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Natural variations in parenting are associated with differences in expression of
several hormones and neuropeptides which may mediate lasting effects on offspring
development, like regulation of stress reactivity and social behavior. Using the
bi-parental California mouse, we have demonstrated that parenting and aggression
are programmed, at least in part, by paternal behavior as adult offspring model
the degree of parental behavior received in development and are more territorial
following high as compared to low levels of care. Development of these behaviors
may be driven by transient increases in testosterone following paternal retrievals and
increased adult arginine vasopressin (AVP) immunoreactivity within the bed nucleus of
the stria terminalis (BNST) among high-care (HC) offspring. It remains unclear, however,
whether other neuropeptides, such as oxytocin (OT), which is sensitive to gonadal
steroids, are similarly impacted by father-offspring interactions. To test this question, we
manipulated paternal care (high and low care) and examined differences in adult offspring
OT-immunoreactive (OT-ir) within social brain areas as well as basal T and corticosterone
(Cort) levels. HC offspring had more OT-ir within the paraventricular nucleus (PVN)
and supraoptic nucleus (SON) than low-care (LC) offspring. Additionally, T levels were
higher among HC than LC females, but no differences were found in males. There
were no differences in Cort indicating that our brief father-pup separations likely had no
consequences on stress reactivity. Together with our previous work, our data suggest
that social behavior may be programmed by paternal care through lasting influences on
the neuroendocrine system.

Keywords: oxytocin, testosterone, corticosterone, paternal care, Peromyscus californicus

Abbreviations: AVP, arginine vasopressin; BNST, bed nucleus of the stria terminalis; CORT, corticosterone; HC, highcare;
HGL, huddling, licking and grooming behavior; HPA, hypothalamic-pituitary-adrenal; -ir, immunoreactive; LC, lowcare;
NGS, normal goat serum; OT, oxytocin; PBS, phosphate buffer saline; PVN, paraventricular nucleus; SON, supraoptic
nucleus; T, testosterone.
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INTRODUCTION

Variability within postnatal environments can have profound
consequences on phenotype development in offspring. Stress
reactivity and parental behavior, among other things, are
programmed by the quality of care received (Bester-Meredith
and Marler, 2003; Shannon et al., 2005; Ichise et al., 2006;
Uriarte et al., 2007; Rosenfeld et al., 2013). This phenotypic
plasticity is accompanied by changes to neural pathways
associated with behavioral regulation (Champagne et al., 2004;
Weaver et al., 2006; Oomen et al., 2009). While mothers
are the primary caregiver in most mammalian species, in an
estimated 5%–10% of mammals, fathers also contribute to
offspring development (Gubernick and Alberts, 1987; Ziegler
et al., 2000; Bester-Meredith and Marler, 2001). Within the
bi-parental California mouse (Peromyscus californicus), fathers
provide high-care (HC) towards both same and opposite sex
offspring, which influence neuroendocrine mechanisms that
facilitate similar rather than sexually dimorphic development.
Transient increases in testosterone levels (Becker et al., 2010;
Chary et al., 2015) and greater arginine vasopressin (AVP)
expression in the bed nucleus of the stria terminalis (BNST;
Frazier et al., 2006; Yohn et al., 2017), accompany territorial
aggression in HC offspring. Whereas in most species parental
behavior is accompanied by a reduction in aggression and T,
in bi-parental species (Hume and Wynne-Edwards, 2005),
like the territorial California mouse (Trainor and Marler,
2001, 2002), T remains high in fathers and is important
for maintaining paternal behavior since castration reduces
paternal behavior in this species (Trainor and Marler, 2001).
The current study aimed to identify whether paternal care,
which we have demonstrated programs both territoriality
(Yohn et al., 2017) and parental behavior (Bester-Meredith and
Marler, 2003; Gleason and Marler, 2013; Becker, unpublished;
Leithead, unpublished) in adult California mouse offspring,
influences other neuroendocrine mechanisms in addition
to T and AVP that may act or interact to shape adult
behavior.

The neuropeptide oxytocin (OT) is a likely candidate since
it is synthesized in the paraventricular nucleus (PVN) and
supraoptic nucleus (SON), with projections to social brain
areas (Champagne et al., 2001 rats; Pedersen and Boccia, 2003
rats) that regulate social behaviors (Consiglio et al., 2005 rats)
including parenting (Bales et al., 2007 prairie voles; Neumann and
van den Burg, 2013 rats) and aggression, particularly parental
aggression (Bosch, 2013 ‘‘rodents’’) and hypothalamus-pituitary-
adrenal (HPA) function (Neumann et al., 2000 rats; Engelmann
et al., 2006 rats; Rault et al., 2013 pigs). Moreover, the OT
system is sensitive to gonadal steroids, such as T (reviews
see Pedersen, 1997; Sladek et al., 2000 rat; Gordon et al.,
2011), which alone or by aromatization into estradiol acts as
a modulator of OT secretion and receptor expression within
brain areas (i.e., hypothalamus) that regulate both reproductive
and parenting behavior (Johnson et al., 1991 rats; Okabe
et al., 2013 mice; Gordon et al., 2017 humans). Furthermore,
there is significant overlap in expression of OT and aromatase
enzymes within the mammalian brain, with aromatase also

mainly expressed within the hypothalamus and limbic system
(Naftolin et al., 2001; Trainor et al., 2006; El-Emam Dief et al.,
2013). Furthermore, developmental studies, in mandarin voles,
indicate paternally deprived offspring have lower OT receptor
expression than offspring raised with a father (Wang et al.,
2012; Cao et al., 2014). Whether this is due to the absence of
the caregiver or a particular behavior displayed by the father is
unknown.

In addition to changes in the brain, environmental influences
on social behaviors and stress reactivity may be mediated by
alterations to endocrine systems (Bale, 2006; Clinton et al., 2008;
Lajud et al., 2012; Carini and Nephew, 2013). For example,
California mouse offspring experience transient increases in T in
response to paternal retrievals (Becker et al., 2010; Chary et al.,
2015). It is possible that experiencing these brief increases in T
will result in overall increased basal T levels in adulthood since
postnatal T is correlated with adult T (Sachser and Proöve, 1988;
Lürzel et al., 2010), although this hypothesis has yet to be tested.
Additionally, paternal deprivation leads to deficits in social
behavior (Yu et al., 2012; Bambico et al., 2015) and increased
anxiety (McEwen, 2007; Roberts et al., 2007; Jia et al., 2009;
Kim et al., 2013), which may correlate with HPA dysregulation
since in response to stress, corticosterone (Cort) is secreted.
However, no transient differences in Cort in response to paternal
care (Becker et al., 2010; Chary et al., 2015) nor basal Cort
dissimilarities between paternal absence or presence (Wang et al.,
2012) have been reported.

Postnatal paternal care impacts the development of social
behaviors and may be regulated by a complex interplay between
the hormones OT, T and Cort. For instance, OT expression
can be increased via T (El-Emam Dief et al., 2013), and then
have a buffering effect on the HPA axis, leading to a decrease
in Cort release (Leuner et al., 2012). To examine long-term
effects of postnatal paternal interactions on neuroendocrine
system development, wemanipulated California mouse offspring
rearing conditions to receive either HC or low-care (LC). Given
that removal of the father leads to decreased OT expression
(Wang et al., 2012; Cao et al., 2014), we aimed to assess
whether variability in paternal care leads to plasticity within
the OT system. In the current study, our primary aim was to
assess paternal care impact on OT-immunoreactive (OT-ir) cell
distribution in the PVN and SON, with these three areas of the
brain sensitive to gonadal steroids (El-Emam Dief et al., 2013)
and important in regulating stress response (Dabrowska et al.,
2011). Therefore, we also assessed adult basal T and Cort levels
since the paternal care manipulation can also have long-term
effects on the endocrine system. We hypothesized that PVN
and SON OT-ir would be higher in HC than LC offspring.
Since California mouse pups experience transient increases in
T following paternal retrievals (Becker et al., 2010; Chary et al.,
2015) and postnatal surges in T lead to higher adult T levels
(Sachser and Proöve, 1988; Lürzel et al., 2010), we predicted
higher basal T levels in adult HC than LC offspring. Lastly, as
a manipulation check, we measured basal Cort levels to confirm
that ourmodified retrieval manipulation had no lasting effects on
stress reactivity; predicting similar basal Cort levels between HC
and LC offspring.
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MATERIALS AND METHODS

This study was carried out in accordance with the
recommendations of the National Institutes of Health Guide
for the Care and Use of Laboratory Animals. The protocol was
approved by the Saint Joseph’s University IACUC. Detailed
materials and methods are provided as Supplementary Material
Information.

Subjects
Brains were collected from 52 California mice adults (120 days)
from the same cohort of mice used in Yohn et al. (2017) study.
Briefly, experimental animals postnatal days (PND) 15–21 were
assigned randomly to either HC (n = 26) or LC (n = 26)
postnatal paternal rearing conditions. As previously described by
Yohn et al. (2017), we used a modified retrieval manipulation
(use of Plexiglas divider) to ensure populations of experimental
animals had distinct early life experiences (HC and LC). To
establish populations, experimental families were first moved
into an observational cage on PND 8. Subsequently, paternal
retrieval behavior was manipulated for 20 min daily, across
PND 15–21 when pups are more inclined to leave the nest
and paternal retrieval behavior is at its highest (Bester-Meredith
et al., 1999). During each daily manipulation the mother and
non-experimental pups were removed and housed separately.
The experimental pup was handled for 30 s and returned to
the cage either inside the nest (LC) or outside of the nest
(HC). Prior to the pups return to the cage, a Plexiglass divider
was inserted into the cage separating the large and small
compartments of the observational cage. Results from Yohn
et al. (2017) showed that across 7 days, HC experienced greater
paternal retrievals than LC offspring since the Plexiglass divider
(had plastic mesh barrier for LC group) inhibited father-pup
contact during the daily LC manipulations. Separation of
father and pup had no effect on paternal behavior in the LC
group once the father and pup were reunited (Yohn et al.,
2017).

Immunohistochemistry
Adult experimental mice taken from the colony room were
euthanized via rapid decapitation. Brains were extracted,
immediately fixed in 5% acrolein overnight at 4◦C, transferred
to a 20% sucrose buffer solution and refrigerated for 48 h, and
finally frozen on dry ice and stored at −80◦C until cutting.
Beginning from approximately Bregma 0.37 through −1.23
(Paxinos et al., 2007; Campi et al., 2013), brains were sliced
on a cryostat at 40 um and stored at −80◦C in cyroprotectant
until staining. Sections were incubated overnight in a previously
validated antibody (Trainor et al., 2010) rabbit anti-OT (1:1,000,
AB911, Millipore, Temecula, CA, USA) and then for 2 h in
goat anti-rabbit IgG (1:250, PI-1,000, Vector Labs, Burlingame,
CA, USA) both times diluted in 2% normal goat serum (NGS)
phosphate buffer saline (PBS). Next, sections were amplified in
Avidin Biotin Complex (Vector Labs, Burlingame, CA, USA) and
then visualized using DAB peroxidase substrate kit (Vector Labs,
Burlingame, CA, USA). PBS washes occurred before and after
incubation, amplification and visualization.

Image Analysis
Sections were photographed on a Leica DM 2000 outfitted with
a DFC310 FX digital color camera (Leica) at 10× magnification.
For all cell counts, number of OT-ir positive cells were averaged
across two images of the PVN (posterior, Bregma −0.70 thru
−94) and SON (Bregma −0.70 thru −94; Figure 1A).

Testosterone and Corticosterone Enzyme
Immunoassay
Trunk blood was collected at brain extraction, with enough
serum from 39 of 52 experimental mice (male = 20, female = 19).
After collection, samples were centrifuged and separated, then
stored at −80◦C until assayed. Plasma T (1:10 dilution) and
Cort (1:50 dilution) concentrations were determined using
commercial assay kits (Enzo Life Sciences, Farmingdale, NY,
USA) previously validated in the California mouse (Chary et al.,
2015). The standard curve slope generated for Cort had a slope
of 1 (r2 = 0.91) and the slope for T was 0.72 (r2 = 0.87).
Inter-assay coefficient of variability values were 1.1% (Cort) and
3.1% (T) with intra-assay coefficient of variability values being
1.87% (Cort) and 2.65% (T). The cross-reactivity of the Cort
kits, according to the manufacturer, was 100% for Cort, 28.6%
for deoxycorticosterone, 1.7% for progesterone, and negligible
for other steroid hormones (>1%). The cross-reactivity of the T
kits was 100% for T, 14.64% for 19-hydroxytestosterone, 7.20%
for androstendione, and negligible for other steroid hormones
(>1%). Kit sensitivity was 26.99 pg/mL for Cort and 5.67 pg/mL
for T.

Statistical Analyses
Separate 2 × 2 analysis of variance (ANOVA) were run to assess
early life rearing conditions and sex differences on PVN and
SON OT-ir and basal T and CORT levels. Post hoc independent
samples t-tests for within-sex differences were run. Pearson’s
correlations were run to assess relationship between paternal
behavior and expression of OT-ir within each area. One animal
(female LC) was removed from analyses as cell counts were
only obtained from one of the three regions and T levels
were three standard deviations above the mean. All statistical
analyses were conducted using SPSS (version 23.0, Chicago, IL,
USA).

RESULTS

OT-Immunoreactivity
Separate ANOVAs indicated HC offspring had significantly
more OT-ir in the PVN (F(1,48) = 17.49, p < 0.001; Figure 1B)
and SON (F(1,39) = 9.1, p = 0.004; Figure 1C) than LC
offspring. Planned post hoc comparisons revealed HC males
had significantly more OT-ir than LC males within the PVN
(t(25) = 2.89, p = 0.008; Figure 1B) and SON (t(22) = 3.6,
p = 0.002; Figure 1C). Within females, HC offspring had
more OT-ir in the PVN (t(23) = 3.01, p = 0.006; Figure 1B)
than LC offspring. Unlike males, SON OT was similarly
expressed between HC and LC females (p = 0.421; Figure 1C).
We observed no effect of sex nor an interaction between

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 August 2018 | Volume 12 | Article 181

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/behavioral-neuroscience#articles


Yohn et al. Paternal Care Impacts Neural Development

FIGURE 1 | Differences in distribution of oxytocin-immunoreactive (OT-ir) cells between high-care (HC) and low-care (LC) offspring. Representative images of OT-ir
staining for each area of interest (atlas images were reproduced from Paxinos mouse atlas, 2007; 10× magnification with scale bar = 500 µm) (A). HC male and
female offspring have higher OT-ir cells within the paraventricular nucleus (PVN; B) and supraoptic nucleus (SON; C) compared to LC offspring. Number of postnatal
paternal is significantly associated with amount of OT-ir cells within the PVN (D) and SON (E). Amount of postnatal paternal huddling, grooming and licking (HGL)
behavior also was significantly associated with distribution of OT-ir cells in these areas (F,G). ∗∗∗p-value < 0.001, ∗p-value < 0.05.

rearing condition and sex on OT-ir within these regions
(p’s > 0.2).

Relationship Between
OT-Immunoreactivity and Early Life
Rearing Conditions
Paternal retrievals were positively correlated with PVN (r = 0.44,
p = 0.02; Figure 1D) and SON (r = 0.47, p < 0.001; Figure 1E)
OT-ir. Additionally, paternal huddling, grooming and licking
(HGL) behavior was positively correlated with PVN (r = 0.34,

p = 0.016; Figure 1F), SON (r = 0.44, p = 0.003; Figure 1G)
OT-ir.

Plasma Corticosterone and Testosterone
Concentrations
As expected, males had higher plasma T levels than females
(F(1,33) = 7.58, p = 0.009; Figure 2A). While there was no
main effect of rearing condition on plasma T concentrations
(p = 0.7) nor differences among males (p = 0.69); rearing effects
were indicated with higher T levels in HC than LC females,
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FIGURE 2 | Differences in early life paternal care on hormonal levels. HC females have higher T levels than LC females, with males having higher overall testosterone
levels females (A). Corticosterone (Cort) levels did not differ between HC and LC adult offspring across both sexes (B). ∗∗∗p-value < 0.001, ∗p-value < 0.05.

(t(15) = 2.27, p = 0.039). No rearing effects nor an interaction
effect on plasma T levels (p’s > 0.05) were found.

No rearing effects, sex differences, nor an interaction
were found for plasma Cort concentrations (p’s > 0.05;
Figure 2B).

DISCUSSION

Variability in paternal care produced differences in offspringOT-
ir. Pups raised under HC conditions had greater OT-ir than LC
offspring within the PVN and SON, regions that regulate various
behaviors ranging from parenting (Neumann and van den Burg,
2013; Wang et al., 2015) to affective behaviors and autonomic
functions (Cao et al., 2014; Yee et al., 2016). Within the PVN,
OT expression is linked to the onset and maintenance of both
maternal (Neumann and van den Burg, 2013) and paternal care
(Kenkel et al., 2014). Since paternal care programs adult offspring
social behavior in the California mouse (Bester-Meredith and
Marler, 2001; Frazier et al., 2006; Yohn et al., 2017), we suggest
that these differences in OT may guide the development of these
distinct behavioral phenotypes. Previous studies delineate the
relationship between paternal care and OT receptor expression
within the PVN and SON (Wang et al., 2012; Cao et al., 2014), our
novel findings illustrate susceptibility of PVN, and SON OT-ir
to postnatal paternal care. However, unlike paternal deprivation
studies, we emphasize the importance of paternal behaviors on
adult OT-ir with high levels of both paternal retrievals and
HGL behavior positively related to PVN and SON OT-ir. In
response to paternal retrievals HC offspring experience transient
increases in T (Becker et al., 2010; Chary et al., 2015), with
OT expression within these brain areas regulated in part by T
(Sladek et al., 2000; Gordon et al., 2011) and the aromatization
of T into estradiol (Naftolin et al., 2001; Trainor et al., 2006;
El-Emam Dief et al., 2013). The PVN and SON contain high
levels of aromatase (El-Emam Dief et al., 2013), which could
further explain differences in PVN and SON OT-ir between
HC and LC offspring. In the California mouse male and female
offspring retrieve their offspring at similar levels as they received
during development (Bester-Meredith and Marler, 2003; Becker,
unpublished; Leithead, unpublished), however mechanisms for
this behavioral transmission are not fully elucidated. Since OT

receptor expression is related to level of postnatal care (Francis
et al., 2002; Perkeybile et al., 2015), our results suggest a
potential mechanism by which parental care is transmitted across
generations.

Since sex differences in OT are reported (Lee et al., 2009;
Carter, 2014), we tested for paternal effects on OT-ir within
each sex even though no overall sex differences were observed.
Our analyses revealed HC males and females had more OT-ir
within the PVN than LC offspring, suggesting OT-ir is plastic
in response to the environment, potentially allowing more
adapted social behaviors within HC offspring. However, within
the SON, only males were susceptible to variability in care,
which may be due to sex differences in social behaviors and
physiological functions that SON OT-ir regulates. In females
and males SON OT is associated with parenting and other
social behaviors (Song et al., 2010; Bales et al., 2011); with
SON OT also facilitating uterine contraction and lactation
in females (Higashida et al., 2013). While future maternal
care may be susceptible to postnatal rearing conditions, other
functions like uterine contractions and lactation may be resistant
to environmental fluctuations in OT, thus resulting in HC
and LC females having similar expression within the SON.
Alternatively, this null result could have been confounded by
estrous, since SON OT-ir fluctuates in relation to circulating
estrogen levels (Shughrue et al., 2002) and we did not track
estrous cycle.

Since paternal retrievals induce transient increases in T
(Becker et al., 2010; Chary et al., 2015) and postnatal surges in T,
may be related to adult T levels (Sachser and Proöve, 1988; Lürzel
et al., 2010), we wanted to assess long-term effects of rearing
condition on adult basal T levels. Not surprisingly, we found
males had higher basal T levels than females. Within females,
we observed greater T levels in HC than LC offspring, which is
likely a long-term effect of rearing condition. Consistent with
Wang et al. (2015) prairie vole study, we found no differences
in male T. It is possible that postnatal paternal interactions may
not have long term effects on male T, or since males already have
high T, that a ceiling effect (Evans et al., 2000) may obscure a
potential impact. Seeing as OT expression is associated with a
buffering effect on HPA function (Neumann et al., 2000; Leuner
et al., 2012) and T can have organizational effects on theHPA axis
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(Seale et al., 2005; Goel and Bale, 2008), we examined adult basal
Cort levels as a manipulation check since parental interactions
may influence HPA function (Slotten et al., 2006; Engert et al.,
2011). Consistent with paternal deprivation studies and our
previous work (Becker et al., 2010; Wang et al., 2012; Chary et al.,
2015; Yohn et al., 2017) basal Cort levels were similar between
HC and LC offspring, suggesting ourmanipulation had no lasting
effects on Cort. To further test the impact of our manipulation
on stress responsivity, future studies could measure Cort levels
in adult mice after experiencing a stressful situation.

Our results demonstrate developmental plasticity within the
OT system in response to the postnatal paternal environment
which may be mediated by transient changes in T subsequent
to paternal retrievals during development. Our study is the
first to illustrate long-term effects of paternal care on basal
T levels in females, which may mediate transmission of social
behaviors, like parenting and aggression in territorial species.
Future studies are needed to examine the relationship between
postnatal increases in T in response to paternal retrievals and
adult OT expression to delineate whether the interplay between
postnatal T and adult OTmediate changes in social behavior. Our
results emphasize the critical role fathers hold in the development
of the neuroendocrine system in both males and females.
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