) stage and grade, suggesting that telomerase
activity is increased in advanced stages of endometrial cancer

(287). In their study, Wang et al showed that 82% of their
endometrial cancer samples had telomerase activity but they did
not find any correlation between telomere lengths and telomerase
activity in different gynaecologic cancers (cervical, ovarian and
endometrial) (269).

Detection of hTERT mRNA in peripheral blood (PBMCs)
has been reported to be significantly higher in women with EC
compared to patients with benign uterine diseases and healthy
controls. Using a relatively moderate sample size (n= 56 patients
with endometrial cancer, n = 40 patients with benign uterine
diseases and n = 40 healthy control) the authors claimed that
the exact levels of hTERT mRNA will demarcate those with
metastatic disease thus may be useful in stratifying patients for
adjunctive therapy (288). This claim needs to be confirmed in a
future study which includes an adequate sample size.

Recently, in two progesterone responsive and progesterone-
insensitive human endometrial cancer cell lines (162), ATM
protein was shown by reverse-phase protein array (RPPA)
to participate in progesterone stimulation to suppress
carcinogenesis in the endometrium (162). Additionally, a
progressive loss of ATM levels from hyperplasia to the lowest
levels was observed in type 1 endometrial cancer lesions and
there was a negative relationship of the pathological grades and
ATM levels (162).

Activating hTERT promotor mutations do not usually occur
in a background of loss of the tumor suppressor protein ARID1A
(289). Recent data suggest that ARID1A negatively regulates
hTERT transcription and telomerase activity; while induction
of ARID1A represses transcription and histones via occupying
SIN3A and H3K9me3 sites (290). ARID1A is a member of the
SWI/SNF chromatin remodeling complex, and it is frequently
mutated in endometrial adenocarcinoma (291), therefore it is
conceivable how hTERTmight be upregulated in the endometrial
cancer with loss of ARID1A.

In endometrial cancer cell lines, telomerase activity and
expression of hTERT were both increased by estrogen in
an estrogen receptor alpha (ERα) dependent and estrogen
responsive element (ERE) dependent effect in the hTERT
promoter (292). Additionally, a previous study showed that
estrogen also induced telomerase activity via post-transcriptional
Akt dependent phosphorylation of hTERT in human ovarian
cancer cell lines (293).

Lehner et al. (268) compared hTERT mRNA levels and
telomerase activity using TRAP assay in normal endometrium
with endometrial cancer and they concluded that the levels and
activity were significantly higher in cancer and low in normal
endometrium during the secretory phase of the menstrual cycle
as well as in atrophic endometrium (268). Thus, they suggested
that quantitative analysis of these parameters may be useful as
markers for diagnosis of endometrial cancer.

PTEN regulates telomerase activity, most likely through
its known effects on the PI3-kinase/Akt pathway (294).
Reconstitution of PTEN in the PTEN-null Ishikawa endometrial
cancer cells resulted in inhibition of cell growth and suppression
of Akt phosphorylation as well as a parallel decrease in telomerase
activity and hTERT mRNA levels (294). At present, there are
no reports of different expression levels of other telomerase
associated proteins. Interestingly DC, which is associated with an
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FIGURE 6 | Immunohistochemical staining with an anti-human telomerase

antibody in healthy and endometrial tissue samples. Endometrial tissue

sections demonstrating hTERT immunostaining in full thickness

post-menopausal (PM) section and pipelle biopsy from a patient with

endometrial cancer (EC) using a polyclonal rabbit anti-human telomerase

antibody (ab27573, Abcam, Cambridge UK), detected with ImmPRESS

anti-rabbit polymer and visualization with ImmPACT DAB (Vector Laboratories,

Peterborough, UK). Positive nuclear hTERT brownish staining was observed in

endometrial normal and cancer glands (red arrow). Magnification ×400, scale

bar 10µm.

increase in the risk of developing some cancer types, has not been
reported to be linked with an increased incidence in EC. There
are no published studies examining the role of dyskerin in EC
to date.

ANTI-TELOMERASE THERAPY

Telomerase was thought to be a suitable target for anti-
cancer agents due to the high activity levels seen in most
cancers. Available anti-telomerase strategies can be grouped into
three main categories: (1) Telomerase inhibitors, (2) telomerase
targeted immunotherapy and (3) telomerase directed viral
therapy. Imetelstat (GRN163L) is the only clinically applicable
specific oligonucleotide telomerase inhibitor (Figure 4), which is
a water soluble, acid and nuclease resistant compound that forms
stable RNA duplexes (295). It prevents the 13-nucleotide region
of TERC to form a complex with hTERT. Unfortunately, clinical
data for Imetelstat has been disappointing with high toxicity
(296). The other anti-telomerase agents are also undergoing
clinical trials yet there are no conclusive data yet available for
their clinical effectiveness in cancer. For those cancers harboring
activating TERT promotor mutations, directed immunotherapies
have been proposed as part of a personalized treatment (297).
Anti-telomerase therapy and its relevance to cancer was reviewed
in detail in several reviews recently (298, 299).

Progestogens remain to be one of the main hormone-
based chemotherapeutic agents that are used in early, advanced
and recurrent EC with only modest benefit (24). The loss
of response to progesterone or progressive disease despite
progestogens has been alluded to progesterone-induced down
regulation of progesterone receptor (261) and the lack of
progesterone receptor expression is a feature of advanced ECs
(261). Since telomerase levels are high in most ECs and since
telomerase seem to be a downstream target of progesterone
in the endometrium, direct telomerase inhibition may have an

added benefit in some women with EC. Those with recurrent
disease despite progesterone treatment or having PR negative
advanced ECs may particularly respond to telomerase inhibition.
However, the available limited in vitro data may suggest that
Imetelstat may reduce telomerase activity but may not cause
cell death (Figure 4) (15). Since the in vitro data has been
generated in a mono-cellular 2D culture system comprising
of only epithelial cells, thus it may not accurately reflect the
in vivo response to the medication (158). Further studies
using either physiologically more relevant 3D culture systems
containing epithelial and stromal cells or animal models are
warranted to explore this avenue further before embarking on
clinical studies.

CONCLUSION

Telomere and telomerase have an intricate relationship with
cancer-related multiple cellular functional pathway aberrations.
Collectively, the available evidence suggests that endometrial
cancer tissues have relatively short telomeres that are maintained
by high telomerase activity. Further studies should shed light
into different endometrial cancer subtype-associated changes
in telomere length, which might facilitate exploring alternative
therapeutic strategies to prevent occurrence and progression
or recurrence of this devastating disease. Future studies
examining the involvement of various telomere and telomerase
associated proteins as prognostic markers that potentially
could be used in stratifying patients for adjuvant therapies
in endometrial cancer are also warranted. In addition, a
comprehensive understanding of the telomere and telomerase
biology in endometrial cancer will facilitate assessment of
targeting telomerase as a personalized therapeutic strategy in
endometrial cancer.
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