
Research Article
BP Neural Network Could Help Improve Pre-miRNA
Identification in Various Species

Limin Jiang,1,2 Jingjun Zhang,2 Ping Xuan,3 and Quan Zou1,4

1School of Computer Science and Technology, Tianjin University, Tianjin 300350, China
2School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China
3School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
4State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300074, China

Correspondence should be addressed to Ping Xuan; 2004058@hlju.edu.cn and Quan Zou; zouquan@tju.edu.cn

Received 17 May 2016; Revised 5 July 2016; Accepted 17 July 2016

Academic Editor: Xing Chen

Copyright © 2016 Limin Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

MicroRNAs (miRNAs) are a set of short (21–24 nt) noncoding RNAs that play significant regulatory roles in cells. In the past
few years, research on miRNA-related problems has become a hot field of bioinformatics because of miRNAs’ essential biological
function. miRNA-related bioinformatics analysis is beneficial in several aspects, including the functions of miRNAs and other
genes, the regulatory network between miRNAs and their target mRNAs, and even biological evolution. Distinguishing miRNA
precursors from other hairpin-like sequences is important and is an essential procedure in detecting novel microRNAs. In this
study, we employed backpropagation (BP) neural network together with 98-dimensional novel features for microRNA precursor
identification. Results show that the precision and recall of our method are 95.53% and 96.67%, respectively. Results further
demonstrate that the total prediction accuracy of ourmethod is nearly 13.17% greater than the state-of-the-art microRNA precursor
prediction software tools.

1. Introduction

MicroRNAs are some of themost important noncoding RNA
genes with rather short length. They regulate the expression
of whole organism genes at the posttranscriptional level [1].
miRNA is widely involved in the metabolic activity of the
body as well as in many important life processes, including
cell proliferation and apoptosis, cell differentiation, growth
and development of plants and animals, and organ formation
[2–4]. Recently, several studies have shown that microRNAs
are related to several cancers [5–7] and other diseases [8–10].
Caligiuri et al. [11] proposed that methods and compositions
involving miRNAs are useful for the treatment of various
diseases and cancers. Some miRNAs are regarded as poten-
tial therapeutic targets for various diseases [12]. Recently,
the target gene (cancer gene) drugs, which developed in
accordance with the theory on miRNA’s gene silencing, have
been used for incurable disease that has become a threat
to human health problems for years [13]. In addition, the
viral genome can encode a large number of miRNAs by

itself. Through combination with target genes and coding
by viruses or host cell, these miRNAs can lead to immune
escape or antiviral effect against the host cell. Therefore,
the accurate prediction of miRNA and its target genes, as
well as the correct understanding of miRNA mechanism,
has important practical significance in medical treatments.
Thus, the research on novel miRNA identification is rather
essential.

Feature selection mainly dominated the performance
of the prediction model in the machine learning process
[14–20]. In addition, effective features can represent the char-
acteristics of the entire sequence data, which enables easy-to-
build better prediction model. To represent the microRNA
precursors, Xue et al. [21] proposed 32D novel triplet features,
which involved secondary structure information. Jiang et al.
[22] found that random rearrangement of the sequence could
help obtain significant free-energy features. However, the
free-energy computation for many random rearrangement
sequences is very time consuming. Wei et al. [23] combined
Xue et al.’s features and triplet nucleotide frequency to 98D
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features and obtained good performance result in human
pre-miRNA identification.However,more features would not
mean better performance because of some irrelevant and
redundant features in the high dimensional or ultra-high
dimensional feature set.The purpose of feature selection is to
eliminate the irrelevant and redundant features of the feature
set. In addition, the training time could be reduced effectively
by the feature selection optimization [24]. Some studies focus
on developing computational predictors by incorporating the
sequence-order or structure-order effects [25, 26]. Several
works indicated that proper features could improve the pre-
diction performance of classification in a certain extent. For
example, Wang et al. [27] employed the feature selection
techniques to optimize the features in miR-SF. They proved
that an optimized feature subset could improve the prediction
performance. In addition, some popular recently proposed
multiobjective optimization evolutionary algorithms can also
be used as a possibly promising feature selection approach
[28, 29].

Another factor that affects the performance of machine
learning prediction method is the classifier algorithm. The
selection of different classifiers often leads to the differ-
ence of classification results. Several different classifiers and
strategies were employed for miRNA identification. Bayesian
classifier algorithm was tested for predicting miRNA across
different species in 2006 [30]. The method also utilized the
multiple species of miRNA sequences and structural features.
It proved that miRNA genes could be detected effectively in
large scale of different species genomes.

MiPred classifier was tested for predicting miRNA in
2007 [22]. The method utilized random forest classifier
algorithm. The prediction accuracy of MiPred is 10% higher
than that of Triplet-SVM; the sensitivity and specificity of
MiPred can reach to 95.09% and 98.21%. CSHMM classifier
was also used forminingmiRNA sequences from the genome
[31], which utilized the Markov model. Overall, the accuracy
of machine learning algorithm was up to 90%. The machine
learning method is more accurate than the other methods.

In this study, we chose backpropagation neural network
as the classifier. It has three advantages, including better gen-
eralization performance, faster learning speed, and good
learning ability.

2. miRNA Identification with
BP Neural Network

2.1. Pre-miRNA Features

2.1.1. 𝑛-Gram Frequency. Some studies showed that the local
primary sequence is crucial to the pre-miRNA sequence [32].
Thus, the 𝑛-gram frequency is often applied for the feature
map in the selection of the primary sequence feature [33, 34].
However, no good methods are still available for tuning the
value of 𝑛. In general, we choose 𝑛 by comparing the effect of
𝑛-gram frequency with different 𝑛-values. In our feature set,
we select the different 𝑛 values (𝑛 = 2, 3, 4) for comparison.
The different frequency characteristics have almost the same
effect on the classifier. Thus, consider that its base and

adjacent base have practical biological significance.We chose
𝑛 as 3. A total of 64 (64 = 43)-dimensional frequency features
were calculated.

2.1.2. Triple Structure Sequence. In addition to high specificity
of the primary sequence features, the secondary structure
sequence of pre-miRNA is also a contributing factor. To
analyze the contribution of the secondary structure, the
secondary structure prediction software RNAfold is used to
calculate the potential structures. In the secondary structure,
each nucleotide of the sequence corresponds to two states,
matching and nonmatching: recordmatching as “(” or “)” and
nonmatching as “⋅.” In the structure, three character groups
are considered as a unit, and every “)” is replaced as “(.”Thus,
8 (8 = 2

3) different combinations are available as a unit,
including “(((,” “((⋅,” “(⋅(,” “⋅((,” “(⋅⋅,” “⋅(⋅,” “⋅⋅(,” and “⋅ ⋅ ⋅.”

To characterize pre-miRNA sequence better, the first
nucleotide of the corresponding subsequence was added to
the front of each structure unit. This provides 32 (32 =

4 × 8) different combinations, that is, “A(((,” “U((⋅,” . . .,
“G⋅((,” “G⋅ ⋅ ⋅.” For a sequence, the occurrence frequency
of each combination is determined and coded into the 32D
feature vector as the input of the classifier. This calculated
32D triple structure sequence feature is used to train the SVM
classifier; the inclusion of the SVM classifier significantly
improved the classification ability of pre-miRNA sequences
[21].

2.1.3. Energy Characteristics. The real pre-miRNA sequences
are generally more stable and show a lower minimum of
free energy (MFE) than the randomly generated pre-miRNA.
Therefore, energy characterization is often used to describe
the structure pre-miRNA sequence as an aspect of feature
extraction of the pre-miRNA sequence. To do this, the
MFE value is obtained by using RNAfold to calculate the
structure.

2.1.4. Structural Diversity Characteristics. The potential for
nucleotide pairing in the sequence is a significant characteris-
tic that can also be used to describe the pre-miRNA sequence.
This includes both traditional Watson-Crick nucleotide pair-
ing (A–U pairing and C–G pairing) and also other forms of
nucleotide pairing, such as the G–U pairing that can occur
in the loop of RNA hairpin structures. We included possible
G–U pairing in our description of base pairing.

To summarize, we extracted 98 features for the input of
the neural network, including 64-dimensional 𝑛-gram fre-
quency characteristics, 32-dimensional triple structure se-
quence characteristics, one-dimensional energy feature, and
one-dimensional structural diversity characteristics.

2.2. Fixing the Number of Nodes in the Hidden Layer. In
general, to select the number of nodes in the hidden layer in
changing the BP neural network structure is difficult. Techni-
cally, a hidden layer could facilitate operation. However, too
many hidden layers can reduce the operation rate.
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Figure 1: Topology structure of the BP neural network.

Table 1: Corresponding training results with different numbers of nodes in the hidden layers.

Hidden layers Training times Training errors Hidden layers Training times Training errors
11 43 9.57718𝑒 − 005 12 39 9.88418𝑒 − 005

13 17 9.42136𝑒 − 005 14 65 9.92537𝑒 − 005

15 34 9.88206𝑒 − 005 16 74 8.38658𝑒 − 005

17 48 7.82527𝑒 − 005 18 157 6.63468𝑒 − 005

19 7 9.46711𝑒 − 005 20 47 9.3627𝑒 − 005

Currently, no theoretical methods are available to fix the
number of nodes in the hidden layer. However, the number
generally depends on the empirical formula, as calculated in

𝑀 = √𝑁 + 𝐿 + 𝛼,

𝑀 = log
2
𝑁,

𝑀 = √𝑁𝐿,

(1)

where𝑀 represents the neuron number of the hidden layers,
𝑁 is the neuron number of the input layers, 𝐿 is the neuron
number of the output layers, and 𝛼 is a constant between 1
and 10.

In this study,𝑁 = 98 and 𝐿 = 1.Therefore, (1) can be used
for any values between 11 and 20. A comprehensive analysis
of the training results with different numbers of nodes in the
hidden layer was performed with the error set to 0.0001. A
total of 621 samples were used to train the network, and one
sample was used to test the network.The results are shown in
Table 1.

From the data shown in Table 1, the increased number of
nodes in the hidden layer did not result in better convergence.
Additionally, the increased number of nodes increased the
network parameters and greatly increased the amount of
calculation of the classifier. Thus, keeping 13 nodes in the
hidden layers required relatively less training times and less
error and still produced relatively good training effects.

2.3. Fixing the Number of Nodes in the Output Layer. Two
kinds of output exist, positive and negative, which are
represented as 1 for a positive sample and 0 for a negative
sample. The topology structure of this prediction method
based on BP neural network is shown in Figure 1.

2.4. Selecting Training and TestModel Samples. Thecollection
and organization of training samples are often limited by the
objective conditions. Appropriate numbers of training sam-
ples are required to achieve sufficient precision. Therefore, it
refers to the rule of experience:

𝑃 = (5 ∼ 10) × 𝑃𝑤
, (2)

where 𝑃 represents the numbers of training samples and 𝑃
𝑤

is the total of network connection weight equal to the sum
of nodes of the input and hidden layers. In this study, 2236
samples were used for training.

The data set used for the pre-miRNAs was downloaded
from http://bioinf.sce.carleton.ca/SMIRP [35], and these data
include negative and positive samples for Arabidopsis lyrata.
The FASTAfile was converted toARFF file using a jar package
written by Java converting the reference index to numerical
form. We randomly selected real pre-miRNAs and pseudo
pre-miRNAs to evaluate our algorithm.

2.5. Error Evaluation Steps Based on BP. The structure of the
intelligent diagnosis model contains three layers of 98-13-1.
First, we set the nodes of the input, output, and hidden layers
as 𝑁,𝑀, and 𝐿, respectively. Assuming the training sample
set {𝜉𝑝, 𝑌} ⊂ 𝑅𝑁×𝑅𝐿, theweightmatrix between the input and
hidden layers can be written as 𝑉 = (V

𝑚𝑛
)
𝑀×𝑁

, where 𝑉
𝑚
=

(V
𝑚1
, V
𝑚1
, . . . , V

𝑚1
)
𝑇
∈ 𝑅
𝑁 and 𝑚 = 1, 2, . . . ,𝑀. We assume

the connection weightmatrix between the hidden and output
layers as 𝑊 = (𝑤

𝑙𝑚
)
𝐿×𝑀

, where 𝑊
𝑙
= (V
𝑙1
, V
𝑙1
, . . . , V

𝑙𝑚
)
𝑇
∈

𝑅
𝑀, 𝑙 = 1, 2, . . . , 𝐿. Then, respectively, take 𝑔 and 𝑓 as

the activation function of each node of the hidden and
output layers. To simplify the derivation, we use the vector
function 𝐺(𝑋) for 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑚
)
𝑇
∈ 𝑅
𝑀, where
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Figure 2: Process flow of model generation and training.

𝐺(𝑋) = (𝑔(𝑥
1
), 𝑔(𝑥
2
), . . . , 𝑔(𝑥

𝑚
))
𝑇
∈ 𝑅
𝑀. After input of the

sample 𝜉𝑝 ∈ 𝑅𝑁, the actual output can be calculated by

𝜁
𝑝

𝑙
= 𝑓 (𝑤

𝑙
⋅ 𝐺 (𝑉

𝑙
𝜉
𝑝
)) . (3)

The error function is defined in

𝐸 (𝑊,𝑉) =

1

2

𝑃

∑

𝑝=1

𝐿

∑

𝑙=1

(𝑂
𝑝
− 𝑓 (𝑤

𝑙
⋅ 𝐺 (𝑉

𝑙
𝜉
𝑝
)))

2

. (4)

Objectively, the target of BP training is to compute the𝑊
and𝑉 tominimize the solution of the error function𝐸(𝑊,𝑉).
With this, a combination of gradient descent, common,
and simple derivatives was used. To simplify the derivation
process, we derive

𝑓
𝑝𝑙
(𝑥) =

1

2

(𝑂
𝑝

𝑙
− 𝑓 (𝑥))

2

. (5)

Then, the error function can be written as

𝐸 (𝑊,𝑉) =

𝑃

∑

𝑝=1

𝐿

∑

𝑙=1

𝑓
𝑝𝑙
(𝑤
𝑙
⋅ 𝐺 (𝑉

𝑚
𝜉
𝑝
)) . (6)

The corresponding gradient function of 𝑊 and 𝑉 can
then be expressed as

𝐸
𝑤𝑙
(𝑊,𝑉) =

𝑃
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(7)

Table 2: Basic parameters of the classifier based on BP neural net-
work.

Setting items The value set
The learning rate 0.1
Error bounds 0.0001
The number of iterations 1000
Transfer function of hidden layer nodes Tansig
Transfer function of output nodes Purelin
The training function Trainlm

For arbitrary initial values of𝑊
0
∈ 𝑅
𝐿×𝑀 and𝑉

0
∈ 𝑅
𝑀×𝑁,

gradient descent rules tomodify theweight of the BP learning
algorithm are applied in

𝑊
𝑛+1

𝑙
= 𝑊
𝑛

𝑙
+ Δ𝑊

𝑛

𝑙
,

Δ𝑊
𝑛

𝑙
= −𝜂
𝑛
𝐸
𝑤𝑙
(𝑊
𝑛
, 𝑉
𝑛
) ,

𝑉
𝑛+1

𝑚
= 𝑉
𝑛

𝑚
+ Δ𝑉
𝑛

𝑚
,

Δ𝑉
𝑛

𝑚
= −𝜂
𝑛
𝐸
𝑤𝑚
(𝑊
𝑛
, 𝑉
𝑛
) ,

(8)

where 𝜂
𝑛
represents the learning efficiency.Δ𝑊𝑛

𝑙
is the partial

derivative of the error function relative to 𝑊. Δ𝑉𝑛
𝑚

is the
partial derivative of the error function relative to 𝑉.

2.6. Selection of Training Functions and Related Parameters.
The above analysis allows fixing of the BP neural network
structure. Table 2 shows the chosen training functions and
the relevant parameters.

This condition allows establishment of a complete clas-
sifier based on BP neural network structure. The model
generation and training are summarized in Figure 2.
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Table 3: Measurements for the classification problems.

Classification result

Actual result Forecast result
P N

P TP FN
N FP TN

2.7. Measurement. The use of pattern recognition and ma-
chine learning methods can be used as a two-way classifica-
tion problem. Four kinds of prediction results are presented
in Table 3.

The four kinds of prediction results are true positive (TP),
the number of positive cases that were correctly predicted;
false positive (FP), the number of positive cases represented
by error prediction; true negative (TN), the number of
counter negative examples that were correctly predicted; and
false negative (FN), the number of negative cases represented
by error prediction.

Many evaluation indicators can be used for the classifi-
cation results. First, the accuracy rate (ACC) is the ratio of
the correctly predicted cases for the entire data set. Precision
and recall can also be used as evaluation indicators in tests of
pattern recognitionmodels. Precision is expressed as the ratio
of the correctly predicted values for the entire positive data
set and recall reflects the number correctly judged as positive
examples in the positive example test set [36].The above three
indicators are expressed in

ACC = TP + TN
TP + FP + TN + FN

,

precision = TP
TP + FP

,

recall = TP
TP + FN

.

(9)

Additionally, sensitivity and specificity parameters may
be used to evaluate the function of the model. Sensitivity
record (SE) is the same as the recall and specificity record (SP)
calculated in accordance with

SP = TN
TN + FP

. (10)

A challenge may be presented if the positive and negative
test sets are unbalanced in the study of biological information.
In most cases, the number of positive samples is far less
than the number of negative samples. In a few cases, the
number of positive samples may be much larger than the
number of negative samples. We can easily obtain ACC-SP
when the number of positive samples is greater than the
negative samples. In this case, the classifier only reflects the
classification effect of the negative samples and is unable to
accurately express the prediction effect of the classifier on the

Table 4: Comparison of classification results based on different
feature sets.

Features SP (%) SE (%) Gm (%) ACC (%)
B 67.89 68.25 68.07 68.00
C 92.74 76.42 84.19 88.03
A + B 91.79 90.41 91.10 91.31
A + C 94.03 80.85 87.19 89.67
B + C 96.12 85.21 90.50 92.49
A + B + C 96.33 86.51 91.29 93.42
Notes: A: energy feature and structural diversity; B: 32-dimensional triad
structure characteristic; C: 64-dimensional 𝑛-gram frequency characteris-
tics.

entire test data set. To solve this problem, researchers typically
use the geometric mean (Gm) as described in

Gm = √SE ⋅ SP. (11)

Matthew’s correlation coefficient (MCC) [16, 21, 37, 38]
can provide more equitable response forecast ability when
a large difference exists between the number of positive
samples and the number of negative samples. MCC can be
expressed as

MCC

=

TP × TN − FP × FN
√(TP + FP) × (TN + FN) × (TP + FN) × (TN + FP)

.

(12)

Currently, studies onmiRNA commonly use one or more
of these above evaluation indices. In this work, we estimate
the overall performance of the classifier by analysis of ACC,
SE, SP, Gm, and MCC.

3. Results and Discussion

3.1. Analysis of Feature Set Performance. To select a better
feature set for classification, we needed to determine the
effect of different feature subsets on the performance of the
classifier. To do this, we used the BP neural network method
with the same training set (553 positive samples and 1150
samples) to test different feature sets, with the results shown
in Table 4.

From Table 4, we learn that the accuracy of the entire
feature sets can be as high as 93.42%. This result indicates
that our feature set is more effective for processing of a more
complex structure or sequence diversity. Considering that the
feature sets used here are not very large and each feature
subset is highly independent, reducing the dimension of the
feature vector is no longer needed.

3.2. Performances of BP. 𝑉-fold cross-validation with mod-
erate computational complexity is widely used for model
selection. The selection of 𝑉 is important because 𝑉 not
only determines the number of samples but also deter-
mines the computational complexity. Usually, a value of 𝑉
between 5 and 10 is selected based on experience. Statistical
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Figure 3: Different test results for varying sample quantities.

performance shows little improvement when 𝑉 selection is
greater than 10. Again, computational complexity must be
considered; thus a value between 5 and 10 is best [32].

We divided the samples into two cases for training and
testing. In the first one, a large difference was observed
between the number of positive and negative samples: 518
positive samples and 1078 negative samples as the training

set and 166 positive samples and 366 negative samples for the
test set. The second case included equal numbers of positive
and negative samples: 552 positive samples and 552 negative
samples as the training set and 138 positive samples and 138
negative samples for the test set. These training and testing
were repeated five times. The testing performance is shown
in Figures 3 and 4.
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From comparison of the data in Figures 3 and 4, no
significant difference was observed between the actual out-
put and the expected output of each test. As described
above, the evaluation of the reference index is shown in
Table 5.

From the data presented inTable 5, the number of samples
affects the accuracy and recall rate of the positive samples.
In particular, the precision and recall rate of the negative
samples decreased with the decrease in the number of
negative samples in the training set. This result indicates that
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Table 5: Evaluation of the reference index.

Training sample Test sample Output sample Correct sample Precision (%) Recall (%) Gm (%)
D

Positive 553 138 128 124 96.0 90.0 93.43
Negative 1150 287 296 282 95.38 98.19

E
Positive 552 138 136 128 94.10 92.82 93.98
Negative 552 138 140 130 92.87 94.12

Note: D: sample set has different numbers of positive and negative samples; E: the sample set has equal numbers of positive and negative samples; correct
sample: the number of correct predictions.
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Figure 5: Comparison results of different models.

the more the samples in the training process, the better the
classification effect of the classifier. At the same time, the
precision and recall rate of the number of positive samples
were affected. With the number of negative samples in the
training set increased, the number of correct predictions
increased by four and the number of error predictions was
reduced by eight. This result shows that the precision and
recall rate of the positive samples decreased with the increase
in the number of the negative samples.

3.3. Comparison with Other Methods. The performance of
our method was compared with other methods: J48, random
forest, LibD3C [39], Adaboost, string kernel SVM [40], Lib-
SVM, and GBDT, which were classified on the same data set.
The data set contains 691 real pre-miRNAs and 1437 pseudo
pre-miRNAs. As shown in Table 6 and Figure 5, the results
demonstrate that the total prediction accuracy of ourmethod
is 13.64% greater than the string kernel SVM model and
nearly 2% greater than the LibD3C and LibSVMmodels. The
overall performance of the models as measured by MCC was
in the following order: GBDT (0.8682), BP (0.8662), LibSVM
(0.8510), LibD3C (0.8510), Adaboost (0.8120), random forest
(0.7720), J48 (0.7200), and string kernel SVM (0.6002).

Table 6: Comparison of the BP with alternative models.

ACC Precision Recall MCC
BP 95.53% 96.00% 96.67% 0.8662
GBDT 94.27% 94.76% 96.87% 0.8682
LibSVM 93.52% 93.60% 93.50% 0.8510
LibD3C 93.52% 93.50% 93.50% 0.8510
Adaboost 91.82% 91.80% 91.80% 0.8120
Random forest 90.13% 90.00% 90.10% 0.7720
J48 87.78% 87.70% 87.80% 0.7200
String kernel SVM 81.89% 99.37% 46.31% 0.6002

Thus, we conclude that the BP method allows improved
recognition accuracy.

3.4. Performance on Different Species. To demonstrate the
validity and the universal applicability of the BP method,
we analyzed six other species: Anolis carolinensis, Arabidopsis
thaliana,Drosophilamelanogaster,Drosophila pseudoobscura,
Epstein-Barr virus, and Xenopus tropicalis. The results shown
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Figure 6: Test comparison results for six different species.

in Figure 6 indicate that the accuracy of the GBDT is better
than BP method in some situations, but the BP method has
been achieved fairly good results in terms of ACC, precision,
recall, and MCC.

4. Conclusions

Identification of miRNAs is the first step toward under-
standing their biological characteristics. Many approaches
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have been proposed to predict pre-miRNAs in recent years.
However, feature extraction in these methods can result in
information redundancy. To overcome this drawback, a BP
neural network algorithm together with optimal 98D features
was employed for this analysis. We compare our method
with the existing methods of J48, random forest, LibD3C,
Adaboost, GBDT, string kernel SVM, and LibSVM, which
were trained on the same training data set. The results
demonstrate that the total prediction accuracy of ourmethod
is 13.17% greater than the string kernel SVMmodel and nearly
2% greater than LibD3C and LibSVM.

After the identification step, functional analysis is also
important for miRNA research. If human miRNA and
diseases were focused on, two main approaches would be
employed to predict the relationship. The first one is the
statistical comparison analysis for the miRNA or isomiR
expression [41]. The second one is the network analysis and
prediction for miRNA-disease relationship [42–45]. Several
advanced machine learning, network techniques, and bioin-
spired models can be utilized on this problem, including
random forest [46], semisupervised learning [47], HeteSim
Scores [48], spiking neural P systems [49–52], andmembrane
computing ENREF 51 [53–57]. Functional analysis of the
novel detected miRNAs would be our future works.
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