
micromachines

Article

Accelerating the Finite-Element Method for
Reaction-Diffusion Simulations on GPUs with CUDA

Hedi Sellami 1, Leo Cazenille 2 , Teruo Fujii 3, Masami Hagiya 1, Nathanael Aubert-Kato 2,*
and Anthony J. Genot 3,*

1 Department of Computer Science, The University of Tokyo, Tokyo 113-8654, Japan;
hedi@sellami.dev (H.S.); hagiya@is.s.u-tokyo.ac.jp (M.H.)

2 Department of Information Sciences, Ochanomizu University, Tokyo 112-8610, Japan;
leo.cazenille@gmail.com

3 LIMMS/CNRS-IIS, UMI2820, The University of Tokyo, Tokyo 153-8505, Japan; tfujii@iis.u-tokyo.ac.jp
* Correspondence: naubertkato@is.ocha.ac.jp (N.A.-K.); genot@iis.u-tokyo.ac.jp (A.J.G.)

Received: 1 August 2020; Accepted: 3 September 2020; Published: 22 September 2020
����������
�������

Abstract: DNA nanotechnology offers a fine control over biochemistry by programming chemical
reactions in DNA templates. Coupled to microfluidics, it has enabled DNA-based reaction-diffusion
microsystems with advanced spatio-temporal dynamics such as traveling waves. The Finite
Element Method (FEM) is a standard tool to simulate the physics of such systems where boundary
conditions play a crucial role. However, a fine discretization in time and space is required for
complex geometries (like sharp corners) and highly nonlinear chemistry. Graphical Processing Units
(GPUs) are increasingly used to speed up scientific computing, but their application to accelerate
simulations of reaction-diffusion in DNA nanotechnology has been little investigated. Here we study
reaction-diffusion equations (a DNA-based predator-prey system) in a tortuous geometry (a maze),
which was shown experimentally to generate subtle geometric effects. We solve the partial differential
equations on a GPU, demonstrating a speedup of ∼100 over the same resolution on a 20 cores CPU.

Keywords: Finite-Element Methods; GPU; CUDA; non-linear PDEs; reaction-diffusion

1. Introduction

In the past two decades, the architecture of Graphical Processing Units (GPUs) have made them
the tool of choice in scientific computing to solve massively parallel problems [1,2]. CPUs spend
a sizable fraction of their transistors budget on caching and control units. This allows CPUs to quickly
serve data that are often accessed (e.g., for database server) and to handle complex and varied flows of
instructions (e.g., out-of-order or speculative execution), but this comes at a cost of a reduced number
of computing units (arithmetic logic units). By contrast, GPUs spend almost all their transistor budget
on arithmetic logic units, because they were initially designed to handle homogeneous but massively
parallel flows of instructions (typically the rendering of graphical scenes, which heavily relies on
linear algebra). This focus on computing units enables GPUs to beat CPUs on problems that can be
formulated in a parallel manner. For instance, GPUs typically accelerate dense matrix multiplication
(a classical, though somewhat artificial, benchmark for supercomputers) by a factor of 6 over CPUs [3],
and most supercomputers now embark GPUs to accelerate their computations.

This speedup comes at a cost: it is necessary to write specific code to fully exploit the parallelism
of GPUs. This porting has been facilitated by CUDA libraries [4], which provide a middle-level
programming interface for NVIDIA GPUs and have enabled GPU-enabled software in many areas
of scientific computing. For instance, the meteoric rise of deep learning in the past decade is
often attributed to the availability of GPU-enabled frameworks (TensorFlow [5], PyTorch [6],. . . ).

Micromachines 2020, 11, 881; doi:10.3390/mi11090881 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-5893-9761
https://orcid.org/0000-0002-9100-1855
http://dx.doi.org/10.3390/mi11090881
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/11/9/881?type=check_update&version=2


Micromachines 2020, 11, 881 2 of 15

Molecular dynamics has also tremendously benefited from GPUs [7–9], and most major packages are
now GPU-accelerated (LAMMPS, AMBER, CHARMM,. . . ). In many of these cases, GPUs offer sizable
speed up on real-world problems (typically ∼10–100×).

GPUs are also a powerful tool for the Finite Element Method (FEM) [10]. These simulations are
routinely used by scientists and engineers to solve Partial Differential Equations that describe physical
phenomena on prescribed geometries: mechanical stress, heat dissipation, dispersion of chemicals,
and so on. The literature on FEM and GPUs is now abundant [11–22], yet FEM software still heavily
rely on CPUs for their computations, and few support GPUs (e.g., COMSOL [23], a popular commercial
software, does not support GPUs). In absence of routine GPU-acceleration for FEM software, it is
difficult to judge if a particular physical PDE could benefit from GPUs without actually implementing
the FEM resolution at a low level on the GPU.

The goals of this paper are twofold. First and foremost, we set out to investigate if the community
of DNA nanotechnology and microfluidics could benefit from GPU-accelerated simulations. In recent
years, progresses in DNA nanotechnology have enabled the programming of chemical reaction
networks with advanced dynamics (oscillations, multi-stability. . . ) [24–29] and information-processing
capabilities [30–36]. Coupled to microfluidics and microfabrication which allow the massive screening
of experimental conditions, the fabrication of chemical reactors with arbitrary geometries or the
control of chemical reactions with electrical or opticals signals [37–43], the community of DNA
nanotechnology has been exploring reaction-diffusion as a way of building and programming matter
at the micro-scale [44–48]. Simulations of PDE play an essential role to design, prototype and debug
these DNA-based systems. But the nonlinear nature of their chemistry and the complex geometries
of their reactors make simulations computationally intensive. For instance, microfluidic channels
often turn at a right angle, but such geometries with sharp corners are known to cause difficulties
for FEM [49]. While there has been a body of works addressing GPUs for reaction-diffusion (Table 1
and [50–54]), it is often limited to rectangular reactors (using the Finite Difference Method to compute
diffusion). When arbitrary geometries are considered (using FEM), it is often applied to problems with
different physics (e.g., propagation of cardiac waves at the surface of the heart). Overall, only a few
authors [51] seem to have addressed the question of interest for DNA nanotechnology: accelerating the
simulation of nonlinear biochemical reactions and diffusion in arbitrary geometries.

Table 1. Examples of representative works on GPU-accelerated resolutions of reaction-diffusion
PDEs. These methods include Finite Difference Methods (FDM) and Finite Element Methods (FEM) [55].
For each study, we present a typical speed-up between CPU and GPU implementations.

Paper Method Problem Speedup (CPU vs. GPU)

Sanderson et al., 2009 [52] FDM grid mesh, Advection-Reaction-Diffusion ∼5–10x vs. one CPU core
Molnar et al., 2011 [50] FDM grid mesh, Turing Patterns, Cahn–Hilliard eq.,. . . ∼5–40x vs. one CPU thread

Pera et al., 2019 [56] FDM grid mesh, tumor growth ∼100–500x vs. 8-core CPU
Gormantara et al., 2020 [57] FDM grid mesh, FitzHugh-Nahumo model ∼10x vs. CPU

Sato et al., 2009 [53] FEM+ODE 3D cardiac simulations ∼0.6x vs. 32-CPU cluster
Mena et al., 2015 [54] FEM+ODE 3D cardiac simulations ∼50x vs. one CPU core

Descombes et al., 2015 [51] FEM chemotactic reaction-diffusion on arbitrary surface ∼100–300x vs. 4-core CPU

The second goal of this paper is to revisit the typical speedup of GPUs for FEM with current
hardware and software. Much of the literature on GPU-accelerated FEM dates back to ∼2010–2015
(Table 1). The GPU speedup was often measured against a single CPU thread or a few CPU cores,
and the power consumption—a metric that is becoming increasingly important—was rarely, if ever,
reported. But the performances of CPUs have boomed since then (and their power consumption as
well), and it is not uncommon for a desktop computer to embark a CPU with 16 cores or more (and to
draw up to ∼300 W). GPUs have also boomed thanks to the coming of age of deep learning, which has
prompted massive investment on GPU-based technologies. Their memory and their precision (two of
their historical weak points) have increased in the past decade. Professional GPUs now routinely



Micromachines 2020, 11, 881 3 of 15

embark ∼10–20 GB of RAM and support double precision computations, which enable much finer
grained simulations than was possible a decade ago. On the software side, CUDA libraries have
matured in the past decade, with noticeable gains in performance. It is thus an interesting exercise
to revisit the gain of performance with state-of-the-art CPUs (20 cores), GPUs (Titan V) and software
libraries (CUDA 10).

Reaction-diffusion systems are a perfect example of PDEs with complex dynamics, describing
chemicals diffusing freely in a space while reacting with each other. Starting with the
Belouzov-Zhabotinsky reaction [58] and Turing patterns [59], such systems are known to create
dynamic structures (such as traveling waves and spirals) and steady state patterns. Advances in the
field of molecular programming has allowed the programming of reaction-diffusion with chemical
reaction networks [24,26,44–46,60–68]. That approach has opened the door to intricate systems, with the
caveat that the simulation of such systems, a necessary step in the design process, becomes increasingly
expensive as the systems get more and more complex.

Here we solve reaction-diffusion equations in arbitrary geometries on GPUs with FEM [47,48,61].
This method discretizes in space and time a continuous PDE, formulating it as a problem of linear
algebra for which the architecture of GPUs is uniquely appropriate. As a toy model, we study
a nonlinear chemical system (a predator prey chemical oscillator) [27,28] in a tortuous geometry
(a maze) [39]. This system was studied experimentally in a microfluidic device and captures the
essence of how boundary conditions influence dynamics [39]. It generates traveling waves of preys
that are closely followed by predators. The waves closely interact with the geometry of the maze:
they propagate along the walls, split at junctions, and terminate at cul-de-sacs. Thus numerically
solving this system with FEM is a challenging but informative case to study. The fixed geometries
and the boundary conditions (no flux through the walls of the reactor) simplifies the FEM framework,
while keeping a rich spatio-temporal dynamics. Moreover, the maze presents many sharp corners,
which are known to be challenging for FEM, and represents a good testbed for porting the method to
GPUs. A workflow of our methodology can be found in Figure 1.

Figure 1. Workflow of our methodology. We start from a bitmap image of a maze that is discretized
into a mesh with a FEM software, which then assembles the stiffness and damping matrices. We solve
the matrix ordinary differential equations on the GPU, and then plot the results with the CPU.

2. Materials and Methods

2.1. Chemical System

We consider a biochemical predator prey systems as described by [27,28]. It consists of a prey
species N, which is a DNA strand that replicates enzymatically, and which is predated by a predator
strand P. This system mimics the dynamics of the Lotka-Voltera oscillator, and produces stable
oscillations of concentration for days when run in a closed test tube.

The PDEs describing the dynamics of the system are

∂tN = Cr
N

1 + bN
− Cp

NP
1 + bP

− ε + ∆N (1)



Micromachines 2020, 11, 881 4 of 15

∂tP = Cp
NP

1 + bP
− ε + ∆P (2)

with Neumann boundary conditions (no flux through the wall of the reactor). The first term in the
prey equation describe its auto-catalytic growth, the second terms describes its predation by the
predator P. The laplacian term describe the diffusion of the prey. The first term in the predation
equation describes the growth of the predator induced by the predation of the prey. We found that
the null state was locally unstable, and that numerical error caused by the resolution would grow
exponentially and cause the spontaneous generation of species. To regularize the equations, we added
a small artificial term −ε, which was chosen small enough so as not to affect the global dynamic of
the system. To prevent negative concentrations caused by this term, we set concentrations to 0 when
they become negative. The parameters for the simulations we present are: Cr = Cp = 0.2, b = 0.1
and ε = 10−13. The initial concentrations for the prey N0 and the predator P0 are taken to be 1 in the
starting area (a small zone at the bottom of the maze) and 0 elsewhere.

2.2. Finite Element Method

We briefly present the Finite Element Method applied to our case [10]. We start from the
reaction-diffusion PDE with Neumann boundary conditions (no flux through the boundaries ω of the
reactor Ω)

∂tN = f1(N, P) + ∆N
∂tP = f2(N, P) + ∆P

(3)

where N(x, t) and P(x, t) are the concentration of species N and P at position x and time t. The function
fi encodes the local chemical reactions that produce or remove the species N and P. It is smooth,
typically a polynomial function (in the case of mass action chemical kinetics) or rational function
(in the case of enzymatic kinetics) of the concentrations of species.

We spatially discretize the reactor Ω into a mesh. The mesh partitions the region Ω into simple and
non-overlapping geometrical cells (typically triangles), whose vertexes are called the nodes (Figure 1).
Contrary to the fixed grid of the finite difference method, meshes allow for a flexible attribution of the
computational budget. The physics of regions with an irregular geometry (e.g., turns in a maze) can be
better fit by devoting more cells to their approximation. It must be noted that the problem of tessellating
a geometric region into a mesh is an active topic of research, and will not be covered in this paper
(we produce the mesh with Mathematica [69]). A mesh is associated with a basis of function ϕi(x),
which is commonly defined to be 1 at the node i, and null on the other nodes. Again, there are many
possible ways of defining how ϕi(x) varies between nodes (piece-wise linear, piece-wise quadratic,. . . ),
and we use the basis of functions selected by the FEM software. Following the Galerkin method [70],
we search for solution of Equation (3) on the basis of functions ϕi(x)

N(x, t) = ∑m
i=1 Ni(t)ϕi(x)

P(x, t) = ∑m
i=1 Pi(t)ϕi(x)

(4)

where Ni(t) and Pi(t) are the concentrations of species N and P at the node i and time t, and m is
the number of nodes. Additionally we assume that the nodes are close to each other and that fi are
sufficiently smooth, so that fi can be linearly interpolated between the nodes

f1(N(x, t), P(x, t)) = ∑m
i=1 f1(Ni(t), Pi(t))ϕi(x)

f2(N(x, t), P(x, t)) = ∑m
i=1 f2(Ni(t), Pi(t))ϕi(x)

(5)

We now expand Equation (3) on the Galerkin basis

∑m
i=1 ∂tNi(t)ϕi(x) = ∑m

i=1 f1(Ni(t), Pi(t))ϕi(x) + ∑m
i=1 Ni(t)∆ϕi(x)

∑m
i=1 ∂tPi(t)ϕi(x) = ∑m

i=1 f2(Ni(t), Pi(t))ϕi(x) + ∑m
i=1 Pi(t)∆ϕi(x)

(6)



Micromachines 2020, 11, 881 5 of 15

To derive the matrix differential equation, we define the element damping matrix D

Dij =
∫

Ω
ϕi ϕjdΩ

and the element stiffness matrix S
Sij =

∫
Ω
∇ϕi · ∇ϕjdΩ.

The matrices D and S are sparse and positive-definite. They are mostly filled with 0 because Dij
and Sij is 0 when the nodes i and j are not close to each other. Thanks to Green’s first identity and the
Neumann boundary conditions∫

Ω
ϕj∆ϕidΩ =

∫
ω

ϕj(∇ϕi · n)dω−
∫

Ω
∇ϕj · ∇ϕidΩ = −Sij (7)

where ω is the boundary of Ω and n the normal vector on this boundary. The integral over the
boundary ω is null because of the Neumann conditions (no flux). We take the inner product on L2(Ω)

by multiplying Equation (6) by ϕj(x) and integrating over Ω. We obtain the following matrix ordinary
differential equation

D∂tN(t) = Df1(N(t), P(t))− SN(t)
D∂tP(t) = Df2(N(t), P(t))− SP(t)

(8)

where the function f is threaded on the vectors N(t) and P(t).
This differential equation comprises two operators (the chemical reaction operator and the

diffusion operator) with different physical properties. We integrate this equation using the
split-operator method [71], splitting the reaction and diffusion operators and applying them
alternatively to advance in time. More precisely, we discretize in time by defining Nk = N(kτ)

and Pk = P(kτ), where τ = 0.01 is a small time step and the integer k is the number of steps taken.
At each time-step k, we first apply the chemical reaction operator (with Euler explicit method) to the
vectors Nk and Pk, yielding intermediate vectors Ñk and P̃k

Ñk
= Nk + τ f1(Nk, Pk)

P̃k
= Pk + τ f2(Nk, Pk)

(9)

We then apply the diffusion operator with a time-step τ to the intermediate vectors Ñk and P̃k to
obtain the vectors Nk+1 and Pk+1 at the step k + 1 by solving the linear system

(D + τS)Nk+1 = DÑk

(D + τS)Pk+1 = DP̃k (10)

We chose the implicit Euler method for the diffusion step due to its better stability than the
explicit version. We solve this linear equation with the conjugate gradient method (CGM) [72,73]
because the matrix (D + τS) is positive definite, and it only requires computing dot products and
sparse matrices-vector products operations which are well adapted to GPUs.

By splitting the reaction and diffusion operators, we reduce the resolution of the PDE to operations
that are well adapted to the parallel architectures of GPU. The reaction operator is a point-wise operator:
it is already vectorized and easy to apply in a GPU. As for the diffusion operator, it reduces to linear
algebra on sparse matrices and dense vectors, for which GPUs are highly performing.

2.3. Assembly of Stiffness and Damping Matrices

We used Mathematica [69] to assemble the stiffness and damping matrices. We started from a PNG
image of a maze, which we binarized and converted into a geometrical region. We then discretized



Micromachines 2020, 11, 881 6 of 15

this region into a mesh with the FEM package of Mathematica, and assembled the corresponding
damping and stiffness matrices. We controlled the size of the matrices (and the number of elements in
the mesh) by changing the maximum allowed cell size during the discretization (smaller cells yield
larger matrices). We then exported the matrices in CSV format.

2.4. Resolution of the Matrix Differential Equations

The bulk of the resolution was handled at a high level by a python program, which in turns
called a C++ library accelerated using CUDA libraries (including CuBLAS [74] and CuSparse [75]) and
home-made CUDA kernels to solve equation at a low level on the GPU. After parsing the damping
and stiffness matrices from the CSV file, the python program loaded them onto the GPU.

For the diffusion operator, we solve the linear system with the conjugate gradient method
(CGM) [72,73,76], as described in Algorithm 1. Each iteration of the CGM consists mostly of three
operations: (1) products between a sparse matrix and a vector (which are handled by CuSparse [75]);
(2) additions of two vectors (detailed in Algorithm 2); and (3) dot products between vectors.
We implemented a version of the dot product that we optimized for GPUs, with increased performances
compared to naive dot product algorithms (Algorithms 3 and 4). We iterate the solution until the
relative error of the residual decreases below 0.001.

Algorithm 1 User-level algorithm.
Import Damping matrix, Stiffness matrix, Mesh data
N ← initial prey state
P← initial predator state
System.State← N, P
System.Reactions← define chemical reactions
System.Di f f usionParameters← Damping matrix, Stiffness matrix, Threshold precision
for i← 0, T/τ do

System.ApplyDi f f usion(τ) . Basic conjugate gradient method
System.ApplyReaction(τ) . Apply whatever function was previously defined
System.State.Nulli f yNegativeValues()

. CGM can fail to converge if the state contains negative values
end for

Algorithm 2 Addition of two vectors.
procedure SUM(X, λ, Y) . X ← X + λ.Y

for each node i do
X[i]← X[i] + λ.Y[i]

end for
end procedure

Algorithm 3 Naive dot product.
procedure NAIVEDOT(X, Y)

Z ← ElementWiseProduct(X, Y)
for each node i do

Stride← 1
while i%2.Stride == 0 and i + Stride < N do

Z[i]← Z[i] + Z[i + Stride]
Stride← 2.Stride
SYNCHRONIZE()

end while
end for
return Z[0]

end procedure



Micromachines 2020, 11, 881 7 of 15

Algorithm 4 Optimized dot product.
procedure DOT(X, Y)

Z ← ElementWiseProduct(X, Y) . Using a static Z avoids allocating memory for every run of

the program
GlobalStride← 1
while GlobalStride ≤ N do

BLOCKSUM(Z, GlobalStride)
GlobalStride∗ = BlockSize . In CUDA, block size is capped at 1024
SYNCHRONIZE()

end while
return X[0]

end procedure

procedure BLOCKSUM(Z, α)
for each node i do

Stride← α
while Stride < BlockSize ∗ α and i%(2.Stride) == 0 and i + Stride < N do

Z[i]← Z[i] + Z[i + Stride]
Stride← 2.Stride
BLOCKSYNCHRONIZE()

end while
end for

end procedure

2.5. Comparison GPU and CPU

We compared the performances of the GPU and the CPU with the same algorithm
(pointwise operation for the chemical reaction operator, and conjugate gradient method for the
diffusion operator). We solved the system on GPU with a NVIDIA GPU Titan V (5120 CUDA
cores, 12 GB memory, peak performance of 14.90 TFLOPS for FP32 and and 7.450 TFLOPS for FP64).
We solved the system on CPU with a Intel Xeon Gold 6148 (20 Cores, 40 threads, base frequency
2.40 Ghz) equipped with 188 GB ECC RAM. We estimated the power consumed by the GPU with the
nvidia-smi command, and the power consumed by the CPU with the powerstat command (the power
consumed by other electronic components such as the RAM or the disk is negligible). Simulations were
performed in a Linux Mint 19.2 environment, with the CUDA library 10.2 and the NVIDIA driver 440.

2.6. Post-Processing

We plotted the time-lapses of the PDEs by drawing a rectangle at the location of each node in the
mesh, the color of the rectangle indicating the local level prey and predators.

3. Results

3.1. Geometry

The simulations agree with experiments performed by other groups in microfluidics devices [39].
The system generates traveling waves of preys, closely followed by a massive front of predators
(Figure 2). The waves propagate parallel to the walls of the maze, turn at corners and split at junctions
into multiple waves that explore their own branch of the junction. The waves go extinct in cul-de-sacs,
which can be explained by the unidirectional propagation of the waves: the preys get “cornered” and
cannot escape from the predators.



Micromachines 2020, 11, 881 8 of 15

Figure 2. Effect of boundary conditions on the dynamic of the system. The predator-prey system
generates traveling waves of preys (in red) followed by a front of predators (blue). The traveling waves
closely interact with the geometry of the reactor. They follow straight walls, turn at corners, split at
junction, and go extinct in cul-de-sacs. For each geometrical effect, four representative snapshots are
presented (taken at an interval of 2000 time-steps).

Our maze represents a challenging testbed for the FEM method, because it exhibits many sharp
corners where it suddenly turns at a right angle. The normal vector to the wall is not smooth at these
corners, which is known to induce difficulties for the FEM [49]. They are mitigated by finely graining
the mesh near the sharp corners. Simulations confirm that the quality of the mesh is crucial to correctly
solve the equations (Figure 3). Coarse meshes (∼7 k nodes) do not yield the same dynamic as fine
meshes (∼1 M nodes). The prey is found to explore the maze much more quickly on small meshes,
which suggests that coarse-graining produces numerical artifacts. We also observe the spontaneous
appearance of preys far existing preys, which is not physically possible given the diffusive nature of
the system: new chemical species can only appear close to existing ones.



Micromachines 2020, 11, 881 9 of 15

Figure 3. Numerical artifacts for coarse grained meshes. Snapshot of the simulations for coarse and
fine meshes. The time-step is indicated at the top of each snapshot. The size of the mesh is indicated at
the bottom of the snapshots. The prey is colored in red, and the predator colored in blue.

3.2. Comparison Performance

We studied the wall-clock time needed to simulate the system on CPU and GPU for 5000 steps
(Figure 4). Overall the GPU is faster than the CPU, except for the smallest mesh size where the CPU is
slightly faster. The speedup factor of the GPU over the CPU grows from ∼0.9 for the smallest mesh up
to ∼130 for the largest mesh, where it plateaus. This speedup is over a multi-threaded implementation
on a 20 cores (40 threads) CPU, which represents a substantial improvement over reported speedups
for GPUs and FEM [51,57,77]. We attribute this speed up to an optimal use of the architecture of
the GPU.

Figure 4. Comparison of performances of the GPU and the CPU for 5000 steps. The plots compare
resolution on the GPU and on the CPU for 3 metrics of interests: wall-clock simulation time,
average power consumption and resource usage.

Surprisingly, the wall-clock time for simulation initially decreased with matrix size for the GPU.
We found that the conjugate gradient method actually needed less and less iterations to arrive at the



Micromachines 2020, 11, 881 10 of 15

required precision as the matrices grew in size. Figure 5A shows for each matrix size, the number
of iterations needed for the conjugate gradient method in function of the step number. For smaller
matrices, the mean number of iterations is large and varies widely, but as the matrices get larger,
the number of iterations becomes tamer and fewer. The mean number of iterations decreases with
the matrix size (Figure 5B). We attribute this counter-intuitive behavior to the better conditioning of
the matrices, which steadily decrease with finer meshes, almost reaching the minimum value of 1
(Figure 5C). We hypothesize that as the meshes become finer and finer, diffusion becomes more and
more regular, locally resembling diffusion on a regular grid. More generally, sharp corners are better
approximated by finer meshes, which likely helps in reducing the conditioning number [78,79].

A

B C

Figure 5. Numerical difficulty of the Conjugate Gradient Method. (A) Number of iterations required
by the CGM to reach convergence (relative error of the residual decreases below 0.001) for different
matrix sizes; (B) Mean number of iterations of the CGM extracted from (A); (C) condition number
of the matrix (D + τS) according to the matrix size. The dashed line shows the value of 1, which is
the absolute minimum for a condition number. The condition number of the matrix was taken by
multiplying the L2 norm of the matrix and its inverse, each estimated on random vectors of norm 1.

We also profiled the power consumption and usage of GPU/CPU (Figure 4). The power
consumption and usage of the GPU grew steadily and monotonously with matrix size. For the
largest matrix, the power consumption was close to its theoretical maximum: ∼220 W for a thermal
design power of 250 W. The largest matrices also come close to fully utilizing the computational power
of the GPU, with an average usage∼90%. This is remarkable, as it is often challenging to fully mobilize
the parallel architecture of GPUs on a single real-world problem [4]. This trend was reverted for the
CPU. The CPU usage decreased from 100% to ∼30% as the matrix size increased over ∼50,000 nodes,
and the power consumption followed a similar trend. This pattern may be due to a switch from
a compute-bound regime (where computation by the CPU is the bottleneck) to a memory-bound
regime (where memory accesses to the matrices become the bottleneck). This under-usage of the CPU



Micromachines 2020, 11, 881 11 of 15

is in stark contrast with the almost complete usage of the GPU for large matrices, and clearly shows
the superiority of the latter over the former for handling large problems in FEM.

3.3. Profiling

We profiled the time spent by the algorithm in each portion of the resolution. For the largest
matrices, the reaction step only used 2% of the computation time, and 9% of the time was devoted
to computing the matrix (D + τS), which is done only once at the beginning of the computation.
Solving the linear system for the diffusion step with the conjugate gradient represents ∼90% of the
total computation time. This diffusion step itself is broken down into taking the dot product of vectors
(57% of the total time), summing vectors (18%) and initializing the vectors of the conjugate gradient
(12%). Matrix multiplication only took 1% of the total computation time.

At first, it could seem counter-intuitive that much more time is spent on the dot product of vectors
rather than the product of the matrix with vectors (which in itself is a collection of dot products
between the rows of the matrix and the vector). However it must be remembered that the matrix is
sparse, so that this dot product is done between a sparse vector and a dense vector, which requires only
∼a operations (where a << m is the mean number of non-null elements per row in the matrix, and m
the length of the multiplied vector). On the other side, taking the dot products of two dense vectors of
length m is expected to require∼m operations, and it cannot be fully parallelized, because intermediate
dot products must be synchronized between the computing threads, which takes at least log2(m) + 1
steps [80].

4. Discussion

We presented a framework for solving biochemical reaction-diffusion PDEs in arbitrary geometries
with FEM on GPUs, which could benefit the DNA nanotechnology community to prototype and debug
DNA-based reaction-diffusion systems [39,45,47]. The algorithm fully exploits the massive parallelism
of GPUs, achieving a speedup of up to∼130 over the same algorithm executed on a CPU. We identified
a few bottlenecks to improve the future performances. Somewhat ironically, the processing of the
PDEs with the GPU is so fast that pre-processing (initial parsing of the matrices) and post-processing
(producing the time-lapse movie of the solution) become the bottleneck. Parsing large matrices from
the CSV file only represents a few percent of the computation time of the CPU, but exceeds the
computation time of the GPU. Storing the matrices directly in a float format would save the lengthy
conversion from text to float. Alternatively, it would be beneficial to encode the matrices into a format
optimized for vector architectures, such as the NVIDIA PKT format [80]. Moreover, post-processing
operations are highly parallel, and in future implementations could be performed directly by the GPU,
enabling real-time visualization of the solutions.

Additionally, more than half of the time was spent on computing dot products between dense
vectors. Execution could potentially be accelerated with algorithms that use fewer dot products
and rely almost exclusively on sparse matrix-vector products. Gradient descent is a candidate for
this, though it does not enjoy the same speed of convergence as the conjugate gradient method for
symmetric and positive-definite matrix. More simply, some dots products could be saved by reusing
them between two successive iterations of the conjugate gradient, and the norm of the residual could
be tested every other iteration.

Alternatively, it might be possible to increase the performance of the algorithm by applying
different solvers, such as the conjugate gradient squared method or the Chebyshev iteration
method [73]. However, these methods usually have an higher complexity per iterations compared to
the baseline of the conjugate gradient, so these method would have to significantly reduce the number
of iterations to be competitive.

Overall, this work shows that the massive parallelism of GPUs make them a powerful tool to
speed up the simulation of PDEs and geometries used in DNA nanotechnology. We limited ourselves
to reaction-diffusion PDEs, but similar equations, such as the advection-reaction-diffusion equation,



Micromachines 2020, 11, 881 12 of 15

could in principle be tackled (though the mathematical framework would be more involved because
advection is a transport operator, which is hyperbolic) (See Supplementary Materials for details).

Supplementary Materials: The Github repository is available at https://github.com/cydouzo/ardis. A video of
the exploration of the maze by the prey is available at https://www.youtube.com/watch?v=xzLqHQ3UFtM&
list=LLEaa1Ya-FbKs8xfeaBesKFQ&index=2&t=0s.

Author Contributions: Conceptualization, N.A.-K. and A.J.G.; methodology, H.S., L.C., N.A.-K., and A.J.G.;
software, H.S.; validation, H.S., L.C., N.A.-K. and A.J.G.; formal analysis, H.S. and A.J.G.; writing—original draft
preparation, H.S., L.C., N.A.-K. and A.J.G.; supervision, L.C., T.F., M.H., N.A.-K., A.J.G.; funding acquisition,
N.A.-K. and A.J.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a JSPS KAKENHI Grant Number JP19209045 to N.A.K., by a Grant-in-Aid
for JSPS Fellows JP19F19722 to L.C., by a MEXT studentship to H.S., and by a GPU gift from NVIDIA to A.J.G.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Brodtkorb, A.; Hagen, T.; Sætra, M. Graphics processing unit (GPU) programming strategies and trends in
GPU computing. J. Parallel Distrib. Comput. 2013, 73, 4–13. [CrossRef]

2. Ghorpade, J.; Parande, J.; Kulkarni, M.; Bawaskar, A. GPGPU processing in CUDA architecture. arXiv 2012,
arXiv:1202.4347.

3. CUDA Performance Report. Available online: http://developer.download.nvidia.com/compute/cuda/6_
5/rel/docs/CUDA_6.5_Performance_Report.pdf (accessed on 7 September 2020).

4. Nickolls, J.; Buck, I.; Garland, M.; Skadron, K. Scalable parallel programming with CUDA. Queue 2008,
6, 40–53. [CrossRef]

5. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.;
et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016;
pp. 265–283.

6. Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A.
Automatic differentiation in pytorch. In Proceedings of the NIPS 2017 Workshop Autodiff, Long Beach, CA,
USA, 9 December 2017.

7. Rovigatti, L.; Šulc, P.; Reguly, I.; Romano, F. A comparison between parallelization approaches in molecular
dynamics simulations on GPUs. J. Comput. Chem. 2015, 36, 1–8. [CrossRef] [PubMed]

8. Glaser, J.; Nguyen, T.; Anderson, J.; Lui, P.; Spiga, F.; Millan, J.; Morse, D.; Glotzer, S. Strong scaling of
general-purpose molecular dynamics simulations on GPUs. Comput. Phys. Commun. 2015, 192, 97–107.
[CrossRef]

9. Le Grand, S.; Götz, A.; Walker, R. SPFP: Speed without compromise—A mixed precision model for GPU
accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013, 184, 374–380. [CrossRef]

10. Zienkiewicz, O.; Taylor, R.; Zhu, J. The Finite Element Method: Its Basis and Fundamentals; Elsevier: Amsterdam,
The Netherlands, 2005.

11. Fu, Z.; Lewis, T.; Kirby, R.; Whitaker, R. Architecting the finite element method pipeline for the GPU.
J. Comput. Appl. Math. 2014, 257, 195–211. [CrossRef] [PubMed]

12. Wu, W.; Heng, P.A. A hybrid condensed finite element model with GPU acceleration for interactive 3D soft
tissue cutting. Comput. Animat. Virtual Worlds 2004, 15, 219–227. [CrossRef]

13. Goddeke, D.; Buijssen, S.H.; Wobker, H.; Turek, S. GPU acceleration of an unmodified parallel finite element
Navier-Stokes solver. In Proceedings of the 2009 International Conference on High Performance Computing
& Simulation, Leipzig, Germany, 21–24 June 2009; pp. 12–21.

14. Komatitsch, D.; Erlebacher, G.; Göddeke, D.; Michéa, D. High-order finite-element seismic wave propagation
modeling with MPI on a large GPU cluster. J. Comput. Phys. 2010, 229, 7692–7714. [CrossRef]

15. Joldes, G.R.; Wittek, A.; Miller, K. Real-time nonlinear finite element computations on GPU–Application to
neurosurgical simulation. Comput. Methods Appl. Mech. Eng. 2010, 199, 3305–3314. [CrossRef]

https://github.com/cydouzo/ardis
https://www.youtube.com/watch?v=xzLqHQ3UFtM&list=LLEaa1Ya-FbKs8xfeaBesKFQ&index=2&t=0s
https://www.youtube.com/watch?v=xzLqHQ3UFtM&list=LLEaa1Ya-FbKs8xfeaBesKFQ&index=2&t=0s
http://dx.doi.org/10.1016/j.jpdc.2012.04.003
http://developer.download.nvidia.com/compute/cuda/6_5/rel/docs/CUDA_6.5_Performance_Report.pdf
http://developer.download.nvidia.com/compute/cuda/6_5/rel/docs/CUDA_6.5_Performance_Report.pdf
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1002/jcc.23763
http://www.ncbi.nlm.nih.gov/pubmed/25355527
http://dx.doi.org/10.1016/j.cpc.2015.02.028
http://dx.doi.org/10.1016/j.cpc.2012.09.022
http://dx.doi.org/10.1016/j.cam.2013.09.001
http://www.ncbi.nlm.nih.gov/pubmed/25202164
http://dx.doi.org/10.1002/cav.24
http://dx.doi.org/10.1016/j.jcp.2010.06.024
http://dx.doi.org/10.1016/j.cma.2010.06.037


Micromachines 2020, 11, 881 13 of 15

16. Dziekonski, A.; Sypek, P.; Lamecki, A.; Mrozowski, M. Finite element matrix generation on a GPU.
Prog. Electromagn. Res. 2012, 128, 249–265. [CrossRef]

17. Knepley, M.G.; Terrel, A.R. Finite element integration on GPUs. ACM Trans. Math. Softw. (TOMS) 2013,
39, 1–13. [CrossRef]

18. Wang, S.; Wang, C.; Cai, Y.; Li, G. A novel parallel finite element procedure for nonlinear dynamic problems
using GPU and mixed-precision algorithm. Eng. Comput. 2020, 37. [CrossRef]

19. Huthwaite, P. Accelerated finite element elastodynamic simulations using the GPU. J. Comput. Phys. 2014,
257, 687–707. [CrossRef]

20. Johnsen, S.F.; Taylor, Z.A.; Clarkson, M.J.; Hipwell, J.; Modat, M.; Eiben, B.; Han, L.; Hu, Y.; Mertzanidou, T.;
Hawkes, D.J.; et al. NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue
biomechanics. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 1077–1095. [CrossRef]

21. Bauer, P.; Klement, V.; Oberhuber, T.; Žabka, V. Implementation of the Vanka-type multigrid solver for
the finite element approximation of the Navier–Stokes equations on GPU. Comput. Phys. Commun. 2016,
200, 50–56. [CrossRef]

22. Carrascal-Manzanares, C.; Imperiale, A.; Rougeron, G.; Bergeaud, V.; Lacassagne, L. A fast implementation of
a spectral finite elements method on CPU and GPU applied to ultrasound propagation. Adv. Parallel Comput.
2018, 32, 339–348.

23. Comsol, A. COMSOL Multiphysics User’s Guide; COMSOL: Stockholm, Sweden, 2005; Volume 10, p. 333.
24. Soloveichik, D.; Seelig, G.; Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad.

Sci. USA 2010, 107, 5393–5398. [CrossRef]
25. Kim, J.; Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 2011, 7, 465. [CrossRef]
26. Montagne, K.; Plasson, R.; Sakai, Y.; Fujii, T.; Rondelez, Y. Programming an in vitro DNA oscillator using

a molecular networking strategy. Mol. Syst. Biol. 2011, 7, 466. [CrossRef]
27. Fujii, T.; Rondelez, Y. Predator–prey molecular ecosystems. ACS Nano 2013, 7, 27–34. [CrossRef] [PubMed]
28. Padirac, A.; Fujii, T.; Estévez-Torres, A.; Rondelez, Y. Spatial waves in synthetic biochemical networks. J. Am.

Chem. Soc. 2013, 135, 14586–14592. [CrossRef]
29. Srinivas, N.; Parkin, J.; Seelig, G.; Winfree, E.; Soloveichik, D. Enzyme-free nucleic acid dynamical systems.

Science 2017, 358. [CrossRef] [PubMed]
30. Genot, A.J.; Bath, J.; Turberfield, A.J. Reversible logic circuits made of DNA. J. Am. Chem. Soc. 2011,

133, 20080–20083. [CrossRef]
31. Genot, A.J.; Bath, J.; Turberfield, A.J. Combinatorial displacement of DNA strands: Application to matrix

multiplication and weighted sums. Angew. Chem. Int. Ed. 2013, 52, 1189–1192. [CrossRef] [PubMed]
32. Stojanovic, M.N.; Stefanovic, D.; Rudchenko, S. Exercises in molecular computing. Acc. Chem. Res. 2014,

47, 1845–1852. [CrossRef]
33. Lopez, R.; Wang, R.; Seelig, G. A molecular multi-gene classifier for disease diagnostics. Nat. Chem. 2018,

10, 746–754. [CrossRef]
34. Cherry, K.M.; Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural

networks. Nature 2018, 559, 370–376. [CrossRef]
35. Woods, D.; Doty, D.; Myhrvold, C.; Hui, J.; Zhou, F.; Yin, P.; Winfree, E. Diverse and robust molecular

algorithms using reprogrammable DNA self-assembly. Nature 2019, 567, 366–372. [CrossRef]
36. Song, T.; Eshra, A.; Shah, S.; Bui, H.; Fu, D.; Yang, M.; Mokhtar, R.; Reif, J. Fast and compact DNA

logic circuits based on single-stranded gates using strand-displacing polymerase. Nat. Nanotechnol. 2019,
14, 1075–1081. [CrossRef]

37. Chirieleison, S.M.; Allen, P.B.; Simpson, Z.B.; Ellington, A.D.; Chen, X. Pattern transformation with DNA
circuits. Nat. Chem. 2013, 5, 1000. [CrossRef] [PubMed]

38. Weitz, M.; Kim, J.; Kapsner, K.; Winfree, E.; Franco, E.; Simmel, F.C. Diversity in the dynamical behaviour
of a compartmentalized programmable biochemical oscillator. Nat. Chem. 2014, 6, 295–302. [CrossRef]
[PubMed]

39. Zambrano, A.; Zadorin, A.; Rondelez, Y.; Estévez-Torres, A.; Galas, J. Pursuit-and-evasion reaction-diffusion
waves in microreactors with tailored geometry. J. Phys. Chem. B 2015, 119, 5349–5355. [CrossRef] [PubMed]

40. Genot, A.; Baccouche, A.; Sieskind, R.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J.; Taly, V.; Fujii, T.; Rondelez, Y.
High-resolution mapping of bifurcations in nonlinear biochemical circuits. Nat. Chem. 2016, 8, 760.
[CrossRef] [PubMed]

http://dx.doi.org/10.2528/PIER12040301
http://dx.doi.org/10.1145/2427023.2427027
http://dx.doi.org/10.1108/EC-07-2019-0328
http://dx.doi.org/10.1016/j.jcp.2013.10.017
http://dx.doi.org/10.1007/s11548-014-1118-5
http://dx.doi.org/10.1016/j.cpc.2015.10.021
http://dx.doi.org/10.1073/pnas.0909380107
http://dx.doi.org/10.1038/msb.2010.119
http://dx.doi.org/10.1038/msb.2010.120
http://dx.doi.org/10.1021/nn3043572
http://www.ncbi.nlm.nih.gov/pubmed/23176248
http://dx.doi.org/10.1021/ja403584p
http://dx.doi.org/10.1126/science.aal2052
http://www.ncbi.nlm.nih.gov/pubmed/29242317
http://dx.doi.org/10.1021/ja208497p
http://dx.doi.org/10.1002/anie.201206201
http://www.ncbi.nlm.nih.gov/pubmed/23208800
http://dx.doi.org/10.1021/ar5000538
http://dx.doi.org/10.1038/s41557-018-0056-1
http://dx.doi.org/10.1038/s41586-018-0289-6
http://dx.doi.org/10.1038/s41586-019-1014-9
http://dx.doi.org/10.1038/s41565-019-0544-5
http://dx.doi.org/10.1038/nchem.1764
http://www.ncbi.nlm.nih.gov/pubmed/24256862
http://dx.doi.org/10.1038/nchem.1869
http://www.ncbi.nlm.nih.gov/pubmed/24651195
http://dx.doi.org/10.1021/jp509474w
http://www.ncbi.nlm.nih.gov/pubmed/25839240
http://dx.doi.org/10.1038/nchem.2544
http://www.ncbi.nlm.nih.gov/pubmed/27442281


Micromachines 2020, 11, 881 14 of 15

41. Baccouche, A.; Okumura, S.; Sieskind, R.; Henry, E.; Aubert-Kato, N.; Bredeche, N.; Bartolo, J.F.; Taly, V.;
Rondelez, Y.; Fujii, T.; et al. Massively parallel and multiparameter titration of biochemical assays with
droplet microfluidics. Nat. Protoc. 2017, 12, 1912–1932. [CrossRef] [PubMed]

42. Kurylo, I.; Gines, G.; Rondelez, Y.; Coffinier, Y.; Vlandas, A. Spatiotemporal control of DNA-based chemical
reaction network via electrochemical activation in microfluidics. Sci. Rep. 2018, 8, 6396. [CrossRef] [PubMed]

43. Amodio, A.; Del Grosso, E.; Troina, A.; Placidi, E.; Ricci, F. Remote Electronic Control of DNA-Based
Reactions and Nanostructure Assembly. Nano Lett. 2018, 18, 2918–2923. [CrossRef]

44. Zadorin, A.S.; Rondelez, Y.; Galas, J.C.; Estevez-Torres, A. Synthesis of programmable reaction-diffusion
fronts using DNA catalyzers. Phys. Rev. Lett. 2015, 114, 068301. [CrossRef]

45. Scalise, D.; Schulman, R. Emulating cellular automata in chemical reaction–diffusion networks. Nat. Comput.
2016, 15, 197–214. [CrossRef]

46. Zadorin, A.S.; Rondelez, Y.; Gines, G.; Dilhas, V.; Urtel, G.; Zambrano, A.; Galas, J.C.; Estévez-Torres, A.
Synthesis and materialization of a reaction–diffusion French flag pattern. Nat. Chem. 2017, 9, 990. [CrossRef]

47. Abe, K.; Kawamata, I.; Shin-ichiro, M.; Murata, S. Programmable reactions and diffusion using DNA for
pattern formation in hydrogel medium. Mol. Syst. Des. Eng. 2019, 4, 639–643. [CrossRef]

48. Chen, S.; Seelig, G. Programmable patterns in a DNA-based reaction–diffusion system. Soft Matter 2020,
16, 3555–3563. [CrossRef] [PubMed]

49. Bardi, I.; Biro, O.; Dyczij-Edlinger, R.; Preis, K.; Richter, K.R. On the treatment of sharp corners in the FEM
analysis of high frequency problems. IEEE Trans. Magn. 1994, 30, 3108–3111. [CrossRef]

50. Molnár, F., Jr.; Izsák, F.; Mészáros, R.; Lagzi, I. Simulation of reaction–diffusion processes in three dimensions
using CUDA. Chemom. Intell. Lab. Syst. 2011, 108, 76–85. [CrossRef]

51. Descombes, S.; Dhillon, D.; Zwicker, M. Optimized CUDA-based PDE Solver for Reaction Diffusion Systems
on Arbitrary Surfaces. In International Conference on Parallel Processing and Applied Mathematics; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 526–536.

52. Sanderson, A.R.; Meyer, M.D.; Kirby, R.M.; Johnson, C.R. A framework for exploring numerical solutions of
advection–reaction–diffusion equations using a GPU-based approach. Comput. Vis. Sci. 2009, 12, 155–170.
[CrossRef]

53. Sato, D.; Xie, Y.; Weiss, J.N.; Qu, Z.; Garfinkel, A.; Sanderson, A.R. Acceleration of cardiac tissue simulation
with graphic processing units. Med. Biol. Eng. Comput. 2009, 47, 1011–1015. [CrossRef]

54. Mena, A.; Ferrero, J.M.; Matas, J.F.R. GPU accelerated solver for nonlinear reaction–diffusion systems.
Application to the electrophysiology problem. Comput. Phys. Commun. 2015, 196, 280–289. [CrossRef]

55. Sjodin, B. What’s the Difference between FEM, FDM, and FVM. Mach. Des. 2016. Available online:
https://www.machinedesign.com/3d-printing-cad/fea-and-simulation/article/21832072/whats-the-
difference-between-fem-fdm-and-fvm (accessed on 7 September 2020).

56. Pera, D.; Málaga, C.; Simeoni, C.; Plaza, R. On the efficient numerical simulation of heterogeneous anisotropic
diffusion models for tumor invasion using GPUs. Rend. Mat. E Sue Appl. 2019, 40, 233–255.

57. Gormantara, A.; Pranowo, P. Parallel simulation of pattern formation in a reaction-diffusion system of
FitzHugh-Nagumo using GPU CUDA. In AIP Conference Proceedings; AIP Publishing LLC: College Park, MD,
USA, 2020; Volume 2217, p. 030134.

58. Zaikin, A.; Zhabotinsky, A. Concentration wave propagation in two-dimensional liquid-phase self-oscillating
system. Nature 1970, 225, 535–537. [CrossRef]

59. Turing, A.M. The chemical basis of morphogenesis. Bull. Math. Biol. 1990, 52, 153–197. [CrossRef]
60. Dalchau, N.; Seelig, G.; Phillips, A. Computational design of reaction-diffusion patterns using DNA-based

chemical reaction networks. In International Workshop on DNA-Based Computers; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 84–99.

61. Zenk, J.; Scalise, D.; Wang, K.; Dorsey, P.; Fern, J.; Cruz, A.; Schulman, R. Stable DNA-based reaction–diffusion
patterns. RSC Adv. 2017, 7, 18032–18040. [CrossRef]

62. Smith, S.; Dalchau, N. Beyond activator-inhibitor networks: The generalised Turing mechanism. arXiv 2018,
arXiv:1803.07886.

63. Smith, S.; Dalchau, N. Model reduction enables Turing instability analysis of large reaction–diffusion models.
J. R. Soc. Interface 2018, 15, 20170805. [CrossRef]

http://dx.doi.org/10.1038/nprot.2017.092
http://www.ncbi.nlm.nih.gov/pubmed/28837132
http://dx.doi.org/10.1038/s41598-018-24659-7
http://www.ncbi.nlm.nih.gov/pubmed/29686392
http://dx.doi.org/10.1021/acs.nanolett.8b00179
http://dx.doi.org/10.1103/PhysRevLett.114.068301
http://dx.doi.org/10.1007/s11047-015-9503-8
http://dx.doi.org/10.1038/nchem.2770
http://dx.doi.org/10.1039/C9ME00004F
http://dx.doi.org/10.1039/C9SM02413A
http://www.ncbi.nlm.nih.gov/pubmed/32219296
http://dx.doi.org/10.1109/20.312595
http://dx.doi.org/10.1016/j.chemolab.2011.03.009
http://dx.doi.org/10.1007/s00791-008-0086-0
http://dx.doi.org/10.1007/s11517-009-0514-4
http://dx.doi.org/10.1016/j.cpc.2015.06.018
https://www.machinedesign.com/3d-printing-cad/fea-and-simulation/article/21832072/whats-the-difference-between-fem-fdm-and-fvm
https://www.machinedesign.com/3d-printing-cad/fea-and-simulation/article/21832072/whats-the-difference-between-fem-fdm-and-fvm
http://dx.doi.org/10.1038/225535b0
http://dx.doi.org/10.1016/S0092-8240(05)80008-4
http://dx.doi.org/10.1039/C7RA00824D
http://dx.doi.org/10.1098/rsif.2017.0805


Micromachines 2020, 11, 881 15 of 15

64. Joesaar, A.; Yang, S.; Bögels, B.; van der Linden, A.; Pieters, P.; Kumar, B.P.; Dalchau, N.; Phillips, A.; Mann, S.;
de Greef, T.F. DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 2019,
14, 369–378. [CrossRef]

65. Urtel, G.; Estevez-Torres, A.; Galas, J.C. DNA-based long-lived reaction–diffusion patterning in a host
hydrogel. Soft Matter 2019, 15, 9343–9351. [CrossRef]

66. Gines, G.; Zadorin, A.; Galas, J.C.; Fujii, T.; Estevez-Torres, A.; Rondelez, Y. Microscopic agents programmed
by DNA circuits. Nat. Nanotechnol. 2017, 12, 351–359. [CrossRef]

67. Dupin, A.; Simmel, F.C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro
gene circuits. Nat. Chem. 2019, 11, 32–39. [CrossRef]

68. Kasahara, Y.; Sato, Y.; Masukawa, M.K.; Okuda, Y.; Takinoue, M. Photolithographic shape control of DNA
hydrogels by photo-activated self-assembly of DNA nanostructures. APL Bioeng. 2020, 4, 016109. [CrossRef]

69. Wolfram Research, Inc. Mathematica, Version 12.1; Wolfram Research, Inc.: Champaign, IL, USA, 2020.
70. Galerkin, B. Series occurring in various questions concerning the elastic equilibrium of rods and plates.

Eng. Bull. (Vestn. Inzhenerov) 1915, 19, 897–908.
71. Strang, G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 1968, 5, 506–517.

[CrossRef]
72. Ahamed, A.; Magoules, F. Conjugate gradient method with graphics processing unit acceleration: CUDA vs.

OpenCL. Adv. Eng. Softw. 2017, 111, 32–42. [CrossRef]
73. Barrett, R.; Berry, M.; Chan, T.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.;

Van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods; SIAM:
Philadelphia, PA, USA, 1994.

74. Nvidia, C. Cublas Library; NVIDIA Corp.: Santa Clara, CA, USA, 2008; Volume 15, p. 31.
75. Naumov, M.; Chien, L.; Vandermersch, P.; Kapasi, U. CUSPARSE library: A set of basic linear algebra

subroutines for sparse matrices. In Proceedings of the GPU Technology Conference, San Jose, CA, USA,
20–23 September, 2010; Volume 2070.

76. Hestenes, M.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand.
1952, 49, 409–436. [CrossRef]

77. Hutton, T.; Munafo, R.; Trevorrow, A.; Rokicki, T.; Wills, D. Ready, A Cross-Platform Implementation
of Various Reaction-Diffusion Systems. 2015. Available online: https://github.com/GollyGang/ready
(accessed on 7 September 2020).

78. Du, Q.; Wang, D.; Zhu, L. On mesh geometry and stiffness matrix conditioning for general finite element
spaces. SIAM J. Numer. Anal. 2009, 47, 1421–1444. [CrossRef]

79. Ramage, A.; Wathen, A. On preconditioning for finite element equations on irregular grids. SIAM J. Matrix
Anal. Appl. 1994, 15, 909–921. [CrossRef]

80. Bell, N.; Garland, M. Efficient Sparse Matrix-Vector Multiplication on CUDA; Technical Report, Nvidia Technical
Report NVR-2008-004; Nvidia Corporation: Santa Clara, CA, USA, 2008.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41565-019-0399-9
http://dx.doi.org/10.1039/C9SM01786K
http://dx.doi.org/10.1038/nnano.2016.299
http://dx.doi.org/10.1038/s41557-018-0174-9
http://dx.doi.org/10.1063/1.5132929
http://dx.doi.org/10.1137/0705041
http://dx.doi.org/10.1016/j.advengsoft.2016.10.002
http://dx.doi.org/10.6028/jres.049.044
https://github.com/GollyGang/ready
http://dx.doi.org/10.1137/080718486
http://dx.doi.org/10.1137/S0895479891223252
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Chemical System
	Finite Element Method
	Assembly of Stiffness and Damping Matrices
	Resolution of the Matrix Differential Equations
	Comparison GPU and CPU
	Post-Processing

	Results
	Geometry
	Comparison Performance
	Profiling

	Discussion
	References

