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Abstract: Cancer is the second most common cause of death in the United States, accounting for
602,350 deaths in 2020. Cancer-related death rates have declined by 27% over the past two decades,
partially due to the identification of novel anti-cancer drugs. Despite improvements in cancer
treatment, newly approved oncology drugs are associated with increased toxicity risk. These toxicities
may be mitigated by pharmacokinetic optimization and reductions in off-target interactions. As such,
there is a need for early-stage implementation of pharmacokinetic (PK) prediction tools. Several
PK prediction platforms exist, including pkCSM, SuperCypsPred, Pred-hERG, Similarity Ensemble
Approach (SEA), and SwissADME. These tools can be used in screening hits, allowing for the selection
of compounds were reduced toxicity and/or risk of attrition. In this short commentary, we used PK
prediction tools in the optimization of mitogen activated extracellular signal-related kinase kinase 1
(MEK1) inhibitors. In doing so, we identified MEK1 inhibitors with retained activity and optimized
predictive PK properties, devoid of hERG inhibition. These data support the use of publicly available
PK prediction platforms in early-stage drug discovery to design safer drugs.

Keywords: MEK1; machine learning; toxicity; cancer; drug discovery; drug development

1. Introduction

Cancer is the second most common cause of death in the United States, accounting
for 602,350 deaths in 2020 [1]. Cancer-related death rates have precipitously declined
over the past two decades. This decline has been due to successful campaigning for
tobacco prevention and smoking cessation; improved screening tools; vaccines, and new
anti-cancer drugs. Despite improvements in response rate, progression free survival,
and overall survival, newly approved anti-cancer drugs are associated with increased
toxicity risk [2,3]. Anti-cancer drugs are intrinsically cytotoxic and commonly riddled with
pharmacokinetic (PK) issues, such as low bioavailability; poor solubility; cytochrome P450
(CYP) and hERG inhibition; central nervous system (CNS) permeability; skin sensitization,
and hepatotoxicity [4,5]. Additionally, chemotherapeutic drugs typically require high-dose
treatments; have low therapeutic indices; possess several off-target interactions and are
often used in combination with other anti-cancer drugs, increasing the risk of adverse drug-
drug interactions [5]. As such, early assessment of PK parameters is critical in determining
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the quality of anti-cancer agents and should be employed in the early stages of drug
discovery and development.

The drug failure rate is astoundingly high, with less than 10% of drug candidates
making it to the market after reaching Phase I clinical trials [6]. Pharmacokinetic issues
are the most common reason for drug failure, often due to unexpected toxicity. The use
of artificial intelligence (AI) is actively revolutionizing drug discovery, allowing for the
discovery of safer, more selective drug candidates with lower associated costs and reduced
time to market [7–9]. AI provides an affordable means of predicting toxicity at the early
stages of drug discovery, enabling the selection of compounds with devoid of PK deficits.
In particular, the application of PK prediction tools in the early stage of anti-cancer drug
discovery may reduce the burden of unanticipated adverse drug reactions.

In this short commentary, we provide data to support the use of publicly available
machine learning based PK prediction tools in the optimization of mitogen activated
extracellular signal-related kinase kinase 1 (MEK1) inhibitors. MEK1 inhibitors, in combi-
nation with rapid accelerated fibrosarcoma B-type (BRAF) inhibitors, have dramatically
improved tumor response rate and progression-free survival in patients with stage III
or IV metastatic BRAF-mutated melanoma [10]. Four FDA-approved MEK1 inhibitors
exist: trametinib, cobimetinib, selumetinib, and binimetinib. These inhibitors are associ-
ated with extensive side-effect profiles, most notably rash, diarrhea, fatigue, peripheral
edema, dermatitis, hypertension, and cardiomyopathy [11–13]. Additionally, MEK1 in-
hibitors are often associated with life threatening arrhythmias resulting from off-target
hERG inhibition [11–15]. As such, we utilized artificial intelligence screening tools to
preferentially select for compounds with favorable PK profiles, placing special emphasis
on eliminating hERG inhibition and major cytochrome interactions. We hypothesize novel
MEK1 inhibitors devoid of hERG/CYP inhibition can be achieved using a machine learning
based workflow.

2. Results

Compounds were selected using a six step approach (Figure 1A). Advanced synthetic
intermediates were derived from the clinical stage MEK1 inhibitors trametinib, cobimetinib,
selumetinib, binimetinib, and TAK-733 (Figure 1B). These intermediates were used as
bait in an analog search of the publicly available databases SciFinder-n and ChemSpace
(Step 1) (Figure 1A). Several thousand hits were uncovered and subsequently filtered
to meet the following criteria: (1) contain a position 1 carboxylic acid, methyl ester, or
ethyl ester; (2) possess a leaving group at position 2 for subsequent modification, and
(3) conform to the MEK1 structure activity relationship (Figure 1C), with a position 4
or 5 hydrogen bond acceptor. In doing so, 395 hits were selected for further screening
in PK prediction platforms and molecular docking (Figure 1D). Several PK prediction
platforms were used, including pkCSM, SuperCypsPred, Pred-hERG, Similarity Ensemble
Approach (SEA), and SwissADME. Additionally, molecular docking was performed using
Shrodinger Glide. pkCSM was used to make predictions on AMES toxicity of advanced
synthetic intermediates and gastrointestinal absorption (GIA), CNS permeability (CNSP),
volume of distribution (VDSS), and clearance (CL) of hits modified with novel side chains.
SuperCypsPred, a highly accurate prediction platform (accuracy: 0.930), was used to
make binary predictions on CYP inhibition [7]. Pred-hERG is a highly accurate tool
(accuracy: 0.900) used to make predictions on hERG inhibition [16,17]. SEA is a tool that
uses chemical similarity to predict off-target protein interactions. As such, SEA was
employed to probe synthetic intermediates and structures for potential promiscuity, an
undesirable feature that we screened against. Lastly, SwissADME is a tool capable of
making predictions on PK parameters, as well as the synthetic accessibility of structures.
We used SwissADME to preferentially select for compounds that are synthetically feasible.
Of the 395 synthetic intermediates screened, 16 were selected for further study. These
synthetic intermediates possess low CYP and hERG inhibition liability with few predicted
off-target interactions and reasonable synthetic accessibility. Additionally, all selected
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synthetic intermediates met our docking criteria, which required energetically favorable
interactions with serine-212 (S212) and lysine-97 (K97). Five of the 16 hits identified were
pursued based on synthetic accessibility and cost.
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Figure 1. Identification of Novel synthetic intermediates: (A) workflow used to design novel Norris
Lab (NL) compounds. The worklow included 6 steps: (1) analog search using synthetic intermedi-
ates derived from FDA-approved MEK1 inhibitors as bait, (2) filtering of synthetic intermediates,
followed by PK predictions, (3) novel side-chain addition with repeat PK analysis, (4) docking of
hits that emerged from step 3, (5) synthesis of top hits, and (6) drug screening; (B) structures used in
synthetic intermediates identification. Advanced intermediated were derived from cobimetinib (1),
binimetinib and selumetinib (2), TAK-733 (3), and trametinib (4); (C) figure highlighting the common
structure activity relationship (SAR) shared among nanomolar range MEK1 inhibitors; (D) heat
map demonstrating PK predictions on the 395 synthetic intermediates discovered. 16 synthetic
intermediates were identified; however, only five of the synthetic intermediates were selected based
on synthetic accessibility and cost.

In step 3, 27 novel side chains were conjugated to our five synthetic intermediates,
generating 135 compounds for further in silico PK screening (Figure 2A). Compounds were
preferentially selected to meet the following criteria: (1) high gastrointestinal absorption
(GIA), (2) low CNS permeability (CNSP), (3) low CYP inhibition liability, (4) low hERG
inhibition liability, (5) no AMES toxicity, (6) fewer than five off-target interactions, and
(7) reasonable synthetic accessibility. As such, seven compounds were selected for molec-
ular docking (Step 4) (Figure 2B). Docking criteria required interactions with lysine-97
(K97), valine-127 (V127), phenylalanine-209 (F209), and serine-212 (S212) (Figure 2C). All
Norris Lab (NL) compounds met docking criteria, demonstrating frequent halogen bond
interactions with V127, pi-stacking interactions with F209, and hydrogen bonding with
S212 and K97 (Figure 2B,C). As such, all seven NL compounds were synthesized for further
in vitro testing.
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Figure 2. Virtual compound screen using pharmacokinetic (PK) prediction tools: (A) a total of
27 novel side chains were conjugated to five synthetic intermediates. Compounds were screened
for pharmacokinetic properties as previously described. Seven compounds were identified with
favorable PK profiles and were selected for molecular docking; (B) frequency of drug-allosteric site
amino acid interactions quantified from the top 10 most energetically favorable docking poses. Key
interactions include lysine-97 (K97), valine-127 (V127), phenylalanine-209 (F209), and serine-212
(S212); and (C) visual representation of cobimetinib interacting with key amino acids in the MEK1
allosteric site.

NL compounds and controls were screened in A375 malignant melanoma cells at
10 micromolar (µM) concentrations for 24 h (Figure 3A). Trametinib, as well as six NL
compounds (NL33-95, NL33-104, NL34-113, NL221-75, NL350-02, and NL350-104), demon-
strated significant activity at 10 µM doses. One NL compound, NL338-05, did not demon-
strate activity at 10 µM. The six NL compounds with activity, as well as the four FDA-
approved MEK1 inhibitors, were selected for a dose response analysis, assessing activity
at 0.01, 0.1, 0.3, 1, 3, and 10 µM concentrations (Figure 3B). Trametinib, a MEK1 inhibitor
with a cell-free IC50 in the picomolar range demonstrated the most potent activity of
compounds tested, completely preventing MEK1-induced activation of extracellular signal-
regulated protein kinase (ERK1/2) at 0.01 µM. Similarly, cobimetinib, a low nanomolar
range inhibitor of MEK1, demonstrated significant activity at 0.01 µM. Selumetinib and
binimetinib demonstrated nanomolar range activity, preventing ERK1/2 phosphoryla-
tion at 0.1 µM concentrations. Experimental compounds NL33-95, NL33-104, NL34-113,
and NL350-104 demonstrated micromolar range activity, with NL221-75 and NL350-02
demonstrating low nanomolar range activity. NL221-75 and NL350-02 were as potent as
FDA-approved controls in preventing ERK1/2 activation. Next, we performed an MTT
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(methylthiazolyldiphenyl-tetrazolium bromide) assay to quantify cell proliferation. A375
cells were treated with increasing concentrations of compounds and cell proliferation
was determined at 24 h. All compounds tested exhibited a dose-dependent response in
preventing proliferation. NL221-75 and NL350-02 were as effective in preventing cell prolif-
eration as the FDA-approved controls trametinib, cobimetinib, and selumetinib (Figure 3C).
Lastly, a hERG inhibition assay was performed to validate our in silico predictions. As
predicted, cobimetinib inhibited hERG at low nanomolar concentrations (IC50 = 52 nM)
(Figure 3D). None of the NL-compounds tested inhibited hERG. These data confirm our
computational predictions, establishing a reduced cardiotoxicity potential associated with
our novel NL-compounds.
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Figure 3. In vitro screening of novel NL compounds: (A) hit compounds were screened at
10 micromolar concentrations for 24 h. All but one compound demonstrated significant activity
and were selected for a dose response analysis; (B) compounds were screened at increasing concen-
trations to assay for activity. NL221-75 and NL350-02 were as potent as FDA-approved controls,
demonstrating low nanomolar range activity; (C) MTT A375 cells were treated with increasing con-
centrations of test items and cell proliferation was determined at 24 h using the MTT method. All
compounds demonstrated dose-dependent activity in preventing cell proliferation. Experimental
compounds NL221-75 and NL350-02 were as effective as FDA-approved controls in preventing
cell proliferation. Data are plotted as percent inhibition of proliferation; and (D) hERG inhibition
experiments performed on CHO-cells. Cobimetinib demonstrated low nanomolar inhibition of hERG.
NL34-113, NL221-75, and NL350-02 did not inhibit hERG at the concentrations tested.

3. Discussion

On average, it costs $2.6 billion USD and takes 10 to 15 years to develop an anti-
cancer drug [6,18,19]. These costs are a result of high drug attrition rates in clinical stage
development [6]. The most common reason for clinical stage failure is poor drug pharma-
cokinetics. As such, there is a need for early-stage implementation of pharmacokinetic
prediction tools. Artificial intelligence and machine learning-based tools can examine
compound libraries and predict molecular interactions. These tools can be used to identify
patterns and manufacture predictions in a cost-effective and time-efficient manner. PK
prediction platforms reduce the risk of unexpected adverse events.



Molecules 2022, 27, 3678 6 of 10

Anti-cancer drugs commonly target pathways that are vital for cell survival and home-
ostasis. These drugs typically possess a narrow therapeutic index, emphasizing the need to
consider pharmacokinetics, off-target interactions, and potential drug-drug interactions. In
this short communication, we highlight a successful example of implementing PK predic-
tion tools at an early stage to aid in lead compound selection. pkCSM was used to assess
gastrointestinal absorption, half-life, and CNS permeability. Issues with gastrointestinal
absorption, oral bioavailability, and a lack of CNS permeability are commonly observed in
anti-cancer drug discovery and development. Platforms such as pkCSM and SwissADME,
among other computational tools, may be employed to screen hit compounds for potential
PK deficits. We selected for compounds without CNS permeability. The decision to do
so was based on our target indication; side-effect profile associated with CNS inhibition
of MEK1, and the plan to explore topical or injectable use for peripheral indications. We
used SuperCypsPred to make binary predictions on CYP inhibition. Major cytochromes,
such as CYPs 3A4, 2D6, 2C9, 2C19, and 1A2, are responsible for the metabolism of 80%
of FDA-approved drugs, including chemotherapeutics [9]. Screening for potential inter-
actions may reduce the risk of adverse drug reactions. Pred-hERG 4.2 was used to make
predictions on hERG inhibition, which is known to precipitate cardiac arrhythmias and
significantly contribute to late pre-clinical and clinical stage failure of drugs [20,21]. MEK1
inhibitors commonly block hERG and as such, we strictly selected for compounds devoid
of hERG inhibition. The chemical similarity ensemble approach, SEA, was used to make
predictions on potential off-target interactions. Off-target interactions, particularly with
kinase inhibitors, can lead to significant toxicities and should be screened for during pre-
clinical drug development. SEA relates proteins by correlating chemical similarity among
their ligands [22,23]. SEA can screen large compound databases and build cross-target
similarity maps in real time to predict potential drug-protein interactions. Our compounds
were screened using SEA to preferentially select for synthetic intermediates that have
reduced potential for problematic off-target interactions. Lead compounds NL221-75 and
NL350-02 are predicted to have fewer than two predicted off target-interactions, demon-
strating significant selectivity for MEK1. Lastly, SwissADME was used to examine the
synthetic accessibility and drug-likeness of our compounds. Most of our compounds were
synthetically accessible and did not violate Lipinski’s Rule of Five.

In vitro data from this study confirm computational predictions on hERG inhibition
and activity. Six of the seven NL-compounds tested demonstrated activity in prevent-
ing ERK1/2 phosphorylation in A375 cells. NL221-75 and NL350-02 were as potent
as FDA-approved controls in preventing the activation of ERK1/2. None of the three
NL-compounds selected for hERG inhibition studies demonstrated activity. In contrast,
Cobimetinib, an FDA-approved MEK1 inhibitor with shared chemical features with our
derivatives, demonstrated low nanomolar range activity against hERG (IC50 = 52 nM).
These data confirm the discovery of novel MEK1 inhibitors with retained activity in vitro
and reduced liability of cardiotoxicity. These data validate publicly available PK prediction
platforms and further support their use in early-stage drug discovery and development.

3.1. Conclusions

We provide data supporting the use of publicly available PK prediction platforms. The
development of novel anti-cancer drugs has revolutionized the field of oncology, improving
patient outcomes. PK optimization of anti-cancer drugs will reduce the risk of unanticipated
adverse events and improve patient outcomes. Our data provide a novel workflow to
be used in the identification of compounds with desirable pharmacokinetic properties.
This workflow includes cutting-edge machine learning-based platforms capable of making
accurate and robust predictions on PK parameters. These data validate the predictive value
of these tools and support their use in early-stage drug discovery and development.
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3.2. Limitations

Moving forward, we plan to screen both NL221-75 and NL350-02 for in vivo efficacy
in a mouse model of melanoma and for in vitro interactions with major cytochromes and
additional kinases. One limitation of this study is that, currently, we are unable to disclose
structural or synthetic information relating to our novel NL-compounds due to intellectual
property (IP) considerations. Chemical structures and syntheses data for all NL-derivatives
will be deposited to PubChem in the coming months following IP-filing. The purpose of this
article is to emphasize the need for early-stage assessment of pharmacokinetic properties
using in silico and in vitro approaches. Further pre-clinical development is required to
confirm in vivo activity and PK of NL-derivatives relative to FDA-approved controls.

4. Materials and Methods
4.1. Computational Analyses

Advanced synthetic intermediates of the nanomolar range MEK1 inhibitors tram-
etinib, cobimetinib, selumetinib, binimetinib, and TAK-733 were converted to SMILES
codes using Chem Info (http://www.cheminfo.org/flavor/malaria/Utilities/SMILES_
generator___checker/index.html accessed on 22 February 2022). SMILES codes were in-
put as bait in ChemSpace (https://chem-space.com/search accessed on 22 February 2022)
and SciFinder-n (https://scifinder-n.cas.org/ accessed on 22 February 2022). Hit syn-
thetic intermediates were converted to SMILES codes and submitted for analysis in
pkCSM (http://biosig.unimelb.edu.au/pkcsm/prediction accessed on 22 February 2022),
SuperCYPsPred (http://insilico-cyp.charite.de/SuperCYPsPred/ accessed on 22 February
2022), Pred-hERG 4.2 (http://predherg.labmol.com.br/ accessed on 22 February 2022),
SEA (https://sea.bkslab.org/ accessed on 22 February 2022), and SwissADME (http:
//www.swissadme.ch/index.php accessed on 22 February 2022). Additionally, struc-
tures were converted to Mol.2 files for docking in Schrodinger Glide (New York, NY, USA).
Using Schrodinger Glide, coordinates for MEK1 enzyme (PDB: 4l mn) were prepared by re-
moval of crystallographic waters and ions, correction of structural incompletions, addition
of partial charges, and protonation at physiologic pH. The active site was defined using
the Grid Generation tool. The co-crystalized ligand cobimetinib was used to determine
the receptor grid. Compounds were prepared using LigPrep, a tool that takes 2D or 3D
structures and produce the corresponding low-energy 3D structures for docking in Glide.
In some cases, LigPrep produced multiple output structures for each input structure by
generating different protonation states, stereochemistry, tautomers, and ring conforma-
tions. These structures were saved as Maestro files and submitted for docking. The top
10 most energetically favorable docking poses were used for analysis. Selected synthetic
intermediates were further modified using 27 proprietary side chains. The computational
tools described above were repeated in the analysis of the 135 compounds generated.

4.2. Cell Culture and Drug Treatment

Human A375 metastatic melanoma cells (ATCC (Manassas, VA, USA); No. CRL-
1619IG-2) were cultured in Gibco Dulbecco’s Modified Eagle Medium (DMEM) (ATCC;
No. 30-2002) using 10% fetal bovine serum and 1% Penicillin-Streptomycin. Cells were
plated at a confluency of 5 × 105 per 35 mm well 24 h before treatment. For initial drug
screening, cells were treated with vehicle, trametinib (ChemShuttle (Burlingame, CA, USA);
No. 100836, 40 nM), or NL-compounds at 10 µM for 24 h. Compounds were dissolved in
DMSO and vehicle treated cells received DMSO in media. For dose response analyses, cells
were treated with vehicle or drug (trametinib or NL-compounds) at varying concentrations
(0.01, 0.1, 0.3, 1, 3, and 10 µM) for 24 h. Following 24-h treatment, cells were then lysed
using 1× RIPA lysis buffer containing 1% protease/phosphatase inhibitor, sonicated, and
stored at −80 ◦C until further use.

http://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/index.html
http://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/index.html
https://chem-space.com/search
https://scifinder-n.cas.org/
http://biosig.unimelb.edu.au/pkcsm/prediction
http://insilico-cyp.charite.de/SuperCYPsPred/
http://predherg.labmol.com.br/
https://sea.bkslab.org/
http://www.swissadme.ch/index.php
http://www.swissadme.ch/index.php
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4.3. Western Blot Analysis

Tissue and cells were homogenized in 1× RIPA with 1% protease/phosphatase in-
hibitor, followed by sonication. Samples were prepared with 2× SDS Page buffer (125 mM
Tris pH7, 4% SDS, 0.2% bromophenol blue, 20% glycerol, 5% β-mercaptoethanol) and boiled
at 98 ◦C for 5 min prior to loading. Proteins were separated in 4–20% Mini-PROTEAN
TGX Stain-Free Protein Gels (Bio-rad (Hercules, CA, USA), #456-8093) and transferred
to Trans-Blot Turbo Mini Nitrocellulose Transfer Packs (Bio-rad, #170-4158). Membranes
were blocked in 5% nonfat milk (Biorad, #170-6404) diluted in 1× Tris Buffered Saline,
0.1% Tween 20 (TBST) for 1 h and incubated in primary antibodies at 4 ◦C overnight with
rotation. Membranes were rinsed 5 times with TBST and incubated at room temperature for
1 h in secondary antibody. The membranes were then rinsed 5 times in TBST for 10 min each
and imaged on a Bio-Rad ChemiDoc MP system with SuperSignal West Femto Maximum
Sensitivity Substrate (ThermoFisher (Waltham, MA, USA), #34096). Primary antibodies
were used at 1:1000 and included p-p44/p42 MAPK (t202/y204) (phospho-ERK1/2) (Cell
Signaling (Danvers, MA, USA); No. 4270S) and p44/42 MAPK (ERK1/2) (Cell Signaling;
No. 4695S. Secondary anti-rabbit IgG HRP antibody (Sigma (Burlington, MA, USA); No:
A9169) was used at 1:7500. Ponceau S (Millipore Sigma; No: P7170) was performed as need
for protein normalization.

4.4. MTT Cell Proliferation Assay

An MTT assay (Abcam (Cambridge, UK); No: ab211091) was performed following
the manufacturer’s instructions. A375 cells were plated in a 96-well plate at a density of
5000 cells/well for 24 h before treatment. Cells were then treated with vehicle or drug
(trametinib, cobimetinib, or NL-compounds) at varying concentrations (0.01, 0.1, 0.3, 1, 3,
and 10 µM) for 24 h. Following 24-h treatment, drug containing media was exchanged with
serum-free DMEM (50 µL/well) and MTT reagent (50 µL/well) and incubated at 37 ◦C
for 3 h. After incubation, MTT solvent (150 µL/well) was added. Plates were wrapped
with foil and placed on an orbital shaker for 15 min. Absorbance was read at 590 nm
using a BioTek plate reader (BioTek (Hong Kong, China); ELx800). Triplicate readings
were measured and averaged for each sample. Readings from culture media-only treated
wells were subtracted from test item readings. Cell proliferation was measured using the
following formula:

Cell Proli f eration =
(Control − Sample)

Control
(1)

4.5. hERG Inhibition Assay

hERG potassium channel assays were performed by Eurofins St. Charles examining
six concentrations (0, 0.1, 0.3, 1, 3, and 10 µM) in CHO-cells, per their publicly available
method [24]. The parameters measured were the maximum tail current evoked on stepping
to 40 mV and ramping back to −80 mV from the test pulse. All data were filtered for seal
quality, seal drop, and current amplitude. The peak current amplitude was calculated before
and after compound addition and the amount of block was assessed by dividing the Test
compound current amplitude by the Control current amplitude. Control data is the mean
hERG current amplitude collected 15 s at the end of the control period; Test compound
data is the mean hERG current amplitude collected 15 s at the end of test concentration
application for each concentration. All compounds were tested in the presence of 0.1%
Pluronic F-68 Non-Ionic Surfactant. After whole cell configuration is achieved, the cell is
held at −80 mV. The cell is depolarized to +40 mV for 500 ms and then to −80 mV over a
100 ms ramp to elicit the hERG tail current. This paradigm is delivered once every 8 s to
monitor the current amplitude.
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