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Abstract: Antimicrobial peptides (AMPs) are produced by neutrophils, monocytes, and macrophages,
as well as epithelial cells, and are an essential component of innate immunity system against infection,
including several viral infections. AMPs, in particular the cathelicidin LL-37, also exert numerous
immunomodulatory activities by inducing cytokine production and attracting and regulating the
activity of immune cells. AMPs are scarcely expressed in normal skin, but their expression increases
when skin is injured by external factors, such as trauma, inflammation, or infection. LL-37 complexed
to self-DNA acts as autoantigen in psoriasis and lupus erythematosus (LE), where it also induces
production of interferon by plasmocytoid dendritic cells and thus initiates a cascade of autocrine and
paracrine processes, leading to a disease state. In these disorders, epidermal keratinocytes express
high amounts of AMPs, which can lead to uncontrolled inflammation. Similarly, LL-37 had several
favorable and unfavorable roles in virus replication and disease pathogenesis. Targeting the antiviral
and immunomodulatory functions of LL-37 opens a new approach to limit virus dissemination and
the progression of disease.
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1. Introduction

The innate immune system plays a crucial role in protection against microbes, as well as in
the initiation of inflammatory responses. Antimicrobial peptides (AMPs) constitute an important
component of innate immunity against bacteria, fungi, protozoal, and viral infections [1–3].
In addition, AMPs exert numerous immunomodulatory properties by inducing cytokine production,
chemoattraction, and immune cell differentiation, thus linking innate to adaptive immunity [4–7]. Three
major AMP classes are the cathelicidin, β-defensins, and S100 proteins. Cathelicidins are a family of
α-helical peptides containing LL-37 [8,9]; β-defensins are a family ofβ-sheet peptides containing human
beta-defensin (hBD)1, hBD2 [10], and hBD3 [11]; and S100 proteins contain S100A7 (psoriasin), which is
abundantly expressed in psoriatic skin [12,13]. Similarly α-, β-, θ-defensins, including HNP1-3, human
defensins (HD)5, and cathelicidins, have been shown to have antiviral effects against several viral
diseases, including herpes simplex virus (HSV) types 1 and 2, human immunodeficiency virus (HIV),
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cytomegalovirus (CMV), and vesicular stomatitis viruses [2,14,15]. AMPs can be produced by a variety
of cell types, including keratinocytes, neutrophils, monocytes, and macrophages. AMPs are scarcely
expressed in normal skin, but their expression increases when skin is injured by external factors, such as
trauma, inflammation, or infection [16]. The aberrant expression of AMPs can lead to uncontrolled
inflammation in autoimmune diseases, like psoriasis and lupus erythematosus (LE) [17–22], and may
accelerate viral infections [23].

LL-37, the only human member of cathelicidin family, is an amphipathic, positively-charged
37-residue peptide generated from the precursor hCAP18 protein, which is stored in the secondary
granules of neutrophils, from where it is released upon activation [24]. LL-37 has a secondary alpha
helix structure and amphipathic properties that allow its interaction with bacterial membranes or other
anionic components [24]. The hydrophobic portion contains positively charged residues that interact
with negatively charged molecules, such as lipopolysaccharides (LPSs), DNA/RNA molecules, and the
bacterial cell wall. Its cationic, amphipathic alpha helix structure has three domains: a N-terminal alpha
helix, a C-terminal alpha helix, and a C-terminal tail. The N-terminal alpha helix is involved in the
chemotaxis of innate immune cells and has hemolytic activity in humans. The C-terminal alpha helix is
responsible for antimicrobial and antiviral activity of LL-37. Finally, the C-terminal tail contributes to
the formation of peptide tetramers, interacting primarily with negatively charged molecules, such as
anionic phosphatidylglycerols, LPSs of Gram-negative bacteria, and teichoic acid of Gram-positive
bacteria [24]. This domain is responsible for target specificity against bacterial anionic membranes,
while protecting eukaryotic cationic membranes, which are instead composed of cholesterol and
phospholipids. In human keratinocytes, the expression of LL-37 and other AMPs can be regulated by
various exogenous (bacterial and viral stimuli) and endogenous factors, such as pro-inflammatory
cytokines (i.e., interleukin (IL)-17A, IL-36γ), growth factors, and the active form of vitamin D [25–27].
Recently, van Harten et al. summarized the structure and biological functions of cathelicidins, including
the human LL-37, focusing on their pro-inflammatory and anti-inflammatory properties, as well on
their direct and indirect effects on chemotaxis and cell differentiation [28]. Additionally, the authors
discussed the potential and limitations of using cathelicidins as immunomodulatory (including vaccine
adjuvants) or antimicrobial drugs.

In this review, we will dissect the role of the human cathelicidin LL-37 in the dysregulation of
innate immune pathways occurring in autoimmune diseases, including psoriasis and LE, as well as in
some viral diseases, with a particular focus on its immunomodulatory functions and its potential as a
novel therapeutic approach.

2. LL-37 in Autoimmune Diseases

Psoriasis is a chronic inflammatory skin disorder resulting from genetic and environmental factors,
in which disturbances of innate and adaptive cutaneous immune responses lead to uncontrolled
keratinocyte proliferation and dysfunctional differentiation [29]. In psoriasis, IL-17A-producing CD4+

and CD8+ T cells play a key pathogenic role. These T cells emerge following the local exposure
and presentation of autoantigen(s) by tumor necrosis factor (TNF)-α- and IL-23-releasing dendritic
cells [30,31]. To date, at least four autoantigens have been identified in psoriasis, including LL-37, keratin
17, and the disintegrin and metalloprotease domain containing thrombospondin type 1 motif-like 5
(ADAMTSL5), as well as neolipids generated by mast cell phospholipase A2 group IVD and presented
by CD1a+ dendritic cells [21,32–34].

In the early events of psoriasis development, keratinocytes overproduce several innate immunity
mediators, including IL-1 cytokines, chemokines, and AMPs—in particular LL-37, HBD-2, and psoriasin.
These are involved in the activation and skin recruitment of innate immunity cells, such as plasmacytoid
dendritic cells (pDC), neutrophils, and macrophages and mast cells (Figure 1) [27,29]. In 2007,
Lande et al. demonstrated that LL-37 is the principal trigger of the pathogenic innate immune responses
in psoriatic skin, providing the first link between an antimicrobial defense system and the pathogenesis
of psoriasis [19]. In fact, LL-37 was found to be able to convert non-stimulatory self-DNA into a
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potent trigger of pDCs to produce interferon (IFN)-α, and thus to initiate innate and adaptive immune
responses (Figure 1). This process involves first the binding of LL-37 to endogenous DNA through
electrostatic interactions, and then the translocation of LL-37-DNA complexes into the endocytic
pathway of pDCs, thereby bypassing a safety mechanism for discriminating viral/microbial from
self-nucleic acids provided by the intracellular localization of Toll-like receptor (TLR) 9 [35]. Finally,
LL-37 retains the DNA complex in early endocytic organelles, leading to IFN-α production by pDCs.
TNF-α released by an activated pDC favors the maturation of myeloid dendritic cells, which in turn
initiate cutaneous, lymphocyte-mediated autoimmune reactions. In this way, LL-37 released during
skin injury breaks innate tolerance to self-DNA, and in a similar way to viral responses, elicits innate
and adaptive immune responses, leading to the development of skin lesions [19]. Self-RNA–LL-37
complexes also trigger the activation of classical myeloid DCs (mDCs). This occurs through TLR7 and
TLR8, and leads to the production of TNF-α and IL-6, as well as the differentiation of mDCs into mature
DCs (Figure 1) [36]. However, LL-37 is not the only factor exerting this activity. Indeed, hBD2, hBD3,
and lysozyme also activate pDCs by promoting self-DNA-mediated activation of endosomal TLR9,
suggesting that cationic AMPs may have evolved from being pure antibiotics into promoters of host
cell death sensing and initiators of immune responses [21] (Table 1).

Of note, both CD4+ and CD8+ LL-37-reactive T cells have been identified in patients with
moderate-to-severe plaque psoriasis [22]. In fact, LL-37 peptides can determine the activation of CD4+

T cells by binding to the Human leukocyte antigen (HLA)-DR of dendritic cells, as well as that of
CD8+ T cells, through their exposure to Major Histocompatibility Complex (MHC)class I complexes.
While both CD4+ and CD8+ LL-37-specific T cells produce IFN-γ, only the CD4+ T-cell subtype also
produces IL-17 cytokines [22]. The numbers of circulating LL-37-specific T cells significantly correlate
with disease activity, suggesting their active contribution to disease pathogenesis [22].

Epidermal keratinocytes are the “first-line” skin cells responding to injury, and they may act as the
earlier source of LL-37, HBD-2, and HBD-3. They can release LL-37 upon UV irradiation or physical
trauma, as well as stimulation with bacterial or viral products (i.e., flagellin, LPSs, or viral RNA/DNA)
or innate primary cytokines, such as IL-36γ, thus triggering paracrine and autocrine inflammatory
loops [27,29,37,38]. Keratinocyte-derived LL-37 induces the release of IL-1 cytokines, including IL-36γ,
by psoriatic keratinocytes themselves (Figure 1) [39].

Another source of nucleic acid-LL-37 complexes are neutrophils. In fact, following an initial
activation of neutrophils by RNA from damaged keratinocytes, RNA complexed with LL-37 is
abundant in neutrophil extracellular traps (NETs), and may trigger TLR8/TLR13-mediated cytokine
and de novo NET release by naїve human neutrophils. In this way, neutrophil-mediated release of
DNA/RNA and LL-37 complexes would enable pDCs and other immune cells to join the vicious cycle
of self-propagating inflammation fueled by endogenous nucleic acids [40]. These findings raise the
intriguing possibility that not only self-RNA, but also foreign, e.g., bacterial RNA or possibly fungal
RNA, may exert immunostimulatory functions in the presence of LL-37 triggered during minor skin
injury. However, further investigations need to substantiate this hypothesis (Table 1, Figure 1).

As mentioned above, other than affecting immune cells, LL-37 influences keratinocyte
functions. Indeed, human cathelicidin induces migration and proliferation [41,42], and suppresses
apoptosis of epidermal keratinocytes [43]. LL-37 by itself stimulates keratinocytes to synthesize and
release different pro-inflammatory and immunoregulatory cytokines, including IL-6, IL-18, IL-20,
Granulocyte-macrophage colony-stimulating factor (GM-CSF) [41,44,45], which are important for the
recruitment and activation of neutrophils, but also the anti-inflammatory IL-10 cytokine. Furthermore,
via IL-36R signaling, LL-37 induces CXCL8 and CXCL1 chemokines, which in turn recruit and induce
a burst of neutrophils in lesional skin, typical of the early phase of psoriasis [39]. In addition, LL-37
induces CCL2, CCL5, CXCL10, and CCL20 chemokines in psoriatic keratinocytes, which contribute to
recruitment of neutrophils and Th1/17 lymphocytes (Figure 1) [39,41,44,45].



Vaccines 2020, 8, 517 4 of 19

Vaccines 2020, 8, x 3 of 19 

 
 

immune responses in psoriatic skin, providing the first link between an antimicrobial defense system 
and the pathogenesis of psoriasis [19]. In fact, LL-37 was found to be able to convert non-stimulatory 
self-DNA into a potent trigger of pDCs to produce interferon (IFN)-α, and thus to initiate innate and 
adaptive immune responses (Figure 1). This process involves first the binding of LL-37 to endogenous 
DNA through electrostatic interactions, and then the translocation of LL-37-DNA complexes into the 
endocytic pathway of pDCs, thereby bypassing a safety mechanism for discriminating viral/microbial 
from self-nucleic acids provided by the intracellular localization of Toll-like receptor (TLR) 9 [35]. 
Finally, LL-37 retains the DNA complex in early endocytic organelles, leading to IFN-α production 
by pDCs. TNF-α released by an activated pDC favors the maturation of myeloid dendritic cells, which 
in turn initiate cutaneous, lymphocyte-mediated autoimmune reactions. In this way, LL-37 released 
during skin injury breaks innate tolerance to self-DNA, and in a similar way to viral responses, elicits 
innate and adaptive immune responses, leading to the development of skin lesions [19]. Self-RNA–
LL-37 complexes also trigger the activation of classical myeloid DCs (mDCs). This occurs through 
TLR7 and TLR8, and leads to the production of TNF-α and IL-6, as well as the differentiation of mDCs 
into mature DCs (Figure 1) [36]. However, LL-37 is not the only factor exerting this activity. Indeed, 
hBD2, hBD3, and lysozyme also activate pDCs by promoting self-DNA-mediated activation of 
endosomal TLR9, suggesting that cationic AMPs may have evolved from being pure antibiotics into 
promoters of host cell death sensing and initiators of immune responses [21] (Table 1). 

 
Figure 1. Graphical review of the main cellular targets of cathelicidin LL-37 in pathological skin 
conditions and viral infection. Mechanical trauma, UV irradiation, drugs, and viral infections can 
trigger LL-37 release by epidermal keratinocytes. In an autocrine loop, LL-37 induces the release of 
inflammatory cytokines, chemokines, and growth factors by keratinocytes themselves, which 
contribute to the skin recruitment and activation of innate immunity cells, including macrophages, 
mast cells, and polymorphonuclear neutrophils (PMN). LL-37 also impairs the apoptosis of epidermal 
keratinocytes, whereas it stimulates their proliferation and migration. LL-37 has direct effects also on 
innate immunity cells, inducing the release of pro-inflammatory mediators by macrophages (i.e., C-

Figure 1. Graphical review of the main cellular targets of cathelicidin LL-37 in pathological skin
conditions and viral infection. Mechanical trauma, UV irradiation, drugs, and viral infections can
trigger LL-37 release by epidermal keratinocytes. In an autocrine loop, LL-37 induces the release
of inflammatory cytokines, chemokines, and growth factors by keratinocytes themselves, which
contribute to the skin recruitment and activation of innate immunity cells, including macrophages,
mast cells, and polymorphonuclear neutrophils (PMN). LL-37 also impairs the apoptosis of epidermal
keratinocytes, whereas it stimulates their proliferation and migration. LL-37 has direct effects also
on innate immunity cells, inducing the release of pro-inflammatory mediators by macrophages
(i.e., C-C Motif Chemokine Ligand (CCL)2 and C-X-C motif chemokine ligand (CXCL)8) and mast
cells (i.e., histamines, prostaglandins, and IL-1b). Polymorphonuclear neutrophils (PMNs) are another
source of LL-37, which may autocrinally trigger cytokine and de novo neutrophil extracellular trap (NET)
release by naïve PMNs via Toll-like receptor (TLR) 8/13 and formyl peptide receptor-like 1 (FPRL1).
In skin inflammation related to psoriasis, LL-37 complexed to DNA or RNA can also directly act on
adaptive immunity cells, such as plasmacytoid dendritic cells (pDC), inducing the release of type I IFNs
via TLR9, as well as on myeloid DC (mDC), inducing TNF-α and IL-6 production via TLR7/8. These
events determine the expansion and activation of LL-37-specific CD4+/CD8+ T cell responses, with the
development of skin psoriatic lesions. In skin injured by viral infections, LL-37 upregulates CD4 and
CCR5 cell surface expression in Langerhans cells (LCs), thus increasing HIV susceptibility. In contrast,
LL-37 upregulates CD86 and CCR7 expression in mDCs, decreasing HIV infection and transmission.
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Table 1. Biological effects of LL-37 in psoriasis and lupus erythematosus.

LL-37-Mediated Pathogenic Events Psoriasis Lupus Erythematosus

LL-37 induces the release of inflammatory mediators by keratinocytes
LL-37 induces keratinocyte migration and proliferation

+
+

+

LL-37 reduces keratinocytes apoptosis +
LL-37/DNA complexes as autoantigens + +

LL-37/DNA complexes stimulate pDCs to high IFN-α production + +
LL-37/RNA complexes stimulate mDCs to high TNF-α and IL-6 +

Presence of LL-37-specific, IFN-γ positive CD4+ and CD8+ T cells +
LL-37-specific T cells promote anti-LL-37 antibody production by B cells +

Up to 30% of psoriasis patients develop psoriatic arthritis (PsA), a type of spondyloarthritis
characterized by enthesitis, dactylitis, peripheral arthritis, and axial involvement, and skin lesions
of psoriasis often precede PsA by 5–10 years [1]. Fresca et al. recently demonstrated that LL-37 is
highly upregulated in the synovial fluids of PsA patients, and it becomes the target of autoantibodies,
representing a novel autoantigen in PsA [46]. The presence of autoantibodies to native LL-37 in synovial
fluids of PsA patients correlates well with several inflammatory markers and disease activity [46].
In addition, in this study, novel players/mechanisms, including LL-37 and its post-translational
modifications (carbamylation and citrullination) have been found to be pathogenic in PsA. In particular,
the authors reported that LL-37 is released by degranulating/netting neutrophils under the effect
of inflammatory factors, such as GM-CSF and the complement component C5a, in PsA synovia,
and it behaves as a novel B-cell autoantigen [46]. The formation of IgG-immune complexes (IgG-IC),
including anti-LL-37 antibodies (Abs), and their deposition in synovial tissues of PsA can fuel this
vicious inflammatory circle, and also induce a type-I signature via TLR7/8/9, as observed in systemic
LE (SLE) [20]. Apart from psoriasis, other diseases are characterized by aberrant LL-37 expression.
They include LE and rheumatoid arthritis (RA), where LL-37 is present in affected organs, such as the
skin and kidneys, or in synovial fluids and circulation, respectively [47–49] (Table 1).

LE is an autoimmune disease with diverse and complicated etiology, including SLE and cutaneous
LE (CLE), caused by the activation of autoreactive B cells producing autoantibodies against self-nucleic
acids and associated proteins, such as LL-37 [50]. These Abs bind self-nucleic acids released by dying
cells and form immune complexes that are deposited in different parts of the body, leading to detrimental
inflammation and tissue damage [51,52]. CLE usually presents as one of manifestations of SLE patients;
however there are also a proportion of SLE patients present without cutaneous manifestations [53].
The skin is the primarily affected organ in CLE, where it is peculiarly photosensitive to UV light, which
can induce new skin lesions and exacerbate existing CLE disease.

Anti-microbial peptide LL-37 has been found accumulated also in lesional skin of CLE [54].
Similarly to lesional skin of psoriasis, anionic self-DNA is found complexed to LL-37, and these
complexes are able to trigger TLR9-mediated type I IFNs production in pDCs in CLE [55]. Moreover,
LL-37 contributes to DNA-mediated activation of CLE-derived keratinocytes, by inducing IFN-α
expression [56].

In SLE, LL-37 is involved in an intriguing link between neutrophils, pDC activation, and autoimmunity.
LL-37/self-DNA complexes are abundantly released by neutrophils in the form of NETs in SLE and
they efficiently activate pDC via TLR9 [20]. In addition, similarly to PsA, SLE patients were found
to develop autoAbs to both the self-DNA and LL-37 in NETs, indicating that these complexes could
also serve as autoantigens triggering B-cell activation [20]. Circulating neutrophils from SLE patients
release more NETs than those from healthy donors, and this is further stimulated by the AMP autoAbs,
suggesting a mechanism for the chronic release of immunogenic complexes in SLE [20]. Finally,
the high levels of type-I IFNs induce an unabated differentiation of monocytes into dendritic cells that
stimulate autoreactive B cells and T cells [57], and decrease the threshold activation of autoreactive B
cells [58], thereby promoting autoimmunity in SLE. Recently, Gestermann et al. demonstrated that
neutrophils undergoing NET-induced cell death (named NETosis) expose their DNA complexed to



Vaccines 2020, 8, 517 6 of 19

LL-37 in SLE [59]. These structures not only triggered polyclonal B-cell activation through TLR9,
but also stimulated NET-specific, self-reactive B cells by simultaneously engaging the B-cell receptor.
In fact, via this mechanism, the increased NET formation in SLE patients triggered the activation of
NET-specific, self-reactive B cells that produced pathogenic anti-LL-37 Abs, and potentially, anti-DNA
Abs [59]. These findings suggest a link between neutrophils and B cells, in which NETs trigger a
concerted activation of TLR9 and B-cell receptors, leading to anti-NET autoAbs production in SLE.

In addition to anti-LL-37 antibodies, 45% of SLE patients have circulating LL-37-specific T cells,
which correlate with anti-LL37 Abs/disease activity [60]. However, in contrast to psoriatic Th17-cells,
these LL-37-specific SLE T cells display a T-follicular helper (TFH)-like phenotype, with CXCR5/Bcl-6 and
IL-21 expression, implicating their role in the stimulation of pathogenic Abs. Accordingly, LL-37-specific
T-cells promoted B-cell secretion of pathogenic anti-LL-37 Ab production in vitro [60]. Therefore, in SLE,
LL-37-specific T cells have a distinct functional specialization and antigenic specificity, suggesting
that autoantigenic specificity is independent of the nature of the autoantigen, but rather relies on the
disease-specific milieu driving T-cell subset polarization and autoantigen modifications.

Elevated expression of LL-37 and its activating protease have been described also in RA
patients [47,61], even though mechanistic studies are necessary to unveil the role of LL-37 in this
disease. Periarticular osteopenia is a common finding among patients with RA [62], and LL-37
induces the apoptosis of osteoblasts, which could contribute to reduced bone formation in arthritic
joints [63]. Moreover, it has been demonstrated that in RA patients, neutrophils are prone to NETosis,
and NETs are a source of citrullinated antigens and LL-37 in response to infections and toxins [64,65].
NETs may promote aberrant adaptive and innate immune responses in the joint and in the periphery,
and perpetuate pathogenic mechanisms in this disease [66]. Finally, in RA patients, LL-37 supports the
complement C1q in increasing NET-stimulatory activity on macrophages, due to the higher expression
of C1q receptors, thus contributing to the inflammatory circuits occurring in RA [67].

3. Effect of LL-37 on DNA Viruses

3.1. Vaccinia Virus (VV)

Smallpox has been eradicated since 9 December 1979, but it has still been considered as a
select agent, due to its potential use as a bioterrorism agent. Vaccinia virus (VV), a large, complex,
and enveloped virus that belongs to poxviridae family, was used as a vaccine for the successful
eradication of smallpox. LL-37 and not α or β defensins possess antiviral activity against VV [68].
The replication of VV in human keratinocytes in an in vitro cell culture system can be significantly
inhibited by adding as low as 25 µM of LL-37 at 6 h after VV infection (Table 2). VV induces LL-37
production through the TLR3 pathway, and the presence of IL-4 and IL-13 inhibits the induction of
LL-37 in VV-infected keratinocytes [69]. Cathelin-related antimicrobial peptide (CRAMP)-deficient
mice had a higher level of VV replication compared to the wild type mice, which suggests that
cathelicidins are the key regulator in controlling VV infection [68]. Increased VV replication in AD
(atopic dermatitis) skin is correlated with decreased LL-37 upregulation, suggesting that LL-37 has a
limited role in regulating VV replication in AD patients [69]. Therefore, LL-37 can be considered as a
potential therapeutic approach for the initial control of VV replication and immunoregulation.
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Table 2. LL-37-induced antiviral and inflammatory responses.

Category Functions Viruses

Favorable Prevents virus entry shown by
preincubation

Venezuelan equine encephalitis virus
(VEEV), respiratory syncytial virus (RSV),
dengue virus (DENV), Zika virus (ZiKV),

Ebola virus (EV), hepatitis C virus (HCV) (?)
Type I and/or III IFN modulation VEEV, ZiKV

Viral particle disruption and protein
processing RSV, EV

Direct antiviral effect Human rhinovirus (HRV), ZiKV, human
immunodeficiency virus (HIV), VV, RSV

Suppresses reverse transcriptase
enzyme activity HIV

Upregulation of
interferon-stimulating genes (ISGs) Herpes simplex virus 1 (HSV-1)

Prevents viral replication HSV-1 (?)

Unfavorable HSV-2-induced LL-37 upregulation
increases virus susceptibility HIV

LL-37 upregulated CD4 and CCR5
expression in Langerhans cells
increases virus susceptibility

HIV

3.2. Herpes Simplex Virus 1 and 2 (HSV-1 and 2)

Neurotropic herpes simplex virus 1 (HSV-1) and type 2 (HSV-2), members of the human
Herpesviridae family, are common human pathogens afflicting the oral and genital mucosa. Genital
herpes poses a risk of 10 per 100,000 live births that infants will develop neonatal herpes during
delivery, with an estimated 60% fatality without treatment [70,71]. In the United States from 1989–2010,
53% of pregnant women were seropositive for HSV-1, 9% were positive for HSV-2, and 15% were
seropositive for both HSV-1 and HSV-2 [72]. Even today, no commercial vaccine is available to prevent
HSV-1 and 2. LL-37 has been shown to have significant impact on HSV replication. A significant
reduction in HSV-1 DNA titers was detected in human primary keratinocytes treated for 1 h with
LL-37 compared to untreated cells. Keratinocytes infected with HSV-1 in the presence of LL-37 showed
increased expression of five important interferon (IFN)-stimulated genes (ISGs) (IFIT1, OAS1, ISG20,
IRF7, and viperin), and reduced the expression of IFN-β, suggesting that ISGs are key regulators to
suppress HSV-1 replication in LL-37-treated in vitro cell cultures [73]. A significant reduction in HSV-1
replication has also been detected in in vitro cell culture assays where vero cells were pretreated with
LL-37, followed by HSV-1 infection [74,75]. LL-37 at a concentration of 20 µg/mL can drastically reduce
HSV-1 replication in Medical Research Council (MRC)-5 cells, and does not depend on the timing of
LL-37 treatment (before, simultaneously, or after cells are challenged with HSV-1) [76]. In contrast,
a study by Lee and coauthors has shown that LL-37 was unable to clear HSV spreading from already
infected human corneal epithelial cells, and that it failed to control intracellular virus transmission,
suggesting that LL-37 cannot be used as a therapeutic agent, but rather should be used as a prophylactic
agent for the treatment of HSV-1 (Table 2) [77]. Liposomal LL-37 treatment in HSV-1-infected HaCaT
(Human adult skin keratinocytes) cells showed broader antiviral activity at >25 µM concentrations.
Similarly, liposomal LL-37 at a concentration of 20 µM or higher completely protects HSV-1-infected,
immortalized keratinocytes (Ker-CT), with no detectable cell cytotoxicity. Nano-sized liposomal LL-37
was found to be significantly less toxic, capable of sustaining a long shelf-life (over 1 year at 4 ◦C),
and rapidly taken up by the HaCaT cell line (50% achieved at 6 h after treatment) compared to free
LL-37 peptides [78]. Therefore, liposomal-LL-37 can be used as a potential therapeutic agent for the
prevention of HSV-1 infection; however, the mechanism behind this protection remains unknown [78].

Despite several beneficial effects of LL-37, documented through in vitro experiments, it has
some detrimental effects on HSV-2-enhanced HIV transmission. HSV-2 augments the production
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of several AMPs, including LL-37 in normal human epithelial cells. Prior stimulation with LL-37
increases HIV susceptibility in monocyte-derived Langerhans cells by upregulating CD4 and CCR5 cell
surface expression (Table 2). This study provides evidence on why HSV-2 infection enhances sexual
transmission of HIV, and that it is probably due to the upregulation of LL-37 expression by epithelial
cells [23]. In contrast, pretreatment of LL-37 in monocyte-derived DCs significantly upregulates
CD86 and CCR7 expression, and decreases HIV infection in a dose-dependent manner [23], which
suggests that the effect of LL-37 in regulating infection and virus transmission is cell-specific and
receptor-dependent (Figure 1).

4. Effect of LL-37 on RNA Viruses

4.1. SARS-CoV-2

With the novel beta coronavirus SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2),
enveloped, single-stranded, positive-sense RNA virus leads to pandemic acute respiratory disease,
pneumonia, and even death recently [79–81]. Evidence-based research findings have demonstrated
an inverse correlation between the low level of serum 25-hydroxyvitamin D and the high risk of
COVID-19 disease incidence or prevalence [82]. Vitamin D upregulates several antimicrobial agents,
including LL-37, which can directly or indirectly act on SARS-CoV-2 and prevent its replication,
increase anti-inflammatory cytokine production and decrease proinflammatory immune responses.
Vitamin D deficiency in the African-American population has also been associated with a high risk
of severe disease and SARS-CoV-2-induced mortality [83]. Mesenchymal stem cells (MSCs) and its
derivatives are being tested in more than 20 clinical trials for the cure of SARS-CoV-2 infection [84].
MSCs produce several soluble factors, including the antimicrobial peptide LL-37, which can bind to
the virus and disable its replication, whereas inactivated LL-37s are unable to bind the virus and fail to
inhibit its replication [84,85]. In a recent study, 11 SARS-CoV-2 infected patients (six patients were
RNA-positive and five were RNA-negative) were orally treated with recombinant Lactococcus lactis
containing LL-37 peptide (1 × 109 CFU/capsule, three capsules/time, three times a day for three weeks).
Improvement of gastrointestinal, systemic, and respiratory symptoms in all LL-37-treated patients
indicate the usage of LL-37 to be a safe and effective therapeutic approach for the cure of SARS-CoV-2
infection [86]. However, further randomized clinical studies are needed to prove this hypothesis and
its impact on SARS-CoV-2 pathogenesis and prevention. The antiviral mechanism of LL-37 against
SARS-CoV-2 also needs to be explored.

4.2. Dengue Virus (DENV)

Dengue fever is a mosquito-borne tropical disease caused by an enveloped-RNA dengue virus
(DENV) in the family Flaviviridae. Dengue fever is endemic in more than 100 countries, with major
cases reported from southeast Asia, western specific regions, and the Americas [87]. The initial study
with in vitro DENV-2 infection in THP-1 cell lines showed increased LL-37 mRNA expression at 6–48 h
after infection, and protein increased up to 72 h after infection. Similarly, human neutrophils infected
with DENV-2 showed an increase of LL-37 mRNA expression 2–5 h after infection [88]. Preincubation
of DENV-2 with 10–15 µM of LL-37 before infection in in vitro Vero E6 cell lines showed a significant
reduction in the viral RNA level, as well as NS1 antigens in the culture supernatant compared to the
virus control (Table 2) [89]. However, no effect on percentage of infection and viral RNA level was
detected in the cultures where LL-37 was added 24 h after viral infection or during the pretreatment of
cells before infection, in comparison to the virus control. Molecular docking studies suggest that LL-37
inhibits DENV-2 infection by binding to the E protein dimers of the virus, which will eventually prevent
cell–virus interaction and infection [89]. Pretreatment with 10–30 µg/mL of LL-37 has substantially
reduced DENV-2 replication, and 30 µg/mL of LL-37 have completely inhibited virus multiplication in
the HaCaT skin keratinocyte cell lines. DENV-2 infection in HaCaT cells upregulates IFNβ, IFNλ, IL-6,
and IL-8, as well as LL-37 AMPs (Figure 1). The in vitro studies suggest that IFN I, IFN III, and LL-37
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are important innate immune responses that may contribute to the protection in the skin during DENV
infection [90].

4.3. Hepatitis C Virus (HCV)

HCV, an enveloped, single-stranded, positive-sense RNA virus under the family Flaviviridae,
is one of the major causes of chronic liver disease, and has affected 71 million people around the
world [91]. The physiological LL-37 in plasma ranges from 1.2 to 1.4 µg/mL in healthy individuals [92].
The pretreatment of Huh-7 cell lines with LL-37 at the concentration of 2–5 µg/mL attenuates HCV
infection approximately two-fold, and at the concentration of 10–20 µg/mL reduced HCV infection
further by 10-fold [93]. In contrast, an in vitro study using the BE-KO (Apolipoprotein B and
Apolipoprotein E double-gene-knockout) cell line showed that exogenous expression of CAMP and
LL-37 had no effect on intracellular HCV RNA levels; rather, it significantly increased the extracellular
and intracellular HCV infection titers. Suggesting that a dose-dependent future study is needed
to understand the antiviral role of LL-37 in HCV replication [94]. Chun and their teams [95] also
observed increased mRNA levels of cathelicidin in HCV-positive patients with psoriasis, compared
to HCV-negative patients with psoriasis. HCV infection upregulates cathelicidin, TLR9, and IFN-γ
expression, which increases the susceptibility to develop psoriasis [95]. A significant increase in plasma
LL-37 concentration has also been detected in HCV- and hepatitis B virus-infected patients compared
to uninfected controls [96]. However, the increase in LL-37 levels in plasma does not correlate with
the serum vitamin D level [96]. On the contrary, synthetic calcitriol derived calcipotriol had been
shown to inhibit HCV replication by inducing vitamin D receptor target genes like cathelicidin and
hepcidin. However, the underlying mechanism of inhibiting HCV replication by calcipotriol remains
unknown [97].

4.4. Ebola Virus (EV)

Ebola virus (EV), a single-stranded, negative-sense RNA virus from the family Filoviridae has
caused a major health emergency in the Democratic Republic of the Congo, with more than 3453 cases
of infection and 2264 deaths recently [98]. Several preventive vaccines like rVSV-ZEBOV against
EV are either approved or in different phases of clinical trials. The role of LL-37 and engineered
LL-37 variants (GI-20 and 17BI) in inhibiting the infection of recombinant VSV–Ebola–GP–GFP
(Glycoprotein-Green Fluorescence Protein) and wildtype EV has also been documented recently [99].
These LL-37 agents target EV at the endosomal cell-entry step by impairing cathepsin B-mediated
processing of EV glycoprotein in the HeLa (Henrietta Lacks) cell line (Table 2). These LL-37s were
able to inhibit EV cell entry, but they were not able to control virus replication. More importantly,
two engineered cathelicidins derived from the antimicrobial peptides containing D-amino acids are
resistant to intracellular enzymatic digestion, and are more potent than the L-form AMPs [99]. These
promising results suggest further research to explore their role in preventing EV infection in animal
models, as well as their possible use in combination with antiviral drugs, including the neutralizing
antibodies [100,101].

4.5. Zika Virus (ZiKV)

Zika virus, an enveloped neurotropic flavivirus, which is mainly transmitted by Aedes
mosquitoes [102], was declared by the World Health Organization as a public health emergency
of international concern in 2016 [103]. Although ZiKV is asymptomatic in healthy adults, it mostly
causes congenital abnormalities in the infants of infected mothers. A high risk of sporadic outbreak
continues despite the substantial reduction in ZiKV infection since 2016. Nine AMPs, including
LL-37, LL-37-derived peptides (GI-20, GI-20D-form, GF-17, 17BIPHE2, Merecidin, and RI-10), bovine
cathelicidin BMAP-27-derived BMAP-18, and DASamP2 were tested in Vero cells to determine their
anti-ZiKV effects in vitro. All nine peptides showed a dose-dependent decrease in ZiKV RNA levels
compared to untreated controls, where Vero cells were pretreated with AMPs. BMAP-18, GF-17,
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and RI-10 were also able to inhibit zika infection in primary human fetal astrocytes cultures (Table 2).
GF-17 and BMAP-18 do not affect viral attachments, but they interfere with the ZiKV entry at 2 h
post-infection by significantly increasing and decreasing IFN-α and IFN-β1 expression, respectively,
in a dose-dependent manner. Moreover, GF-17 was found to inactivate ZiKV by direct interaction in
a time- and dose-dependent manner. Direct incubation of GF-17 at 10 µM concentration with ZiKV
for 4 h caused a reduction in the majority of the virions compared with those treated with GF-17 at
its lower dose and shorter incubation time. Therefore, LL-37 may be used as a potential therapeutic
approach for future outbreaks where LL-37 will reduce the virus entry to cells by inactivating virus
particles [104].

4.6. Human Rhinovirus (HRV)

Human rhinoviruses (HRVs), non-enveloped, positive-sense, single-stranded RNA viruses from
Picornaviridae, are responsible for the “common cold” and are a major cause of mortality and morbidity
worldwide [105]. HRVs enter the epithelial cells via endocytosis after binding with either intercellular
adhesion molecule-1 (ICAM-1), low-density lipoprotein receptors, or the cadherin-related family
member 3 [106,107]. Vitamin D (both 25(OH)D and 1,25(OH)2D)-induced resistance to HRV infection
is associated with the induction of the CAMP expression. CAMP is a vitamin D-inducible gene
that encodes the hCAP-18 protein from which LL-37 is derived [108,109]. LL-37 has direct antiviral
effects against HRV in an in vitro model where the virus had been incubated with LL-37 prior to
infecting alveolar epithelial cells. LL-37 treatment significantly reduces cell metabolic activity at lower
concentrations of LL-37 (≤30 µg/mL) in infected cells compared to healthy cells, without enhancing
cell apoptosis or necrosis [110]. The pretreatment of LL-37 to lung epithelial cells effectively reduces
HRV replication and the release of infected virion in the cell culture supernatant (Table 2). However,
the conversion of all positively-charged arginines to citrullines (citrullination), which is regulated by
the level of peptidyl arginine deiminase (PAD) enzyme, resulted in the complete reduction of LL-37
antiviral activity against HRV replication [111]. Therefore, targeting to reduce the PAD enzyme may
help to maintain LL-37 activity against HRV infection.

Serum LL-37 levels were inversely correlated with HRV viral load in broncho-alveolar lavage of
cystic fibrosis patients [112]. In contrast, a multicenter study with cohort of >100 infants showed that
infants with highest quartile of serum LL-37 were less likely to have respiratory syncytial virus (RSV)
bronchiolitis, but more likely to have HRV bronchiolitis [113].

4.7. Respiratory Syncytial Virus (RSV)

Respiratory syncytial viruses (RSV), single-stranded, negative-sense RNA viruses under the
family Paramyxoviridae, are a leading cause of severe lower respiratory disease in infants and young
children, with up to 149,400 deaths in children <5 years of age annually [114]. As of today, there is no
vaccine available that can prevent this infection. LL-37 directly binds to RSV and causes a significantly
low overall level of colocalization of the F- and N-proteins (representing partial or complete viral
particle disruption) than controls in in vitro experiments [115]. In vitro administration of LL-37 in
Hep-2 cells also significantly lowers the production of type I and type III IFNs, suggesting that the
action of LL-37 is mediated by direct effect rather than by regulating the IFN responses. LL-37 has been
reported to inhibit RSV replication by damaging the integrity of the RSV envelope and preventing
cellular binding (Table 2). LL-37 has also been shown to have an antiviral effect against RSV infection
in in vivo murine models by lowering IFN-β production, which again emphasizes that antiviral effects
are not mediated through the modulation of IFN pathways [115,116].

4.8. Venezuelan Equine Encephalitis Virus (VEEV)

Venezuelan equine encephalitis virus, an enveloped, positive-sense, single-stranded RNA virus
under the family Togaviridae, is a mosquito-borne viral agent that causes diseases of variable severity,
ranging from mild febrile illness to life-threatening encephalitis [117]. LL-37 has been demonstrated to
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prevent virus replication by inhibiting the virus entry in an in vitro cell culture experiment (Table 2).
LL-37 was found to modulate type I IFN expression, where the IFN-β1 expression increase was detected
in infected cells [118]. This study provides a novel antiviral role for LL-37 in the treatment of early
stage of VEEV infection.

4.9. Human Immunodeficiency Virus (HIV)

Human immunodeficiency virus (HIV)-1 and HIV-2, an enveloped, single-stranded, positive-sense
RNA virus from the genus Lentivirus causes AIDS. An estimated 1.7 million people became recently
infected with HIV, and 770,000 people died from AIDS-related illness in the year 2018. The discovery
of antiretroviral therapy (ART) has drastically improved HIV patient mortality, yet this success is
accompanied by a dramatically increased incidence of cardiovascular diseases, accelerated aging,
and liver-related comorbidities. LL-37 and its fragments LL13-37 and LL17-32 can directly bind to
HIV-1 reverse transcriptase to block its activity in a dose-dependent manner in in vitro experiments
(Table 2) [119]. A vitamin D and phenylbutyrate supplement study in ART-naïve patients had
significantly increased 25(OH)D levels in plasma after 16 weeks of treatment; however, there were no
changes in the serum LL-37 level, as well as no improvement in gut-derived immune activation
markers [120]. Depot medroxyprogesterone acetate (DMPA), a popular contraceptive used in
sub-Saharan Africa was found to be associated with increased HIV acquisition, suggesting that
a randomized controlled trial is needed to understand the link between the use of DMPA and HIV
risk [121]. In contrast, DMPA administration significantly increased serum LL-37 concentration (0.81 vs.
0.40 log10 ng/mL; p = 0.027), suggesting that this treatment may actually provide increased antiviral
activity in the female genital tract and may reduce HIV acquisition, which needs additional future
studies [122].

Antimicrobial peptide LL-37 produced by epithelial cells also accelerates CD4 and CCR5 expression
in Langerhans cells and accelerated HIV infection in an ex vivo explant culture (Table 2, Figure 1) [23].
Higher levels of cathelicidin LL-37 in cervicovaginal secretions (CVSs) have been positively associated
with increased HIV acquisition in a subgroup of female sex workers where the sex workers had
increased rates of genital infections, which might have accelerated HIV susceptibility (Table 2) [123].
CVSs collected from HIV-exposed seronegative, HIV-seropositive, and low-risk controls were found to
have HIV neutralizing activity, and a selective depletion of LL-37 peptide demonstrated significantly
reduced functional activity. Similarly, human CVS lacking intrinsic HIV neutralizing activity can be
restored by the addition of recombinant LL-37 peptides in in vitro experiments [124].

In ART-untreated, HIV-infected patients, LL-37 levels were consistently low for any given vitamin
D levels compared to healthy controls. Again, ART-untreated HIV+ patients have significantly lower
plasma LL-37 levels compared to the ART-treated HIV positive patients, suggesting that ART may
have reduced HIV replication to rescue plasma LL-37 levels [125,126]. The level of plasma LL-37 was
found to be positively correlated with the proinflammatory cytokine IL-6 [125]. All of these studies
have suggested that a balanced level of LL-37 might be beneficial for the control of HIV acquisition:
the increased level of LL-37 may upregulate the receptor and the coreceptors of the target cells and
influence HIV replication and infection (Table 2). However, a detailed in vivo animal experiment is
necessary to determine the beneficial effect of LL-37 in HIV infection.

5. Conclusions

LL-37, like other AMPs, exhibits antimicrobial activities against a broad spectrum of microbes,
including bacteria, enveloped viruses, and fungi. Due to their antimicrobial properties, AMPs have
been a promising target in infections treatment as alternatives to systemic antibiotics [66]. However,
the administration of manufactured peptides may induce microbial resistance to innate human
defenses against microbial invasion, as demonstrated for various antibiotics with cathelicidin-like
properties [67,68].
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Nowadays, LL-37, in addition to its antimicrobial properties, can influence and modulate,
both directly and indirectly, the activity of various cell populations involved in inflammatory
processes, and intensify the course of inflammation by attracting neutrophils, monocytes, macrophages,
eosinophils, and mast cells to the pathogen entry site. Importantly, epidermal keratinocytes and
neutrophils are a rich source of LL-37, and may have a pivotal role in triggering the early inflammatory
events of autoimmune diseases. Given the emerging pathogenic role of LL-37 in autoimmune
diseases, this molecule could be a potential target for immune modulation as well. Neutralization of
TLR4 signaling holds promise for diseases, such as colitis, chronic pain, and sepsis [69]. Given the
effects of LL-37 on this receptor, it may have therapeutic potential in diseases influenced by TLR4
signaling. For diseases where LL-37 may activate TLR7 and TLR9 signaling, such as psoriasis and
SLE, an antagonist drug of LL-37 may provide a novel therapeutic strategy. Because LL-37 is able to
participate in immune complex formation [16], the neutralization of LL-37 by antibodies should be
properly evaluated.

The antiviral activity of LL-37 works in different ways, including virus–cell interaction, direct
inactivation of virus particles, modulating type I and III IFN production, upregulating ISGs, preventing
virus replication, disrupting virus particles and protein processing, and possibly facilitating the cellular
communications that regulate adaptive immune responses. On the other side, the increased production
or administration of LL-37 may accelerate the production of proinflammatory cytokines and increase
the expression of some key cell receptors that augment increased viral replication and infection.
A detailed understanding of the mode of action of LL-37 using animal models is crucial. The majority
of LL-37 studies have been performed in in vitro cell culture models, suggesting that LL-37 may be
more beneficial as a prophylactic drug rather than as a therapeutic agent, which also needs future
studies. Targeting the antiviral and immunomodulatory functions of LL-37 opens a new approach to
limit virus dissemination and the progression of disease.

Overall, although cathelicidins have been discovered nearly 30 years ago, the elucidation of new
properties and functions in recent years continues to provide more insight into the physiological and
pathogenic roles and potential applications of this immunomodulatory and anti-microbial peptide.
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