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Comparative transcriptome 
analysis of two contrasting 
resistant and susceptible Aegilops 
tauschii accessions to wheat leaf 
rust (Puccinia triticina) using 
RNA‑sequencing
Saeideh Dorostkar1, Ali Dadkhodaie 1*, Esmaeil Ebrahimie2,3,4, Bahram Heidari1 & 
Mahmood Ahmadi‑Kordshooli1

Leaf rust, caused by Puccinia triticina Eriks., is the most common rust disease of wheat (Triticum 
aestivum L.) worldwide. Owing to the rapid evolution of virulent pathotypes, new and effective leaf 
rust resistance sources must be found. Aegilops tauschii, an excellent source of resistance genes to 
a wide range of diseases and pests, may provide novel routes for resistance to this disease. In this 
study, we aimed to elucidate the transcriptome of leaf rust resistance in two contrasting resistant 
and susceptible Ae. tauschii accessions using RNA‑sequencing. Gene ontology, analysis of pathway 
enrichment and transcription factors provided an apprehensible review of differentially expressed 
genes and highlighted biological mechanisms behind the Aegilops–P. triticina interaction. The results 
showed the resistant accession could uniquely recognize pathogen invasion and respond precisely 
via reducing galactosyltransferase and overexpressing chromatin remodeling, signaling pathways, 
cellular homeostasis regulation, alkaloid biosynthesis pathway and alpha‑linolenic acid metabolism. 
However, the suppression of photosynthetic pathway and external stimulus responses were observed 
upon rust infection in the susceptible genotype. In particular, this first report of comparative 
transcriptome analysis offers an insight into the strength and weakness of Aegilops against leaf rust 
and exhibits a pipeline for future wheat breeding programs.

Leaf rust (LR), caused by Puccinia triticina (Pt), is an important wheat disease  worldwide1. The causal fungus 
is an obligatory biotrophic pathogen with a complicated life  cycle2,3 and its spores have the ability to travel long 
distances by wind. The disease develops rapidly under optimal environmental  conditions4,5, and the infection 
spreads to further parasitize wheat, causing yield losses up to 70%3,6 resulting from a reduction in kernel number 
per ear, lower kernel weight, and degradation in grain quality. To avoid yield losses and reduced quality, host 
resistance is both cost-effective and environmentally  safe7. Therefore, developing rust-resistant wheat varieties 
is undoubtedly an important task for feeding the world’s ever-increasing  population8–10.

The large size and complexity of the wheat genome and also repetitive elements of 75 to 90% have hindered the 
efforts to better understand its genome and assess its ancestral species for discovering new  genes11. The diploid 
wheat relative Aegilops tauschii Coss. (DD), as the progenitor of the wheat D genome, is extensively adapted to 
adverse environmental conditions such as rust  diseases12. Further, resistance genes from this species could be 
successfully transferred into  wheat13,14 through classical approaches. Moreover, because of its smaller genome, 
it can contribute to the understanding of the wheat genome. Majka et al.1 reported that selected accessions of 
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Ae. tauschii showed differences in chromosome organization and polymorphism of molecular markers linked 
to leaf rust and powdery mildew resistance genes, and therefore, could be used to improve wheat and triticale.

RNA-sequencing technology is an important tool in elucidating the molecular mechanisms of resistance 
to rust, evaluating gene profiles and the transcriptome of different plant organs, introducing candidate resist-
ance genes, and identifying associated markers for marker-assisted  breeding15. This technology has recently 
become more affordable to analyze the transcriptomes of both host and pathogen in compatible and incompatible 
 interactions16–18. Yadav et al.18 reported that the near-isogenic line carrying Lr57 (WL711 + Lr57) had a greater 
number of differentially expressed genes (DEGs) than the susceptible genotype (WL711). Specifically, more 
protein kinases and pathogenesis-related (PR) proteins such as chitinases, glucanases were expressed in the 
resistant genotype. The comparative analysis of these genotypes led to the identification of uniquely expressed 
transcripts in WL711 + Lr57. Also, in a study by Lee et al.10, two Ae. tauschii accessions, which exhibited hyper-
sensitive responses to leaf rust at both seedling and adult plant stages, showed high transcriptional activities of 
β-1,3-glucanase and peroxidase.

Despite these achievements, a few examples of Aegilops whole transcriptome analyses accounting for rust 
diseases have been  conducted10; Moreover, no in-depth studies based on both compatible and incompatible 
host–pathogen interactions are available. Therefore, this study was aimed to analyze the transcriptome of two 
contrasting leaf rust resistant and susceptible Aegilops accessions, and validate the expression of selected genes 
using RT-qPCR. To our knowledge, this is the first use of the RNA-seq approach to assess the molecular aspects 
of host resistance and differential gene expression in two Iranian Ae. tauschii accessions with compatible and 
incompatible interactions. The results of this study provide new insights into the molecular mechanisms underly-
ing leaf rust resistance in Ae. tauschii, which can aid in resistance breeding strategies.

Results
The phenotypic response of Ae. tauschii accessions to P. triticina at the seedling stage. The 
resistant accession of Ae. tauschii (AT349) produced an IT of ‘0;=’ (hypersensitive flecks) while the susceptible 
one (AT350) displayed an IT of ‘3+’ (large uredinia without surrounding chlorosis; Fig. 1). Both mock-inoculated 
genotypes used in this study showed no symptoms of infection. Leaf tissues from both inoculated and mock-
inoculated plants were sampled 24 h post inoculation (hpi) to monitor transcriptome profiling, and plants from 
both treatments were maintained for 10–14 days post inoculation until the susceptible cultivar showed a high 
IT of ‘3+’. Based on the phenotyping results, it was clarified that the resistant genotype carries seedling resistance 
genes and then was used for downstream comparative transcriptome analysis.

Figure 1.  The response of Aegilops tauschii accessions AT349 and AT350 to Puccinia triticina pathotype 
CDHLQ at the seedling stage, (a) Resistant genotype (IT of ‘0;=’), (b) Susceptible genotype (IT of ‘3+’), 
Photographed by Saeideh Dorostkar).
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RNA sequencing and mapping statistics. The results of RNA–seq analysis generated a total of 22.76 
Gbp end clean data (225.34 ×  106 reads) with a length of 101 base pair from the four transcriptome samples 
including resistant control (RC), resistant treatment (RT), susceptible control (SC) and susceptible treatment 
(ST). After filtering out rRNA, duplicate sequences, ambiguous and low-quality reads, and P. triticina contami-
nations, an average of 56.55 million high-quality (HQ) clean reads remained per library. The GC percentages 
with a QC30 base > 95.45%, and the details of the data and their quality before and after filtering are presented 
in Table 1.

Then, the HQ clean reads were mapped to the Ae. tauschii reference genome (Genome length = 4.2 Gbp 
including 7 chromosomes). Approximately, 54.39 million clean reads (96.25%) were uniquely mapped while only 
2.01% were located in several positions. The remaining 1.73% did not match to the reference genome (Table 2).

Subsequently, the principal component analysis (PCA) was carried out to demonstrate differences between 
samples using their expression profile. Totally, PC1 and PC2 explained 97.9% of variance (Fig. S1). The vicinity 
of the inoculated and mock-inoculated resistant accession (RT and RC) samples suggests that they have less 
difference compared to the susceptible ones.

Validation of RNA‑seq data. Differential expression of each gene was obtained by its estimated ‘probabil-
ity’ in the NOISeq pipeline where a gene with the probability above 0.95 was considered a DEG. In the present 
study, DEGs with the highest estimated probability in each experimental condition were selected to assess the 
validity of the RNA-seq data using RT-qPCR. Furthermore, these DEGs contributed to processes like; oxida-
tion–reduction, photosynthesis, membrane transport, regulation of transcription, peptidase activity and catalase 
activity. All selected DEGs showed concordant expression patterns with the RT-qPCR results (Fig. 2). There were 
high positive correlations  (R2 = 0.89, 0.88, 0.91, and 0.88) between the RNA-seq and RT-qPCR fold changes in 
the RT_RC, ST_SC, RT_ST, and RC_SC comparisons, respectively (Fig. 3).

Overall view of differentially expressed genes (DEGs). Genes with differential expression probabil-
ity values higher than 0.95 were considered DEGs as suggested by Tarazona et al.19. The total number of reference 
genome genes was 39,630, of which 26,523 (≈ 66.93%) were differentially expressed among the four samples, and 
were reduced to 19,145 after filtering out low count reads. As illustrated in the scatter plot (Fig. 4), the results 
of deep sequencing revealed that a substantial number of DEGs were detected in comparisons that involved the 
infected susceptible genotype.

Hierarchical clustering for gene expression profiles revealed the presence of three major clusters based on 
samples (libraries) (Fig. 5a) or DEGs (Fig. 5b). Cluster I consisted of both RC and RT libraries while the SC and 
ST libraries were separated into two different clusters (Fig. 5a). Although the gene expression profiles of the RC 
and RT samples were similar, the ST library showed a completely different profile. In other words, a high number 
of DEGs was identified in response to leaf rust in comparisons that involved ST (i.e., RT_ST and ST_SC) while 
the RT_RC comparison represented a small number of DEGs (Fig. 5c).

Under the control conditions of RC_SC, 390 genes were differentially expressed, of which 209 were up-
regulated and 181 were down-regulated. In the presence of leaf rust infection (24 hpi), 984 DEGs were detected 

Table 1.  Sequencing statistics of the four transcriptome samples in two Ae. tauschii accessions inoculated with 
P. triticina pathotype CDHLQ at the seedling stage (RT and ST) and mock-inoculated ones (RC and SC). RC 
resistant control, RT resistant treatment, SC susceptible control, ST susceptible treatment.

Library name RC RT SC ST

Number of raw reads (×106) 71.06 72.05 81.22 56.32

Number of clean reads after the removal of low quality and duplicate reads (×106) 58.37 57.92 66.01 47.23

rRNA clean up (×106) 0.79 0.69 1.00 0.47

P. triticina contamination (×106) 0.00 0.95 0.00 0.29

Number of final clean reads (×106) 57.58 56.28 65.01 46.47

GC percentages (%) 54.5 55 55 53

Table 2.  Sequence alignment statistics of the four transcriptome libraries in inoculated Ae. tauschii accessions 
with P. triticina pathotype CDHLQ and mock-inoculated ones at the seedling stage with the reference genome 
(GCA_002575655.1–v.4 from Ensembl). RC resistant control, RT resistant treatment, SC susceptible control, ST 
susceptible treatment.

Library name RC RT SC ST

Number of HQ clean reads uniquely mapped (×106) 55.31 54.89 62.50 44.87

Uniquely mapped reads (%) 96.16 96.06 96.19 96.54

Multiple mapped reads (%) 1.93 1.97 2.02 2.15

Unmapped reads (%) 1.88 1.96 1.79 1.31

Chimeric reads (%) 0.00 0.00 0.00 0.00
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in RT_ST, of which 645 were up-regulated while the remaining 339 genes were down-regulated. The number 
of DEGs in the RT_ST comparison was higher than that of RC_SC indicating the effect of leaf rust on gene 
expression. For RT_RC, 120 genes (56 up-regulated and 64 down-regulated) were differentially expressed, while 
the value was 905 (260 up-regulated and 645 down-regulated) for ST_SC (Figs. 5c and 6a). The results showed 
three gene IDs including ‘AET2Gv20465900’ (chromosome 2D), ‘AET7Gv20462000’ (chromosome 7D) and 
‘AET2Gv21079000’ (chromosome 2D) were common among all comparisons (Figs. 6b,c).

Gene ontology overview of DEGs. Gene ontology enrichment analysis of biological process (BP), 
molecular function (MF), and cellular component (CC) was performed to further examine the DEGs in the four 
comparisons. Eighty GO terms related to the BP category, 40 related to the MF category, and eight related to CC 
were identified in the RT_RC comparison that outlined the resistance mechanism of the AT349 accession. Of the 
GO terms in BP, a large number of the up-regulated DEGs in the inoculated resistant accession were associated 
with the significantly enriched GO terms like; ‘organic acid, carboxylic acid and oxoacid metabolic processes’, 
‘response to acid chemical’, ‘cellular component assembly’ as well as the Go terms related to ‘nucleosome and 
chromatin organization’. Moreover, a small number of the up-regulated DEGs coordinated with ‘regulation of 

Figure 2.  Illustration of the RT-qPCR confirming the results of 10 selected DEGs. The X axis represents the 
genes and the Y axis indicates the  log2 (fold-change) values derived from RNA-seq and RT-qPCR in all four 
comparisons. Purple, green and black colors show up-regulated, down-regulated and non-significant DEGs, 
respectively. RC (resistant control), RT (resistant treatment), SC (susceptible control), and ST (susceptible 
treatment). The bar plots were created using ‘ggplot2 version 3.3.5’ R/CRAN package (https:// ggplo t2. tidyv erse. 
org).

https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
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response to biotic and external stimulus’, ‘jasmonic acid metabolic process’, ‘regulation of multi-organism pro-
cess’ and ‘immune response and regulation of innate immune response’. ‘Galactose and hexose metabolic pro-
cesses’ were highly significantly enriched GO terms related to the down-regulated DEGs (Fig. 7). With regards to 
MF, the most abundant terms were ‘ion binding’, ‘nutrient reservoir activity’, ‘lyase activity’ and ‘acetyltransfrase 
activity’ in the up-regulated DEGs while ‘galactosyltransferase activity’, ‘transcription regulator activity’ and 
‘DNA-binding transcription factor activity’ constituted the most frequent terms in the down-regulated DEGs 
(Fig. 8). The ‘extracellular region’, ‘nucleosome’ and ‘chromatin’ ranked first to third in the up-regulated DEGs 
related to the CC category (Fig. S2).

Gene ontology exploration within ST_SC explained the susceptibility responses of AT350 to leaf rust. The 
number of GO terms related to the BP, MF, and CC categories were 162, 92, and 11, respectively. From the window 
of BP, the most powerful GO terms including ‘photosynthesis’, ‘response to stimulus’, ‘generation of precursor 
metabolites and energy’, ‘porphyrin-containing compound’ and ‘tetrapyrole metabolic and biosynthetic process’, 
‘pigment and cofactor biosynthetic processes’, ‘response to abiotic stimulus like heat, temperature, radiation and 
light’, ‘plastid and chloroplast organization’ were relevant to the down-regulated DEGs in the inoculated sus-
ceptible accession; AT350. The DEGs associated with negative regulation (which stops, prevents or reduces the 
frequency, rate or extent of some processes) of GO terms like ‘proteolysis’, ‘hydrolase’, ‘cellular protein’, ‘peptidase 
and endopeptidase’ were up-regulated. Also, the other terms like; ‘hydrolase activity’, ‘oxidation–reduction pro-
cess’ and ‘response to hydrogen peroxide’ were the highly significant GO terms associated with the up-regulated 
DEGs (Fig. 7). The top GO terms of MF category were ‘peptidase inhibitor activity’ and ‘endo peptidase inhibi-
tor activity’ in the up-regulated DEGs and ‘chlorophyll binding’, ‘cofactor binding’ and ‘protein domain specific 
binding’ in the down-regulated ones in this comparison (Fig. 8). In the CC category, ‘membrane’ was the most 

Figure 3.  Regression analysis of the  log2 (fold-change) values between RNA-seq and RT-qPCR in all four 
comparisons. RC (resistant control), RT (resistant treatment), SC (susceptible control), and ST (susceptible 
treatment). The plots were created using ‘ggplot2 version 3.3.5’ R/CRAN package (https:// ggplo t2. tidyv erse. org).

https://ggplot2.tidyverse.org
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frequently detected term in the up-regulated DEGs while ‘stromule’ and ‘photosystem I reaction center’ were 
frequent terms in the down-regulated DEGs (Fig. S2).

The responses of the inoculated AT349 and AT350 accessions against rust infection were described in compar-
ing RT and ST. The BP GO terms like; ‘generation of precursor of metabolites and energy’, ‘serine family amino 
acid catabolic and metabolic processes’, ‘glycine catabolic and metabolic processes’, ‘response to abiotic stimulus, 
radiation and light’, ‘cellular homeostasis’, ‘cell redox homeostasis’, ‘photosynthesis process’ together with ‘sulfur 
compound biosynthetic process’ were associated with the up-regulated DEGs in the inoculated AT349 contrary to 
AT350. However, the down-regulated DEGs were integrated with regulation processes including ‘gene expression’, 
‘macromolecule biosynthetic’, ‘cellular metabolic’, ‘primary metabolic’, ‘RNA biosynthetic metabolic’ and ‘regula-
tion of nucleic acid-templated transcription’ (Fig. 7). In terms of MF, the down-regulated DEGs were associated 
with ‘ion binding’ while the up-regulated DEGs were related to ‘chlorophyll binding’, ‘acid phosphatase activity’, 

Figure 4.  Gene expression scatter plots summarize the expression values for the susceptible and resistant 
accessions of Ae. tauschii under rust inoculation or mock inoculation. The P. triticina pathotype CDHLQ was 
used to inoculate genotypes while the inoculum for mock-inoculated plants included only talcum powder. 
Expressed genes for both conditions are highlighted in black while differentially expressed genes are shown in 
red. NOISeq simulated five technical replications for any of the experimental conditions and therefore, X and Y 
axes represent the average expression values of each condition. RC (resistant control), RT (resistant treatment), 
SC (susceptible control), and ST (susceptible treatment). The scatter plots were created using the ‘NOISeq’ R/
Bioconductor  package20.
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and ‘cofactor binding’ (Fig. 8). In the CC category, a large number of the up-regulated DEGs in RT related to the 
‘membrane’ and ‘intracellular anatomical structure’ (Fig. S2).

The natural differences between the resistant and susceptible accessions were obtained from a comparison 
between mock-inoculated RC and SC represented by the AT349 and AT350 accessions, respectively. The DEGs 
associated with BP processes like; ‘L-phenylalanine metabolic and catabolic’, ‘aromatic amino acid catabolic’ as 
well as ‘phosphoenolpyruvate metabolic and catabolic’ were up-regulated in the mock-inoculated AT349 while 
those associated with ‘responses to heat and temperature stimulus’ as well as ‘protein folding and refolding’ were 
down-regulated (Fig. 7). Regarding MF, the down-regulated DEGs related to the ‘nucleotide binding’, ‘chaperon 
binding’, ‘purine binding’ and ‘lyse activity’ while the up-regulated DEGs associated with ‘acid phosphatase, 

Figure 5.  Heat map for  log2 gene expression profile in the resistant and susceptible genotypes combining with 
box plot (a) and bar plots (b,c). The rows of main plot represent the differentially expressed genes (DEGs) and 
columns denote samples. RC (resistant control), RT (resistant treatment, at 24 hpi), SC (susceptible control), and 
ST (susceptible treatment, at 24 hpi). NRC denotes normalized read count by TMM method. (a) The box plot 
displays distribution of  log2 gene expression profile. (b) The bar plot shows maximum expression of each gene 
in samples. (c) The bar plots denote the frequency of DEGs in each comparison (RT_RC: 120 DEGs, RC_SC: 
390 DEGs, RT_ST: 984 DEGs and ST_SC: 905 DEGs). The figure was created using the ‘ComplexHeatmap’ R/
Bioconductor  package21.
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ribonuclease and hydrolase activities’ (Fig. 8 and Fig. S3). The GO term ‘Sec61 translocon complex’ was up-
regulated in the CC category (Fig. S2). More details ‘on biological processes, molecular functions, and cellular 
components as well as the number of genes associated with each GO term are presented in Figs. 7 and 8, and 
Supplementary Fig. S2.

DEGs through the lens of pathway enrichment analysis. Pathway enrichment analysis in the 
RT_RC comparison suggested that the up-regulated DEGs in the inoculated AT349 accession were involved 
in ‘alpha-linolenic acid and linoleic acid metabolism’, ‘alkaloid biosynthesis’, ‘nitrogen metabolism’, ‘glycine, ser-
ine, threonine, phenylalanine and tryptophan metabolism’ and ‘selenocompound metabolism’, in contrast to the 
mock-inoculated AT349. ‘Galactose metabolism’ pathway was associated with the down-regulated DEGs in this 
comparison.

‘Photosynthesis’, ‘glyoxylate and dicarboxylate metabolism’, ‘glycolysis/gluconeogenesis’ and ‘protein process-
ing in endoplasmic reticulum (ER)’ were the most common enriched metabolic pathways in the down-regulated 
DEGs of the ST_SC comparison. The signaling pathways including ‘NOD-like receptor signaling pathway’, and 
‘plant hormone signal transduction’ were the other down-regulated pathways.

The down-regulated pathways in the ST_SC comparison mentioned above, were up-regulated in RT_ST. In 
addition, the exclusive pathways ‘glycerolipid metabolism’, ‘one carbon pool by folate’, ‘C–type lectin receptor 
signaling pathway’, ‘plant–pathogen interaction’, mitogen-activated protein kinases (MAPK) signaling path-
way’, ‘calcium signaling pathway’ and ‘RNA degradation’ were up-regulated in AT349 in comparison to AT350 
(the RT_ST comparison). Conversely, ‘cell cycle’ pathway was down-regulated. Interestingly, in RC_SC, ‘MAPK 

Figure 6.  Summary of differentially expressed genes (DEGs) in four comparisons. RC (resistant control), RT 
(resistant treatment), SC (susceptible control), and ST (susceptible treatment). (a) Up and down-regulated 
DEG statistics in different comparisons of the resistant or susceptible Ae. tauschii accessions (AT349 or AT350) 
with/out P. triticina infection, (b) Fold-changes of three common DEGs among all comparisons. (c) The Venn 
diagram exhibits the distribution of DEGs in different comparisons. 6a and 6b were created using ‘ggplot2 
version 3.3.5’ R/CRAN package https:// ggplo t2. tidyv erse. org) while, 6c was created using ‘ggVennDiagram 
version 1.2.0’ R/CRAN package (https:// github. com/ gaosp ecial/ ggVen nDiag ram).

https://ggplot2.tidyverse.org
https://github.com/gaospecial/ggVennDiagram
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Figure 7.  Bubble plot of the GO enrichment terms related to biological process (BP). The size of the circles 
shows the number of significant genes (NSG) associated with each GO term. Purple and orange colors show 
up-regulated and down-regulated DEGs, respectively. RC (resistant control), RT (resistant treatment), SC 
(susceptible control), and ST (susceptible treatment). The plot was created using ‘ggplot2 version 3.3.5’ R/CRAN 
package (https:// ggplo t2. tidyv erse. org).

https://ggplot2.tidyverse.org
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Figure 8.  Bubble plot of the GO enrichment terms related to molecular function (MF). The size of the circles 
shows the number of significant genes (NSG) associated with each GO term. Purple and orange colors show 
up-regulated and down-regulated DEGs, respectively. RC (resistant control), RT (resistant treatment), SC 
(susceptible control), and ST (susceptible treatment). The plot was created using ‘ggplot2 version 3.3.5’ R/CRAN 
package (https:// ggplo t2. tidyv erse. org).

https://ggplot2.tidyverse.org
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signaling pathway’, ‘phenylalanine metabolism’, ‘phenylpropanoid biosynthesis’, ‘amino sugar and nucleotide sugar 
metabolism’ were up-regulated. Protein processing’ was the only pathway down-regulated in this comparison.

Querying DEGs to identify transcription factors (TFs) and leucine rich repeat (LRR) pro‑
teins. Transcription factors are proteins that bind to the regulatory sequences of DNA molecules triggering 
decreased or increased gene transcription and consequently regulate gene  expression22. An up-regulated DEG 
which encodes ‘basic helix-loop-helix’ (bHLH) transcription factor was identified in the inoculated compared 
with the mock-inoculated resistant accession (AT349; the RT_RC comparison). The DEGs encoding ‘myeloblas-
tosis-related’ (MYB-related) and ‘Lesions simulating disease resistance’ (LSD) TFs were up and down-regulated 
in ST_SC, respectively. DEGs encoding TF Ethylene Responsive Factor superfamily consisted of ERF and RAV, 
‘N-acetylcysteine’ (NAC), ‘far-red-impaired response’ (FAR1), ‘Nuclear Factor Y’ (NF-YB), WRKY, B3, ‘Basic 
leucine zipper’ (bZIP), ‘(zinc-finger reverse transcription) (zf-RVT) and ‘Heat Shock Factor’ (HSF) were iden-
tified in the RT_ST group, of which only the last two were up-regulated. No TF was observed in the resistant 
genotype compared to the susceptible one under control conditions.

Based on the importance of the RT_RC and RT_ST comparisons, the NB-LRR and/or LRR motif-containing 
genes were identified among the DEGs of these two comparisons as listed in Supplementary Table S1. The results 
showed that two (both up-regulated) and 43 (29 up-regulated and 14 down-regulated) LRR motif-containing 
genes were detected in the RT_RC and RT_ST comparisons, respectively. The up-regulated ‘AET5Gv20023600’ 
and ‘AET2Gv20853300’ DEGs carried an LRR motif in the RT_RC comparison. From the 29 up-regulated 
LRR-containing genes in the RT_ST comparison, the gene ID ‘AET3Gv2061130029’ contained two LRR-motifs 
while the rest (28 DEGs) had one LRR-motif. Among the down-regulated DEGs in the RT_ST comparison, the 
‘AET5Gv21162800’ was the only identified gene that encoded both nucleotide-binding (NB-ARC) and leucine-
rich domains. Moreover, reciprocal blast was conducted in BLASTN to identify the putative orthologues for 
available sequences of LR resistance genes in T. aestivum (bread wheat). The putative orthologues of the genes 
Lr1, 22a, 34 and 67 were found in the Ae. tauschii reference genome (Supplementary Table S2).

Discussion
High-performance gene expression approaches could shed light on the molecular mechanisms of host–path-
ogen interactions. In particular, next-generation sequencing can be applied to study important non-model 
host–pathogen systems, such as wheat-Puccinia to develop more effective strategies for investigating destructive 
 pathogens23. Ae. tauschii as a gene resource and the most important diploid progenitor of wheat could greatly 
benefit disease resistance programs. Phenotyping of Ae. tauschii showed low and high ITs of ‘0;=’ and ‘3+’ for 
the accessions AT349 and AT350, respectively, which provided the opportunity to comparatively analyze their 
complete transcriptome and study the differential gene expression. A greater number of DEGs were either up or 
down-regulated in the ST_SC comparison group than in the RT_RC comparison suggesting that the susceptible 
genotype was highly disturbed at the transcriptional level. The hyper-responsivity of the susceptible genotype 
at the molecular level has also been reported in other plant species under  biotic24 and abiotic  stresses25. Down-
stream evaluations including GO enrichment and pathway analysis together with the study of TFs provided a 
comprehensive review of DEGs in the four comparisons. In addition, the comparison of RT-qPCR results with 
those of RNA-seq validated the data. Though the expression levels of the selected DEGs using RT-qPCR were 
slightly different  from the RNA seq data, they showed highly significant correlations, confirming the findings 
of transcriptome analysis.

RT_RC comparison. The comparison of the results of the inoculated and mock-inoculated AT349 opened 
up a window to understand the resistance mechanisms and clarify the molecular aspects of its strategy to pre-
cisely respond to rust infection, which is reflected as an IT of ‘0;=’. The results revealed that the ‘α-linolenic acid 
metabolism’ pathway was dynamically overexpressed in the inoculated AT349. In particular, this pathway is 
associated with jasmonic acid (JA) biosynthesis which is an important signaling molecule closely related to plant 
defense and resistance to  pathogens26. The LR pathogen secretes an arsenal of effector proteins interfering with 
the defense system and potentially could facilitate its colonization. As a result, the host activates an intercon-
nected network of mechanisms to prevent disease progression. In this context, the host JA-mediated immunity 
from the up-regulated ‘AET6Gv20822700’ (6.23-fold) and ‘AET7Gv21052200’genes (4.57-fold) encoded allene 
oxide cyclase and peptidase family, respectively, and activated JA dependent signaling cascades which in turn 
resulted in regulating the innate immune response. This is in agreement with the results obtained by Berens 
et al.26 and Han and  Kahmann27 who stated JA biosynthesis leads to the enhancement of plant immunity and 
resistance.

Likewise, JA pathways can be regulated by chromatin-remodeling factors that affect plant  defense28. The 
up-regulated genes ‘AET5Gv21027500’ (4.57-fold), ‘AET5Gv21027300’ (5.76-fold), and ‘AET5Gv21029100’ 
(4.99-fold) encoding histone H1 are associated with chromatin assembly/disassembly. Histone H1 binds to the 
nucleosome core and protects the linker DNA between nucleosomes, causes further compaction, and partici-
pates in higher-order chromatin structure formation and  remodeling29. Consequently, chromatin remodeling 
is a potential means to control gene expression and regulate response to LR pathogen, which is consistent with 
the study by Alvarez et al.29 who stated that defense-related genes are often involved in chromatin modifications 
and remodeling.

Eight up-regulated DEGs were identified in the metabolic processes of carboxylic acid, oxoacid, and organic 
acids in the infected AT349 genotype. Carboxylic acid acts as a natural fungicide and decreases the destruc-
tive effects of fungal  attacks30,31. Similarly, organic acids and oxoacids have been reported to protect plants 
against pathogen  infections32,33. The functions of these genes were annotated in ion binding, cyclase, cyanase, 
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jasmonyl-hydrolase, and lyase activity. In addition, they processed the metabolism of acids through fatty acid 
and amino acid metabolism, nitrogen metabolism, and alkaloid biosynthesis pathways. In this context, the 
aromatic amino acid (phenylalanine, tyrosine, and tryptophan) pathway was significantly activated in RT_ RC 
compared to ST_SC in response to infection. Aromatic amino acid (AAA) biosynthesis and degradation act as 
a starting point for the metabolism of a large variety of secondary metabolites that play essential roles in the 
plant immune  system34. The genes ‘AET1Gv20127900’ (6.47-fold) and ‘AET2Gv20740100’ (6.39-fold) encoding 
pyridoxal–dependent decarboxylase conserved domain (Pyridoxal_deC), and glutamine amidotransferase class-I, 
respectively, were associated with AAA pathway to biosynthesize secondary metabolites in defense against LR 
pathogen. Moreover, the resistant genotype (AT349) could uniquely recognize microbial elicitors by receptor 
proteins and respond to them via the ‘alkaloid biosynthesis’ pathway where the Pyridoxal_deC protein is encoded 
by ‘AET1Gv20127900’. The enzymatic decarboxylation of tyrosine and tryptophan leads to the synthesis of alka-
loid products. Alkaloids are often elevated in response to  infection34,35 and hence, their biosynthesis pathway may 
have contributed substantially to the AT349’s response to leaf rust. Further, the gene ‘AET4Gv20718500’ (6.93-
fold) encoding cyanase protein associated with the ‘nitrogen metabolism’ pathway was activated in the infected 
AT349. This pathway creates essential signals for regulating the responses of plants to environmental changes via 
glutamine metabolism and arginine biosynthesis, and is consistent with the findings of Fagard et al.36 who sug-
gested that glutamine plays an essential role in plant defense responses through the nitrogen metabolism pathway.

Rapid and sophisticated responses via differential gene expression to various environmental factors have 
evolved in plants by phenomena largely controlled by  TFs37. The bHLH encoding TF, ‘AET5Gv20888400’ (5.37-
fold) was the only up-regulated TF found in the inoculated AT349. This TF responds to resistance inducers 
such as jasmonic acid, which influences defense pathways and alters plant responses from compatibility to 
incompatibility in cooperation with defense  genes38,39. Therefore, it can be suggested as a candidate regulator in 
the resistant accession under biotic stress conditions.

The DEGs ‘AET2Gv20184700’ (− 38.32-fold), ‘AET2Gv20184800’ (− 5.13-fold), and ‘AET7Gv21151800’ 
(− 74.83-fold), which are associated with hexose sugars specifically galactose metabolism, were down-regulated 
in the infected AT349. In fact, fungal invasion resulted in a dramatic decrease in GalT enzyme activation in 
AT349 which catalyzes the attachment of galactose to proteins during glycoprotein  synthesis40 and has multiple 
functions in host–pathogen interactions. Despite playing a crucial role in controlling pathogen infection, host 
glycoproteins may function in opposite ways and promote pathogen infection in some cases. Interestingly, patho-
gens sometimes secrete non-glycoproteins in the host and glycosylate them using host’s glycosylation facilities to 
become  pathogenic41. Depending on the type of host–pathogen system, either a decrease or an increase in sugar 
level has been observed in infected  tissues42. Remarkably, the down-regulation of GaIT expression in AT349 may 
suggest a possible mechanism of pathogen inhibition by limiting the activation of effectors via galactosylation.

ST_SC comparison. The findings from the ST_SC group explained the circumstances that led to the sus-
ceptibility response and defined weaknesses and AT350’s failure against rust. In the infected AT350 accession, 
down-regulation of a substantial number of DEGs mostly related to the ‘photosynthesis system’, ‘precursor 
metabolites’, ‘cell energy generation’, and ‘external stimulus responses’ were associated with the susceptible phe-
notype, and hence an IT of ‘3+’ was detected. Importantly, the down-regulation of many influential photosyn-
thesis-annotated genes such as ‘AET2Gv20124700’ (− 15.57-fold) encoding ribulose-1,5-bisphosphate carbox-
ylase-oxygenase (RuBisCo) enzyme, ‘AET6Gv20414400’ (− 6.56-fold), ‘AET6Gv20245800’ (− 195.2-fold) and 
‘AET4Gv20184600’ (− 7.78-fold) which encode chlorophyll A-B binding proteins, ‘AET4Gv20128500’ (− 5.78-
fold) encoding photosystem I protein (PSI-N), ‘AET1Gv20789200’ (− 9.48-fold) encoding photosystem II pro-
tein (PsbW), ‘AET2Gv20439100’ (− 5.16-fold) encoding cytochrome B6-F and ‘AET1Gv20253000’ (− 5.52-fold) 
encoding nicotinamide adenine dinucleotide phosphate (NAD(P)H) dehydrogenase may be a result of leaf rust 
on altered regulation of photosynthesis in the accession AT350. The study of these DEGs could aid in under-
standing the role of photosynthesis apparatus in plant immunity. This is consistent with the findings of Poretti 
et al.24, Ghosh et al.43, and Cohen and  Leach44, who stated that photosynthesis as a hub of cross-talk in growth 
and defense trade-offs during plant–pathogen interactions is inhibited by a range of biotic stresses, including 
bacterial, viral, and fungal pathogens. A considerable number of DEGs which associated with the host energy 
generation system via precursor metabolic process, were down-regulated in the susceptible accession upon 
infection. The precursor metabolites are intermediate molecules in the catabolic and anabolic pathways that can 
be oxidized to generate ATP and supply cell energy or can be used to synthesize macromolecular subunits such 
as amino acids, lipids, and  nucleotides45. In addition, responses to various types of stimuli declined by down-
regulating a substantial number of related genes in the infected AT350. For instance, a dramatic down-regulation 
of the ‘AET1Gv20670800’ gene (− 21.94-fold) encoding LSD transcription factor was associated with susceptible 
phenotype in the infected AT350. Moreover, DEGs involved in signaling pathways like ‘NOD-like receptor sign-
aling pathway’, ‘AMPK signaling pathway’ and ‘plant hormone signal transduction’ were significantly knocked 
down in this genotype. The gene ‘AET5Gv20169800’ (− 13.20-fold) encoding leucine-rich repeat (LRR) protein 
was one of the highly down-regulated genes associated with the ‘hormone signal transduction’ pathway. LRR 
proteins have a proven role in plant resistance to  pathogens46–48.

Seven up-regulated DEGs were identified in association with negative regulation (a process that stops 
or reduces the rate of an activity) of proteolysis, peptidase, endopeptidase, and hydrolase activities, of them 
‘AET5Gv21082200’ which encodes proteinase inhibitor showed a 331.66-fold change. In fact, proteases and 
protease inhibitors protect plants against pathogens, and hence their negative regulation results in the inhibi-
tion of defense responses. Likewise, studies have reported that down-regulating the genes encoding proteolytic 
enzymes enhances the susceptibility of plants to  pathogens49. It proposes that the down-regulation rate of protease 
activity in the extracellular region of the infected AT350 probably leads to the protection of P. triticina’s effector 
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proteins against the host proteolytic machinery, and may suggest the possible role of the proteolytic machinery 
in defense responses.

RT_ST comparison. Hidden molecular aspects of the genotype AT349 displaying resistance to rust were 
evaluated in comparison with the susceptible accession of AT350. The exclusive output of this comparison 
revealed that ‘serine  family amino acid metabolic process’,  and ‘glycine metabolic process’ were up-regulated 
in the inoculated AT349 compared to AT350. Glycine and serine are integrated with photorespiration, which is 
involved in defense responses during plant–pathogen  interactions50,51. The aminomethyl transferase folate-bind-
ing domain encoding gene; ‘AET2Gv21032800’ (5.68-fold) which was identified in the serine/glycine metabolic 
process, was up-regulated across the ‘one-carbon pool by folate’ pathway. Folates, also known as B9 vitamins, 
have an overlooked role in plant responses to stresses and innate  immunity52. Furthermore, ‘sulfur compound 
biosynthesis’ may have been augmented in AT349, where the up-regulated ‘HSF’ TF gene ‘AET4Gv20678400’ 
(6.93-fold) was involved. Sulfur biosynthesis plays an important role in plant immunity, and is an essential 
nutrient for metabolite  synthesis53. This element also acts as a phytoanticipin or phytoalexin to protect plants 
from various pathogens and  pests53. Likewise, the up-regulated ‘zf-RVT’ TF (‘AET5Gv20218800’ (12.36-fold)) 
in AT349 might participate in initiating the transcription of downstream defense-related genes or act as poten-
tial effector  decoys54 and therefore, is worthy of further investigation. Furthermore, ‘cellular homeostasis’ was 
significantly enhanced by up-regulating 12 genes functionally responsible for cofactor binding, oxidoreductase, 
and catalytic activities in the inoculated AT349, which is critical for maintaining the balance of cell’s biological 
processes. From the perspective of RNA degradation mechanisms, the gene ‘AET3Gv20765000’ which encodes 
‘enolase, C-terminal TIM barrel domain’, increased by more than 104 folds in the infected leaves. This domain 
with lyase and catalytic activities in the phosphopyruvate hydratase complex, possibly leads to the generation of 
precursor metabolites and energy, as well as a defense response to leaf rust.

The ‘AET4Gv20478300’ gene encoding EF domain protein which is involved in calmodulin/calmodulin-like 
protein (CaM/CLM), was up-regulated by 8.22-folds. CaM/CLM, as a calcium sensor protein, plays a crucial 
role in cellular signaling cascades and is involved in stomatal closure, cell wall reinforcement, and hypersensi-
tive  response55. This gene is associated with the ‘plant–pathogen interaction’ pathway probably via enhancing 
calcium  (Ca2+) concentration in the cytosol. Further, the afore-mentioned DEG’s association with ‘C–type lectin 
receptor signaling’ pathway suggests its participation in the perception of pathogen invasion. β-Glucan is one of 
the most prominent polysaccharides of the fungal cell  wall56, which initiates the defense response through this 
pathway. This gene was associated with CaM which in turn, as a member of the signaling pathway may cause 
cell differentiation and protect it against leaf rust pathogen. Furthermore, this gene is integrated with ‘MAPK 
signaling’ pathway via a calmodulin protein (CaM4) which induces the activation of mitogen-activated protein 
kinase8 (MAPK8), promoting the negative regulation of ROS accumulation and maintaining cell homeostasis. 
These results comport with current models of ETI by Wang et al.57, who reported that plants have evolved two 
types of immune systems (PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI)) to recognize 
and fend off pathogens via the activation of calcium-dependent protein kinases (CDPKs), prompted ROS burst 
and activated MAPKs. In the transcriptome study of wheat near-isogenic lines with/out Lr28, the resistant plants 
displayed higher levels of expression in genes encoding MAPK during incompatible interactions at 12–24 hpi 
as compared to the susceptible ones during compatible  interactions58. Also, Tang et al.59 stated calcium influx 
activates MAPK cascades which in turn promote stomatal closure to limit the pathogen’s entry into leaves. 
Furthermore, the ‘AET1Gv20702500’ gene encoding UTP-glucose-1-phosphate uridylyltransferase (UDPGP), 
was up-regulated in the ‘glycerolipid metabolism’ pathway, which is expected to mediate disease resistance 
 responses60. Therefore, these genes may be implicated in resistance, supporting their role in Ae. tauschii immunity 
and could serve as potential candidates in future studies.

Interestingly, DEGs involved in ‘regulation of primary and macromolecule metabolic processes’, ‘regulation of 
nitrogen compound metabolism’, ‘RNA metabolism’, and ‘nucleobase-containing compound metabolic processes’, 
which result in final ‘regulation of cellular transcription’, were down-regulated within the Rb-EF2 complex of 
AT349 compared to AT350 upon infection (Fig. S4). The retinoblastoma (Rb) protein, known as retinoblastoma-
related (RBR) protein in plants, controls the cell cycle through interacting with the EF2 transcription factor 
family. In fact, the Rb-EF2 complex plays a crucial role in controlling the transition from G1 to S phase in the 
plant cell  cycle61. Reducing cellular transcription associated with the Rb-EF2 complex in the inoculated AT349 
probably suggests that AT349 prefers to maintain the cell’s energy against the pathogen via enduring the G1 phase 
and postponing the S phase and cell division. In addition, the gene ‘AET7Gv20648500’ (− 7.23-fold) encoding 
retinoblastoma-associated protein A domain (Rb-A) associated with the ‘cell cycle’ pathway was down-regulated. 
Furthermore, a significant number of DEGs encoding transcription factors such as ethylene-responsive factor 
superfamily consisted of ‘ERF’ and ‘RAV’, ‘NAC’, ‘FAR1’, ‘NF-YB’, ‘WRKY’, ‘B3’ and ‘bZIP’ were associated with 
the above-mentioned down-regulated processes. Generally, TF responses to unfavorable conditions are complex 
and their functions are specific and can vary depending on the race of the  pathogen54.

RC_SC comparison. The RC_SC comparison revealed differences between the resistant and susceptible 
accessions in the absence of infection which could be used as criteria for discriminating between these geno-
types. The up-regulated DEGs were precisely tracked across the biological processes and pathways in AT349, 
and ‘AET1Gv20256300’ (11.10-fold), ‘AET2Gv20412400’ (10.86-fold) and ‘AET2Gv20412700’ (8.72-fold) par-
ticipated in ‘phosphoenolpyruvate and erythrose 4-phosphate metabolism’ process. This is the precursor for 
the synthesis of aromatic amino acids and also mediates the amino sugar and nucleotide sugar metabolism 
pathways. These DEGs also integrated into Phe catabolic/metabolic processes where Phe is a building block of 
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many compounds that in turn, mediate plant reproduction, growth, development, and defense against different 
stresses.

Monitoring leaf rust (LR) resistance genes and NB‑LRR domains. So far, ~ 80 LR resistance genes 
have been identified and characterized in  wheat62; some of which were deployed in wheat cultivars. Among them, 
the genes Lr21, Lr22a, Lr32, Lr39/Lr41, Lr40, Lr42, and Lr43 have been transferred from Ae. tauschii into  wheat63, 
of which Lr21 (GenBank: FJ876280.1) and Lr22a (KY064064.1) have been cloned and  sequenced64,65. Among 
these two sequenced LR genes, we could identify a putative orthologue gene for Lr22a i.e. ‘AET2Gv20074800’ 
with the ATP binding function in Ae. tauschii reference genome with 98% identity. However, this putative 
gene did not appear in DEGs. The main reason for this could be that Lr22a is an adult plant resistance (APR) 
 gene66 and our samples were taken at the seedling stage. Moreover, four bread wheat-originated LRs i.e. Lr1 
(EF439840.1)67, Lr10 (AY270157.1)68, Lr34 (FJ436983.1)69, Lr67 (MK425206.1)70 that have been sequenced, were 
identified in the Ae. tauschii reference genome (Supplementary Table S2). Interestingly, the putative orthologues 
of Lr1 (all stage-resistance ‘AET5Gv21241000’ with 98% identity), Lr34 (APR ‘AET7Gv20224900’ with 100% 
identity) and Lr67 (APR ‘AET4Gv20606400’ with 99% identity) appeared in DEGs. Ling et al.71 screened 200 
accessions of Ae. tauschii against P. triticina isolates at the seedling stage, and detected and mapped a dominant 
resistance gene in accession Tr.t. 213 at the same chromosomal position as Lr1. They concluded that the resist-
ance gene in this accession is an orthologue of Lr1. Regarding Lr34 and Lr67, there is no report of orthologues 
in Aegilops and the results of the present study can be considered the first report of their putative orthologues. In 
the present study, a putative orthologue of Lr34 showed higher expression in AT349 while those of Lr1 and Lr67 
showed higher expression in AT350 despite showing a high IT. Though Lr67 cannot be detected at the seedling 
stage, it is a hexose transporter with pleiotropic  effects70 and its contribution to sugar metabolic process at 24 hpi 
may demonstrate its up-regulation. In contrary to Ling et al.71, Lr1 orthologue was also detected in the suscepti-
ble accession which needs further investigation in future studies.

In plants, the majority of the cloned resistance (R) genes code for proteins with nucleotide-binding and 
leucine-rich repeat (NLR)  domains46. In the present study, 46 DEGs encoding LRR motif were identified, of 
which 25 were up-regulated in AT349 upon infection such as ‘AET5Gv20023600’ with oxidoreductase activity 
and ‘AET2Gv20853300’ with lyase activity as well as ‘AET1Gv20718200’ encoding a protein kinase with ATP-
binding function. These genes represent potential candidates for further studies against wheat leaf rust. In 
addition, the ‘AET5Gv21162800’ gene encoding NLRs domains was down-regulated in the RT_ST comparison. 
Although NLRs detect the presence of effector molecules and are involved in ETI, the actual immune response 
of plants depends on ETI interaction with many other  components47. Yadav et al.18 identified 15 and 66 NLRs 
encoding transcripts in the compatible and incompatible interactions, respectively, and stated that leaf rust with 
suppression or changes of upstream signaling in the host, has likely resulted in the down-regulation of immune 
response and pathogen proliferation in the susceptible  genotype18.

Conclusion
The results of RNA seq in Ae. tauschii presented a comprehensive view of the incompatible and compatible 
response to P. triticina in this species. Transcriptome profiling identified significant DEGs in response to LR and 
exhibited implicit GO terms and/or pathways in the host–pathogen interactions, such as chromatin remodeling. 
This remodeling as a logistic action to organize the genome, suggests the dynamic regulation of genes to make the 
incompatible Ae. tauschii ready for sophisticated and timely defense responses to leaf rust. The other overlooked 
pathway was the ‘RNA degradation mechanism’, which likely accelerated the true defense responses, cellular 
homeostasis, and enhanced the stability of biological processes against rust. Despite all feasible defense strategies, 
some rust effector proteins may penetrate the leaves. However, the resistant Ae. tauschii accession apparently 
down-regulated the galactosylation activity to prevent rust colonization. Focus on such crucial pathways together 
with associated DEGs is suggested for future disease resistance studies, which help discover novel and putative 
aspects of defense mechanisms. Since a number of down-regulated DEGs associated with the susceptible pheno-
type were related to ‘photosynthesis’, the photosynthesis rate could be suggested as a likely physiological marker 
for screening different genotypes. Overall, Ae. tauschii as the common ancestor of wheat is a valuable genetic 
resource for breeding programs. From this aspect, dozens of highly significant DEGs were identified, serving as 
a valuable repository of candidate genes, which may aid in the development of rust resistant wheat genotypes.

Material and methods
Plant material and P. triticina pathotype. Two resistant and susceptible Ae. tauschii accessions, AT349 
(TN-01-1970) and AT350 (TN-01-2017), respectively, were selected from a collection of wheat wild relatives 
collected from the southern shores of the Caspian Sea (Iran) according to the relevant guidelines and legisla-
tions or obtained from the Seed and Plant Improvement Institute (Karaj, Iran) and tested with an array of 10 P. 
triticina  pathotypes72. The two above-mentioned accessions were obtained from the National Plant Gene Bank, 
Seed and Plant Improvement Institute, Iran and inoculated with pathotype CDHLQ (race No. 15 and the viru-
lence pattern: 3a, 3bg, 11, 14b, 24, 30, B73) which was first multiplied on the susceptible wheat cultivar ‘Boolani’ 
in greenhouse. The urediniospores were mixed with talcum powder in a ratio of 1:3 and transferred onto the 
leaves using a fine paintbrush at the two-leaf stage. The inoculated plants were then kept in a dark and cool room 
(18 °C and 100% humidity) for 24 h after which were moved to rooms maintained at 18–20 °C.

Sampling and phenotyping. Seeds of the resistant and susceptible accessions were planted in two sets 
of six pots. The growing conditions and inoculation procedure were the same as those mentioned earlier. One 
set was inoculated with the above-mentioned pathotype while the other set was kept as mock (the inoculum 
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included only talcum powder). Leaf tissues were collected from treated and non-treated plants 24 hpi in four bio-
logical replicates as suggested by Coram et al.74 and Chandra et al.58. The samples were named resistant control 
(RC), resistant treatment (RT), susceptible control (SC), and susceptible treatment (ST). One biological replica-
tion was used for RNA extraction and sequencing, and the other three were analyzed by quantitative polymerase 
chain reaction (RT-qPCR).

Both inoculated and mock-inoculated seedlings were kept for 2 weeks to monitor disease development where 
plants with infection types (ITs) less than ‘2’ were considered resistant while those with ITs higher than ‘3’ were 
regarded as  susceptible75.

RNA extraction, sequencing and mapping to the reference genome. The leaf samples were 
ground into a fine powder in liquid nitrogen in a mortar and pestle to isolate RNA using the Qiagen RNA Isola-
tion Kit (Germany) following the manufacturer’s protocol. The quality of RNA was determined on 1% agarose 
gel, and RNA concentration was measured using an Epoch microplate spectrophotometer (BioTek Instruments, 
Vermont, USA) at 260 nm and 280 nm. High-quality RNA samples were delivered for sequencing (Macrogen 
Inc., Seoul, South Korea) and total RNA integrity was checked using an Agilent Technologies 2100 Bioanalyzer 
(Agilent Technologies, Santa Clara, CA, USA) with an RNA Integrity Number (RIN). Then, libraries were con-
structed using the TruSeq RNA Library Prep Kit with insert sizes ranging from 266 to 297 bp and sequenced 
using the high-throughput sequencing system; Illumina HiSeq2500 where high-quality paired-end reads of 
101 bp were generated. The quality of raw reads was checked with FastQC 0.11.8 (https:// www. bioin forma tics. 
babra ham. ac. uk/ proje cts/ fastqc/), and reads were cleaned with  Trimmomatic76. The ribosomal RNA (rRNA) 
contamination was precisely determined by SortMeRNA 2.177 and filtered out. Gene model annotations of Ae. 
tauschii and P. triticina were obtained from the Ensembl database (https:// ensem blgen omes. org/). Subsequently, 
the contaminant reference genome of P. triticina (GCA_000151525.178) was identified and removed via raw 
data pre-alignment using ultrafast universal RNA-seq aligner, STAR 2.6.1d79. Finally, the remaining transcripts 
were aligned to the Ae. tauschii reference genome (Aet_v4.0, GCA_002575655.180), and the transcriptome was 
constructed via STAR under the Linux operating system using a super computer and forwarded for downstream 
RNA-seq analysis.

Annotation, normalization of gene expression levels and detection of differentially expressed 
genes. Reads were counted using the HTSeq 0.11.1  package81 in Python based on the Ensembl gene model 
annotation. The HTSeq package provides the utility “htseq-count” for counting reads that are mapped to each 
feature for a given dataset. The GTFtools 0.6.5  package82 was executed by the Python Interpreter to calculate the 
median of gene length in the Aegilops genome. Further, counts per million mapped reads (CPM) were normal-
ized using the trimmed mean of M-values (TMM) approach in the edgeR  package83 in R as a normalization 
method for between-sample (library) comparisons, while the FPKM normalization (Fragments Per Kilo-base 
per Million reads mapped) method was performed for within-sample comparisons according to the following 
formula:

where, FPKM (A) is the expression of gene A, C is the number of fragments mapped to gene A, N is the total 
number of fragments mapped to the reference genes, and L is the number of bases of gene A (Gene  length84). 
To demonstrate the differences between samples, principal component analysis (PCA) was performed using the 
samples’ expression profiling in the Factoextra R package (http:// www. sthda. com/ engli sh/ rpkgs/ facto extra).

Differentially expressed genes between samples were identified by the NOISeq  package20 in R using TMM 
normalized counts. Counts equal to zero were replaced by 0.5 and the percentage of the total sequencing depth 
(pnr) was considered 0.2. Comparative analysis of DEGs was performed in four levels between samples, includ-
ing: resistant (AT349) treatment versus resistant control (RT_RC), susceptible (AT350) treatment versus sus-
ceptible control (ST_SC), resistant treatment versus susceptible treatment (RT_ST) and resistant control versus 
susceptible control (RC_SC), which are referred to as the four comparisons in this study.

GO terms and KEGG pathway enrichment. Gene ontology (GO) analysis was performed using the 
biomaRt package in R to identify the main biological phenomena of DEGs; molecular function (MF), cellular 
component (CC), and biological process (BP). Furthermore, the GO term enrichment was realized by the classic 
algorithm of Fisher statistics under the topGo package in R where top enriched GOs with P-values less than 0.01 
were  selected85. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to identify the main 
pathways significantly enriched in  DEGs86. The pathways with adjusted P-values based on a false discovery rate 
(FDR) less than 0.05 were defined as significantly enriched.

Transcription factor (TF) discovery, protein domain enrichment analysis and quest for leaf rust 
(LR) resistance genes. The DEGs encoding TFs were identified by querying the Plant Transcription Fac-
tor Database (http:// plant tfdb. gao- lab. org/). In addition, a hidden Markov model (HMM) approach was imple-
mented to search for the protein domains obtained from Pfam to scan the DEGs using the hmmscan program of 
the HMMER  suite87. To identify NBS-LRR genes in the RT_RC and RT_ST comparisons, protein sequences were 
analyzed using InterProScan 5  standalone88, including all 13 integrated databases (CATH-Gene3D, HAMAP, 
PANTHER, PIRSF, PRINTS, PROSITE patterns, PROSITE profiles, Pfam, PfamB, Pro-Dom, SMART, SUPPER-
FAMILY, and TIGRFAMs) on Linux. Also, to further predict the leucine-rich repeat (LRR) motifs, the protein 

(1)FPKM (A) =
106C
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sequences of the DEGs were subjected to LRRsearch (http:// www. lrrse arch. com). This web-server has been 
developed using position specific scoring matrix (PSSM) of 11 residue LRR–HCS (highly conserved segment) 
which are frequently observed motifs in the most divergent classes of LRR containing proteins. Furthermore, 
available sequences of LR resistance genes were retrieved from the NCBI database in T. aestivum. Then, recipro-
cal blast was conducted in BLASTN 2.6.0+89 to identify their putative orthologues in Ae. tauschii.

RT–qPCR and data validation. Total RNA (2 μg) from three biological replicates was treated with RNase–
free DNase I (1 U µL−1) 1000U (Fermentas, USA) to eliminate possible genomic contamination. Afterwards, it 
was reverse transcribed into cDNA using a RevertAid First Strand cDNA Synthesis Kit (TaKaRa, Japan). The 
qRT-PCR primers were designed using Primer3Plus (https:// prime r3plus. com/ prime r3web/ prime r3web_ input. 
htm; Table S3). Then, their secondary structures were checked using Beacon Designer (http:// www. premi erbio 
soft. com/ qOligo/ Oligo. jsp? PID=1) and the secondary structure of the amplicon was verified using Mfold DNA 
(http:// unafo ld. rna. albany. edu/?q= mfold/ DNA- Foldi ng- Form). Finally, primers’ specificities were confirmed 
using NCBI primer BLAST (https:// www. ncbi. nlm. nih. gov/ tools/ prime r–blast/ index. cgi? LINK_ LOC= Blast 
Home).

RT- qPCR was performed on an ABI StepOne real-time PCR system (Applied Biosystems, USA) using the 
SYBR Green qPCR Master Mix (Ampliqon, Denmark) according to the manufacturer’s instructions. The genes 
GAPDH and TUBβ were used as housekeeping, and the average of their Ct values (Ct reference) was used for 
further calculations. Two technical replicates were used for each biological sample, and PCR conditions were 
determined based on the quality, concentration, and purity of RNA (Supplementary Tables S4 and S5). Relative 
quantification was calculated by the comparative  2–ΔΔCT method using the following equation:

where Time x is the treatment condition and Time 0 denotes the control  condition90. Statistical significance 
was assessed using Student’s t-test (p ≤ 0.05). Correlation analysis was performed to determine the relationship 
between RNA–seq and qRT–PCR expression data.

Data availability
RNA sequencing data were deposited at the National Center for Biotechnology Information (NCBI) in the 
Sequence Read Archive (SRA) under the PRJNA748580 Bioproject accession.
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