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Abstract. Colorectal cancer (CRC) has high morbidity and 
mortality, particularly if diagnosed at an advanced stage. 
Although there have been several studies on CRC, few have 
investigated the relationship between oncosis and CRC. Thus, 
the purpose of the present study was to identify oncosis‑related 
long noncoding RNAs (lncRNAs) and to establish a clinical 
prognostic model. Original data were acquired from The 
Cancer Genome Atlas database and PubMed. Differentially 
expressed oncosis‑related lncRNAs (DEorlncRNAs) were 
identified and were subsequently formed into pairs. Next, 
a series of tests and analyses, including both univariate and 
multivariate analyses, as well as Lasso and Cox regression 
analyses, were performed to establish a receiver operating 
characteristic curve. A cut‑off point was subsequently used to 
divide the samples into groups labelled as high‑ or low‑risk. 
Thus, a model was established and evaluated in several dimen‑
sions. Six pairs of DEorlncRNAs associated with prognosis 
according to the algorithm were screened out and the CRC 
cases were divided into high‑ and low‑risk groups. Significant 
differences between patients in the different risk groups were 

observed for several traits, including survival outcomes, clin‑
ical pathology characteristics, immune cell infiltration status 
and drug sensitivity. In addition, PCR and flow cytometry 
were performed to further verify the model. In summary, a 
new risk model algorithm based on six pairs of DEorlncRNAs 
in CRC, which does not require specific data regarding the 
level of gene expression, was established and validated. This 
algorithm may be used to predict patient prognosis, immune 
cell infiltration and drug sensitivity.

Introduction

Globally, the morbidity of colorectal cancer (CRC) ranks third 
(10.0%) among all cancers, whereas the mortality rate ranks 
second (9.4%) (1). Over the past decade, both the incidence 
and death rates of CRC have increased (2). Through decades 
of progress in the understanding of CRC pathophysiology, 
multiple treatments have been developed, including endo‑
scopic and surgical local excision, downstaging preoperative 
radiotherapy, chemotherapy, biologics and immunotherapy. 
These treatments in conjunction with several new drugs have 
led to certain improvements in the survival of patients with 
CRC; however, these changes remain insufficient in the face of 
an increasingly severe situation (3). There is a continued need 
to identify more effective and reliable biomarkers, as well as 
models to further improve individualized therapy.

Oncosis is a type of programmed death referring to the 
cellular response to injury that occurs prior to cell death (4). 
Oncosis is accompanied by cellular and organelle swelling, 
as well as increased cell membrane permeability. The mecha‑
nism of oncosis is based on the incapacity of certain plasma 
membrane ion pumps, such as sodium‑potassium pump and 
calcium channel  (5,6). Certain cell surface receptors (e.g., 
PORIMIN) are able to trigger oncosis when activated, which 
may be caused by substances that interfere with ATP produc‑
tion or that increase plasma membrane permeability  (7,8). 
Several previous studies have suggested that oncosis may 
represent a vital link in tumorigenesis and tumor progres‑
sion. For instance, one study has demonstrated that aspirin is 
able to significantly induce the oncosis of HeLa cells through 
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reduction of the level of the antiapoptotic protein, Bcl‑xl, and 
may therefore significantly inhibit tumor growth (9). When 
exposed to sanguinarine, multiple cancer cells experience 
oncosis (e.g., breast and prostate cancer cells) (4). Inducing the 
programmed death of drug‑resistant cancer cells represents 
an important research direction for the treatment of tumors. 
In a previous study, a series of synthesized Ir(III) complexes 
induced oncosis in A549R cells, a type of drug‑resistant 
cancer cell line (10). Long noncoding RNAs (lncRNAs) are 
defined as transcripts with a length >200 nucleotides that 
cannot be translated into protein  (11). Previous studies on 
lncRNA have indicated that the dysregulation of lncRNA 
expression is common in cancer and most abnormal lncRNAs 
are specific to a particular type of cancer (12‑14). In addition, 
the level of lncRNA expression is a specific biomarker for 
several types of cancer (15). Increasing evidence suggests that 
immunity is related to oncosis in cancer (16‑18). Furthermore, 
interleukin‑33 production by cells may enhance programmed 
oncosis in low‑metastatic cells in hypoxic regions in lung 
cancer (19). LncRNA has an important role in events (e.g., 
CD4+ T‑cell differentiation and T‑cell activation) (20) that are 
essential for immune regulation (21). The prognosis of patients 
further differs based on differential gene mutations (22).

In cancer diagnostic models, the combination of two 
biomarkers is more accurate than an individual biomarker (23). 
Thus, in the present study, a pairing oncosis‑related lncRNA 
(orlncRNA) algorithm was constructed. By obtaining 
information on the expression of orlncRNA pairs, the corre‑
sponding results, including patient prognosis, immune‑cell 
infiltration and drug sensitivity was able to be determined 
while avoiding common algorithm problems (e.g., data 
correction in the application process of the model). The 
presented algorithm provides a novel method by which the 
clinical outcomes of CRC may be predicted, potentially 
providing a method of selecting appropriate immunotherapy 
and chemotherapy treatments.

Materials and methods

Data acquisition. First, the transcriptome data of patients with 
CRC were downloaded from The Cancer Genome Atlas data‑
base (TCGA; https://portal.gdc.cancer.gov/) (24) in November 
2021. The transcriptome data were reported as fragments per 
kilobase per million mapped reads. Next, gene transfer format 
(GTF) files were applied to distinguish between lncRNA and 
mRNA. Subsequently, the corresponding clinical data were 
downloaded and repeated invalid clinical information was 
deleted. In addition, a list of oncosis‑related genes (orgenes) 
was obtained by searching for ‘oncosis cancer’ on PubMed 
(https://pubmed.ncbi.nlm.nih.gov/) (25).

Recognition of dif ferentially expressed orlncRNAs 
(DEorlncRNAs). OrlncRNAs were screened out by a 
co‑expression analysis and the expression correlation was 
explored between orgenes and lncRNAs, and the screening 
criteria for orlncRNAs were established, for which the 
immune gene correlation coefficient value was >0.4 and the 
P‑value was <0.001. The differential expression of orlncRNAs 
between cancerous and normal samples was also assessed, all 
using limma, an R package (version 3.50.0) was used (26). To 

improve the accuracy, a log fold‑change >2 and false discovery 
rate (FDR) <0.05 was set as the threshold.

Construction of DEorlncRNA pairs. The aforementioned 
DEorlncRNAs were copied into two empty files, labelled as 
A and B, and every DEorlncRNAs in file A were cyclically 
singly paired with all DEorlncRNAs in file B. A 0‑1 matrix 
could be constructed using the following logic: Assume that A 
represents a pair of DEorlncRNAs, for instance, representing 
lncRNAB paired with lncRNAC. If the level of lncRNAB 
expression is higher than that of lncRNAC, A is equal to 1; 
otherwise, A is equal to 0. If the expression of DEorlncRNA 
pairs was calculated as either 0 or 1 among a majority (>80%) 
of all samples, those lncRNA pairs were not adopted in 
the following prognostic analysis, since there is no certain 
degree of difference in lncRNA pairs, which means that an 
accurate prediction of patient survival is impossible. Only the 
DEorlncRNA pairs with an expression of 0 or 1 in 20‑80% of 
all samples were considered valid.

Construction of the risk assessment model. Univariate Cox 
analysis was first performed on DEorlncRNA pairs, after which 
a Lasso regression with 10‑fold cross validation was performed 
with a threshold P‑value of 0.05. A total of 1,000 cycles were 
performed in the Lasso regression to minimize the cross‑vali‑
dation error in obtaining the DEorlncRNA pairs. The pairs were 
subsequently used in the Cox proportional hazards regression 
analysis and the model analysis was then carried out. The akaike 
information criterion (AIC; AIC=‑2log L + 2V, where L is the 
maximum likelihood of a fit model and V is the number of free 
parameters) was calculated for each model (27) and was applied 
in the following steps. The AIC of each model was calculated, 
which was then aborted once the AIC value reached the minimum 
point, and that model was recognized as the optimal candidate 
model. Next, the receiver operating characteristic (ROC) curves 
for 1, 3 and 5 year survival were plotted. The following formula 
was used to calculate the risk score for all samples:

Coef (Table I) represents the coefficient from the multivariate 
Cox regression analysis of each DEorlncRNA pair and E 
represents the expression value of the DEorlncRNA pairs, 
which was obtained during the aforementioned recognition of 
DEorlncRNAs. Each point on the ROC curve was evaluated 
to obtain the sum of sensitivity and specificity. The high‑ or 
low‑risk scores were divided by the cut‑off value, which was 
equal to the risk score obtained from the maximum point of 
the curve. The survival (version 3.2‑13), survminer (version 
0.4.9), survivalROC (version 1.0.3) and glmnet (version 4.1‑3) 
R packages were used in the above steps.

Verification of the constructed model using all 548 cases from 
TCGA. The cut‑off point used was first verified. Kaplan‑Meier 
analysis was used to indicate the survival differences between 
groups with different risk grades through the log‑rank test and 
the curve was plotted for visualization. The R tool was used to 
visualize the specific risk score of each sample in the model.

To explore the clinical value of the model, a χ2 test was 
performed to analyze the relationship between the model and 
different clinical traits (e.g., patient age, sex and American 
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Joint Committee on Cancer tumor stage)  (28). The results 
of the analyses were displayed in a band diagram that was 
subsequently plotted. A Wilcoxon signed‑rank test was 
applied to calculate the difference in the risk scores among 
groups with different clinicopathological features (e.g., patient 
age, sex and tumor stage). The results of the analyses were 
presented as a box‑plot. Cox regression analysis, including 
single and multivariate variables, was applied to evaluate the 
association between the risk score and the aforementioned 
clinicopathological features. Thus, whether the risk model 
may be an independent prognostic indicator of CRC was 
verified. The results were displayed in a forest map. The R 
packages survival, surviviner, survivalROC, limma, ggpubr, 
pheatmap and complex Heatmap were used for the aforemen‑
tioned analyses.

Gene association analysis based on risk score. To explore the 
differences in gene expression between the high and low‑risk 
groups, the level of target gene expression and patients' risk 
score values were first extracted and then combined. Next, the 
data were compared between the two groups. The mean values 
used for testing were compared and the results of the analysis 
were presented in a violin diagram. The limma and ggpubr 
R packages were used for this analysis. Gene expression 
status was verified through using the immunohistochemical 
staining database (accession no. CAB013272, CAB013272, 
CAB000003, CAB004022, CAB011671, CAB025583 and 
HPA003590; https://www.proteinatlas.org/).

Correlation analysis with tumor‑infiltrating immune cells. 
Since the lncRNAs recognized by the co‑expression analysis 
were initially associated with orgenes (and therefore may also 
be linked to immunity), the correlation of the model related 
to immune cell infiltration in the tumor microenvironment 
was investigated. To investigate the potential connection 
between the risk score and tumor‑infiltrating immune cells, 
a method that combined currently acknowledged methods 
of evaluating the immune cell infiltration status among CRC 
samples was applied, which included XCELL, TIMER, 
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT‑ABS 
and CIBERSORT. To improve the accuracy of the correlation 
analysis, the content of infiltrating immune cells was compared 
between the aforementioned high‑ and low‑risk groups with 
a Mann‑Whitney U‑test. Spearman's correlation analysis 

was used to analyze the correlation between risk score and 
immune cell infiltration. The cut‑off value was set as P<0.05 
and these results were presented in a lollipop diagram. The R 
packages limma, scales, ggplot2 and ggtext were applied as in 
the aforementioned analyses.

Functional assessment of the model in clinical therapy. To 
assess the application value of the model in clinical therapy 
for CRC, the IC50 values of several common immunotherapy 
and chemotherapy drugs in the TCGA dataset were evalu‑
ated. Antitumor medication used in this assessment included 
cisplatin, camptothecin, doxorubicin, dasatinib, bleomycin and 
docetaxel. The Mann‑Whitney U‑test was applied to compare 
the IC50 of the drugs between the high‑ and low‑risk groups. 
Box plots were used to visualize the results. The R packages 
limma, ggpubr, pRRophetic and ggplot2 were used to complete 
the aforementioned tests.

Sampling of tumor tissues. A tissue sample with patho‑
logical stage T2N0Mx was collected from a male patient with 
colorectal cancer (aged 55 years) in January 2022 at Sir Run 
Run Shaw Hospital (Hangzhou, China). The tumor tissue was 
placed in Tissue RNA protection solution RNAsafer Stabilizer 
Reagent (cat. no. R1100; Applygen Technologies, Inc.) and 
stored at ‑80˚C. Prior to sampling, the surface of the tumor 
was thoroughly cleaned with PBS to remove any impurities 
from the surface of the tumor. The tumor was then cut open 
and ~100 mg of the brittle part of the center of the tumor was 
taken as the experimental sample.

Verification by reverse transcription‑quantitative PCR 
(RT‑qPCR). TRIzol™ (Invitrogen; Thermo Fisher Scientific, 
Inc.) was used to extract total RNA from the CRC tissues 
as per the manufacturer's instructions. A NanoDrop™ 2000 
Spectrophotometer (Thermo Fisher Scientific, Inc.) was used 
for RNA quantification, with the A260/280 ratio indicating 
RNA purity. RT was performed using the PrimeScript 
RT Reagent Kit according to the manufacturer's protocol 
(Takara Biotechnology Co., Inc.). Then cDNA amplification 
was performed on a C1000 Touch Thermal Cycler Detection 
System (Bio‑Rad Laboratories, Inc.) in triplicate. The reaction 
mixture (total volume, 50 µl) was comprised of 1 ng cDNA, 
125 nM forward and reverse primers and 25 µl 2X SYBR® 
Premix Ex Taq™ (Takara Biotechnology Co., Inc.). The ther‑
mocycling conditions were as follows: Initial denaturation at 
95˚C for 1 min, followed by 42 cycles of 95˚C for 15 sec, 56˚C 
for 25 sec and 72˚C for 30 sec. The primers used are listed in 
Table SI. lncRNA expression levels were assessed using the 
cycle threshold method according to the according to previ‑
ously reported methods (29). The lncRNA expression levels 
were analyzed using an unpaired Student's t‑test. Expression 
levels were compared according to the cycle threshold values 
of each selected DEorlncRNA, which were then verified 
for each sample according to the aforementioned risk score 
formula.

Verification of the biological impact of the orlncRNAs. 
LoVo CRC cell lines were purchased from the American 
Type Culture Collection. LoVo cells were maintained in 
1640 (HyClone; Cytiva) with 10% FBS (Gibco; Thermo 
Fisher Scientific, Inc.) and 100 U/ml penicillin. LoVo cells 

Table I. Regression coefficients of DEorlnRNAs included in 
the Lasso regression analysis.

DEorlncRNA	 Coefficient

SCAT2|AC112496.1	 0.79067414
ARHGEF38‑IT1|AL136115.2	 ‑0.62254692
AC026356.1|AC026368.1	 0.56929575
AC016831.4|AC104695.4	 ‑0.90749403
AC092338.1|AC087222.1	 0.67053059
LINC01811|MIR181A2HG	 ‑0.36402154

DEorlncRNA, differentially expressed oncosis‑related lncRNAs.
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were seeded into a 6‑well plate and cultured at 37˚C and 5% 
CO2. Their growth was closely monitored until they reached 
80% confluence, and they were then transfected with siRNA 
(siRNA Transfection Reagent; cat. no. sc‑29528; Santa Cruz 
Biotechnology, Inc.) using Lipofectamine 2000 (Invitrogen; 
Thermo Fisher Scientific, Inc.). Briefly, Lipofectamine 
2000™ was diluted to 5 µl/well and siRNA were diluted to a 
final concentration of 100 nM. The solutions were incubated 
separately for 5 min and mixed for 15 min, both at 25C. The 
mixture was then added to the cells in the 6‑well plate and 
incubated at 37C. After 8 h, the growth medium was changed 
to fresh media and the cells were further incubated at 37˚C for 
24 h under 5% CO2. The cells were immediately collected for 
further analysis.

Oncosis was induced in LoVo cells with or without lncRNA 
knockdown (30) [using small interfering RNA‑MIR181A2 
host gene (si‑MIR181A2HG) or si‑negative control (si‑NC); 
Table SII] with 0.01% Triton X‑100 (Sigma‑Aldrich; Merck 
KGaA) (31) for 10 min at 37˚C and repeated 3 times. After 
induction, the cells were centrifuged at 300 x g for 5 min 
at 25˚C the supernatant was discarded and the cells were 
collected. The cells were gently resuspended in PBS and 
counted using a Countess II f luorescence microscope 
(Thermo Fisher Scientific, Inc.). A total of 2x105 suspended 
cells were centrifuged at 300 x g for 5 min and the superna‑
tant was discarded. The cells were washed once more with 
PBS and the supernatant was discarded after centrifugation. 
To resuspend the cells, 500 µl DilC1(5) dyeing solution (CAS 
no. 36536‑22‑8; Enzo Life Sciences, Inc.) was added to the 
cell pellet. The cells were then incubated in a 5% CO2 incu‑
bator at 37˚C for 15‑20 min. After this incubation, the cells 
were centrifuged at 300 x g for 5 min, the supernatant was 
discarded and 500 µl pre‑cooled (4˚C) 1X PBS was added to 
the cells. This cell washing was repeated twice. Finally, 500 µl 
of the aforementioned precooled buffer was used to resuspend 
the cells. The samples were stored on ice and detected by flow 
cytometry within 30 min.

The cell suspensions were analyzed by flow cytometry (BD 
FACSCalibur; BD Biosciences) and the fluorescence channels 
corresponding to the dyes were selected for data analysis 
[DilC1(5) was detected in the 660/20 nm channel on HeNe 
trigon]. The data were analyzed and processed using FlowJo 
(version 10.8.1, FlowJo LLC).

For the fluorescence microscope observation, the cells 
(a total of 2x105) were seeded in a confocal dish for different 
treatments as 6 groups in the aforementioned flow cytometry 
section. A total of 200 µl of the DilC1(5) dyeing solution (CAS 
no. 36536‑22‑8; Enzo Life Sciences, Inc.) was then added and 
the cells were incubated at 37˚C with 5% CO2 for 15‑20 min. 
After incubation, 1X PBS was used to wash the cells 1‑2 times. 
Finally, the coverslip was placed upside down on the slide and 
the slide was observed under a fluorescence microscope.

Statistical analysis. The R package limma was applied to 
recognize DEorlncRNAs, and log fold‑change >2 and FDR 
<0.05 was set as the threshold. Univariate Cox analysis, Lasso 
regression, Cox proportional hazards regression analysis, 
multivariate Cox regression analysis and R packages (survival, 
surviviner, survival ROC and glmnet) were used to construct 
the risk assessment model. The χ2 test, Wilcoxon signed‑rank 

test, uni‑ and multivariate Cox regression analyses and R 
packages (survival, survminer, survival ROC, limma, ggpubr, 
pheatmap and complex Heatmap) were used to verify the 
model. The R packages (limma and ggpubr) were used in gene 
correlation analysis. Mann‑Whitney U‑test, Spearman's corre‑
lation analysis, Wilcoxon signed‑rank test and R packages 
(limma, scales, ggplot2 and ggtext) were used to analyze the 
association between risk score and immune cell infiltration, 
and the cut‑off value was set as P<0.05. The Mann‑Whitney 
U‑test and R packages (limma, ggpubr, pRRophetic and 
ggplot2) were used to complete the assessment of the model 
in clinical therapy. Experimental data analysis was performed 
using GraphPad Prism 9.00. P<0.05 was considered to indicate 
statistical significance. All of the individual statistical analyses 
are elaborated on in the corresponding methods sections.

Results

Recognition of DEorlncRNAs. The process flow of the present 
study is presented in Fig. 1. First, 44 normal and 568 CRC 
samples were acquired from the TCGA projects (projects 
screened for, colon adenocarcinoma and rectum adenocarci‑
noma). The CRC transcriptome data were also obtained from 
the TCGA database. Subsequently, a total of 33 oncosis‑related 
genes were collected by screening on PubMed. Next, Ensembl 
GTF files were used to annotate the data and a co‑expression 
analysis was performed between the orgenes and lncRNA. As 
many as 357 orlncRNAs were recognized by using R‑x64‑4.1.2 
language. Of these, 48 were recognized as DEorlncRNAs 
through a differential expression analysis. The heat map in 
Fig. 2A presents all of the recognized DEorlncRNAs and their 
expression status. All of these DEorlncRNAs were highly 
expressed (Fig. 2B).

Construction of the DEorlncRNA pairs and the risk model. 
By using iterative loop pairing and 0‑or‑1 matrix screening, 
804 valid DEorlncRNA pairs were acquired from 48 
DEorlncRNAs. A total of 13 DEorlncRNA pairs associated 
with prognosis were extracted using univariate analysis. A 
Lasso regression analysis was applied to prevent over‑fitting 
and nine DEorlncRNA pairs were screened out. Finally, six 
DEorlncRNA pairs were absorbed into a Cox proportional 
hazard model by a stepwise method (Fig.  2C). Thus, the 
risk score for all samples was calculated using the risk score 
formula and the coefficients (Table I) obtained from the afore‑
mentioned process.

Next, the ROC curve of the model was plotted. The area 
under curve (AUC) of the model was 0.724, which was >0.7 
(Fig. 3A). This finding suggests that this model exhibited a 
fair predictive capability. To confirm the superiority of the 
model, the 1, 3, and 5‑year ROC curves were plotted. The 
AUC value of every curve shown in the results was >0.7 
(Fig. 3B). In addition, the 1‑year ROC curve analysis with 
other clinical features (e.g., age, sex and stage) were also 
performed and the results indicated that the risk score had 
a greater AUC value compared with the other indicators 
(Fig. 3C). The maximum inflection point was recognized by 
calculating and comparing each point of the ROC curve. A 
value of 1.207 was recognized as the cut‑off value (Fig. 3D). 
This value was used to separate the samples into different 
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risk groups. A total of 548 CRC samples were obtained from 
TCGA database, and 33 cases were excluded due to including 
incomplete data. Then the risk score of these rest cases was 
calculated. Subsequently, for further verification, the samples 
were re‑distinguished and divided into high‑ and low‑risk 
groups by the cut‑off value.

Verification of the constructed model and its application in 
clinical evaluation. According to the cut‑off value, 221 cases 
were classified into the high‑risk group, whereas 294 cases were 

categorized into the low‑risk group. The plots in Fig. 4A and B 
display the risk scores and survival status of these cases, 
respectively. These results indicated that the patients' survival 
rate and survival time were negatively associated with the risk 
score. As indicated by the Kaplan‑Meier survival analysis, the 
survival time of the patients in the high‑risk group was shorter 
than that of the low‑risk group (Fig. 4C).

Subsequently, a strip chart and scatter diagrams indicated 
that there was a significant association between the risk score 
and clinical, tumor, metastasis and node stages according to 

Figure 1. Flow chart of the present study. AIC, akaike information criterion; CRC, colorectal cancer; DEorlncRNA, differentially expressed oncosis‑related 
long noncoding RNA; GTF, gene transfer format; FC, fold change; FDR, false discovery rate; orgenes, oncosis‑related genes; ROC, receiver operating char‑
acteristic; TCGA, The Cancer Genome Atlas. 
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the results of a Wilcoxon signed‑rank test (Fig. 5A‑E). Groups 
displaying an advanced stage were associated with a higher 
risk score. Univariate Cox regression analysis indicated that 
age [hazard ratio (HR), 1.031; 95% confidence interval (CI), 
1.013‑1.051], clinical stage (HR, 2.172; 95% CI, 1.727‑2.731) 
and risk score (HR, 1.595; 95% CI, 1.397‑1.823) were statis‑
tically significant between the low‑ and high‑risk groups 
(Fig. 5F). The multivariate Cox regression analysis indicated 
that age (HR, 1.038; 95% CI, 1.019‑1.057), clinical stage (HR, 
2.276; 95% CI, 1.797‑2.882) and risk score (HR, 1.493; 95% 
CI, 1.307‑1.706) may serve as independent prognostic predic‑
tors (Fig. 5G). The P‑values for the aforementioned data were 
all >0.001.

Gene association analysis based on the risk score. The results 
indicated that a high‑risk score was positively associated 
with genes such as ATG12 (P<0.05), BCL2 (P<0.05), LMNA 
(P<0.001), SNAI2 (P<0.05) and UCP2 (P<0.01) (Fig. 6A‑E), 
whereas risk was negatively associated with NDRG2 (P<0.05) 
(Fig. 6F). Immunohistochemical staining images also indicated 
that the expression levels of ATG12, BCL2, LMNA, SNAI2 
and UCP2 were higher in cancer tissue compared with those in 
normal tissue (Fig. 7).

Analysis of immune cell infiltration. Patients in the high‑risk 
group exhibited a positive association with immune cells, 
including cancer‑associated fibroblasts, macrophages, CD4+ T 

Figure 2. Recognition of DEorlncRNAs. (A) Heatmap and (B) volcano plot displaying the expression of 48 DEorlncRNAs in colorectal cancer and normal 
samples. The columnar bands from 4 to ‑4 in figure A represented lncRNA expression levels as calculated using the pheatmap R package. Red points represent 
highly expressed DEorlncRNAs, and black points represent normally expressed DEorlncRNAs (C) Forest map of the six DEorlncRNA pairs included in the 
model (AC112496.1, AL136115.2, AC026356.1, AC026368.1, AC016831.4, AC104695.4, AC092338.1 and AC087222.1 are sequence accession numbers). FC, 
fold change; fdr, false discovery rate; DEorlncRNA, differentially expressed oncosis‑related long noncoding RNA.
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Figure 3. Construction of differentially expressed oncosis‑related long noncoding RNA pairs and risk assessment model. (A) ROC curve for survival and AUC 
value of the model. (B) The 1‑, 3‑ and 5‑year survival ROC curves and AUC values. (C) Comparation status between the 1‑year ROC curve and other clinical 
characteristics. (D) A risk score of 1.207 was used as the cut‑off value, which was used to distinguish the risk groups of the samples. AUC, area under curve; 
ROC, receiver operating characteristic. 

Figure 4. Verification of the constructed model. (A) Visualization of the risk score and (C) survival time/status of each case. (B) Kaplan‑Meier analysis of the 
high‑ and low‑risk groups.
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Figure 5. Model application for clinical evaluation. The (A) band diagram and box plots (B‑E) showed that clinical, T, M and N stages were significantly 
associated with risk score, *P<0.05. (F) Univariate Cox regression analysis showed that age, clinical stage and risk score were considered to be statistically 
significant. (G) Multivariate Cox regression analysis showed that age, clinical stage and risk score were independent prognostic predictors. M, metastasis; 
N, node; T, tumor. 
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cells and natural killer (NK) cells (Fig. 8B‑E). Using Spearman's 
correlation analysis, the relationship between risk score and 
immune‑infiltrating cells in multiple databases was displayed 
in a lollipop chart (Fig. 8A) and the specific values are listed in 
Table II.

Model functional assessment for clinical therapy. The results 
indicated that a high‑risk score was related to a lower IC50 for 
certain therapeutic medicines, including bleomycin (P=0.003), 
camptothecin (P=0.00024), dasatinib (P=0.038), docetaxel 
(P=0.028), doxorubicin (P=0.0017) and cisplatin (P=1.2x10‑5) 
(Fig. 9). This finding suggests that the model has the potential to 
assist with predicting drug sensitivity.

RT‑qPCR. The expression levels of six lncRNA pairs in the 
patient tumor tissue are presented in Fig. 10. The risk value 
calculated according to the formula is 0.839, indicating this 
patient belongs to the low‑risk group. The expression level of 
ATG12, BCL2, LMNA, SNAI2 and UCP2 in CRC tissue and 
normal tissue is presented in Fig. 11, which indicates that the 
expression of these genes was higher in the tumor tissue than in 
normal tissue.

Verification of the biological impact of MIR181A2HG. Through 
the use of flow cytometry and DilC1(5), it was observed that 
after oncosis induced by Triton X, the mitochondrial membrane 
potential of the three groups whose treatment included Triton X 
decreased (Fig. 12A). The decrease in mitochondrial membrane 
potential in the MIR181A2HG expression knockdown group 
was more significant than that in the negative control group. 
Through the use of fluorescence confocal microscopy, it 
was seen that DilC1(5) fluorescence decreased in the Triton 

X‑induced groups and DilC1(5) fluorescence decreased more 
markedly after knockdown of MIR181A2HG expression. 
Morphologically, compared with the control group, the cells 
in the Triton treatment group increased in volume and demon‑
strated swelling. After MIR181A2HG expression was knocked 
down, the cell oncosis was more apparent, the intracellular 
structure and membrane appeared blistered, and membrane 
integrity was damaged (Fig. 12B).

Discussion

Oncosis is a fundamental modality of cell death that may lead 
to oncotic necrosis and was first discovered in models of isch‑
emic injury (8). Oncosis has an important role in the transition 
between apoptosis, autophagy and necrosis (32). The relation‑
ship between oncosis and tumors has been widely studied. For 
instance, overexpression of ion channels may induce breast 
cancer cells to undergo oncosis to promote cell death (6). It has 
also been found that gastric cancer cell death may be induced 
by QC4 via oncosis (33). LncRNA also has important implica‑
tions in numerous aspects of cancer, including proliferation, 
survival, migration and genomic stability (34). The construc‑
tion of prognostic markers for predicting the overall survival 
(including survival rate and time) of patients with cancer using 
lncRNA has become an area of increased research (35,36). 
The survival outcome, immunotherapy effect and drug sensi‑
tivity of patients with cancer may be determined by detecting 
the expression status of several lncRNAs, such as AC016027.1, 
AC099850.3 and ELFN1.AS1, which may provide clinical 
diagnosis and treatment options (35,37,38). Certain studies 
have focused on the construction of autophagy, immune and 
other coding genes, as well as non‑coding RNA models to 

Figure 6. Gene expression analysis based on risk score. (A‑E) The levels of (A) LMNA, (B) BCL2, (C) ATG12, (D) SNAI2 and (E) UCP2 expression were 
higher in the high‑risk group than that in the low‑risk group. (F) The level of NDRG2 expression was higher in the low‑risk group. *P<0.05, **P<0.01 and 
***P<0.001.
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predict the prognosis of CRC (35,39). However, to the best of 
our knowledge, there are no studies to date that have estab‑
lished an orlncRNA model to evaluate CRC‑related traits. The 
present study built on previous research that has been using a 

reasonable scheme composed of paired DEorlncRNAs (40), 
effectively reducing the complex data batch correction and 
achieving a more accurate risk assessment and CRC prognosis 
prediction while reducing the data required for this.

Figure 7. Immunohistochemical staining status of critical genes in normal tissue and colorectal cancer tissue from the same patient. N, normal tissue; 
T, colorectal cancer tissue. 
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In the present study, all orgenes were collected by first 
searching the oncosis‑related literature, followed by obtaining 
the original transcriptome CRC data from the TCGA database. 

The Wilcoxon signed‑rank test and other testing methods were 
used for analyzing co‑expression and differential expression 
to recognize DEorlncRNAs. The contributing DEorlncRNA 

Figure 8. Analysis of immune cell infiltration based on risk score. (A) Lollipop chart displaying the correlation coefficients of infiltrating immune cells from 
multiple databases. The correlation coefficient reflects the relationship between the quantity of immune cells and patients' risk score. High‑risk was positively 
associated with (B) macrophages, (C) NK cells, (D) CD4+ T cells and (E) cancer‑associated fibroblasts.
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pairs were verified by circular pairing and a 0‑or‑1 matrix. 
The DEorlncRNA pairs included in the model were deter‑
mined through a series of analyses, including Lasso and 
Cox regression analyses. The AIC value was determined to 
recognize the optimal model and the sum of sensitivity and 
specificity of each point on the 1‑, 3‑ and 5‑year ROC curves 
were calculated to find the optimal risk score cut‑off. The 
model was validated using case data and further evaluated in 
terms of survival time, clinicopathological progression, related 

gene expression, infiltration of immune cells into the tumor 
and sensitivity to chemotherapy. Based on the model, it was 
observed that the prognosis of patients in the high‑risk group 
significantly differed from that of the low‑risk group and the 
survival outcome of patients in the high‑risk group was signifi‑
cantly worse than that in the low‑risk group. The risk score 
of patients was related to tumor‑node‑metastasis (TNM) and 
clinical stage, with a higher risk score associated with a higher 
TNM and clinical stage. Certain genes exhibited a higher level 
of expression in the high‑risk group than in the low‑risk group 
(e.g., ATG12, BCL2, LMNA, UCP2 and SNAI2), whereas 
the opposite was observed for the NDRG2 gene. Such gene 
expression status changes may provide supporting evidence 
for cancer prognosis. ATG12 deficiency leads to depletion 
of intracellular levels of L‑glutamine, which is associated 
with a lower tolerance to hypoxia and an improved cancer 

Figure 11. Expression level of genes in tumor and normal tissue. Bar graph 
indicating that the expression level of LMNA, BCL2, ATG12, SNAI2 and 
UCP2 was higher in tumor tissue than in normal tissue (GAPDH was used as 
the reference for normalization). *P<0.05 and **P<0.01.

Figure 9. Evaluation of the risk model for different chemotherapy drugs. The box plots suggested that patients with high‑risk scores had a lower IC50 for 
(A) cisplatin (P=1.2x10‑5), (B) camptothecin (P=0.00024), (C) doxorubicin (P=0.0017), (D) dasatinib (P=0.038), (E) bleomycin (P=0.003) and (F) docetaxel 
(P=0.028). The dots represented outliers, the bar indicated the limits of the non‑abnormal data.

Figure 10. Expression level of six pairs of lncRNAs. The bar graph indi‑
cates that the expression levels of SCAT2, ARHGEF38‑IT1, AC026368.1, 
AC104695.4, AC092338.1 and MIR181A2HG were markedly higher in the 
corresponding lncRNA pairs. lncRNA, long noncoding RNA.
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prognosis (41). Furthermore, ATG12 silencing in CRC may 
weaken cell viability, induce cell apoptosis, inhibit autophagy 
and enhance the radiosensitivity of CRC cells. BCL2, a known 
antiapoptotic protein, may inhibit apoptosis by reducing the 
level of activated caspase (42). Inhibition of BCL2 may there‑
fore promote apoptosis of CRC cells (43). Metastatic tumors of 
the prostate are highly aggressive, have a slow proliferation rate 
and exhibit elevated SNAI2 expression (44). Certain studies 
have found that increased SNAI2 expression was associated 
with CRC cell invasion (45,46). The NTRK1‑LMNA axis may 
be associated with extensive phenotypic changes in neuroblas‑
toma cells and NTRK1‑induced reprogramming (47). LMNA 
is also expressed in colon stem cells and, statistically, the 
prognosis of patients with an LMNA‑positive tumor is signifi‑
cantly worse than that of patients with an LMNA‑negative 
tumor  (48). In addition, UCP2 has been indicated to have 
different roles according to cell type and the regulation of its 

expression is correlated with the progression and treatment of 
cancer cells (49). UCP2 has a key role in the mitochondrial 
apoptosis pathway and inhibition of UCP2 promotes apoptosis 
in CRC cells. Furthermore, in murine intestinal cancer models 
and samples from patients with CRC, higher levels of UCP2 
protein were observed than in non‑tumor counterparts (50,51). 
Functioning as either a tumor suppressor gene or stress 
response gene, NDRG2 has been associated with antimetas‑
tasis and antiproliferation responses in tumors and the level of 
NDRG2 expression is related to tumor prognosis (52). Since 
oncosis is related to the immune response (53,54), a number 
of methods were used in the present study to comprehensively 
evaluate infiltrating immune cells in CRC. According to the 
analysis, cancer‑associated fibroblasts, NK cells, CD4+ T cells 
and macrophage content were higher in the high‑risk group 
in the present model. A previous study has indicated that the 
metastatic potential of ovarian cancer cells may be increased 

Figure 12. Biological impact of the MIR181A2HG. (A) Data detected using flow tcytometry and DilC1(5). As shown in the figure, The histogram groups are 
(a) untreated control, (b) NC, (c) siMIR181A2HG, (d) Triton X only control, (e)Triton X‑NC, (f) Triton X‑siMIR181A2HG, from left to right. (B) Fluorescence 
confocal microscopy of LoVo cells labeled with DilC1(5) (scale bar, 20 µm). (C) siRNA transfection efficiency was verified. **P<0.01 and ***P<0.001. MFI 
(mean fluorescence intensity); NC, negative control (cells transfected with si‑NC); si, small interfering RNA; miR, microRNA.
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by pro‑inflammatory M1 macrophages through activation of 
the NF‑κB signaling pathway (55). According to the risk model 
in the present study, the drug sensitivity results indicated 
that patients in the high‑risk group treated with bleomycin, 
camptothecin, tipifarnib, dasatinib, docetaxel, doxorubicin 
or cisplatin tended to have a higher tumor mutation burden 
(TMB).

In the six DeorlncRNA pairs included in the Lasso regres‑
sion analysis, at least three of the orlncRNAs described below 
were demonstrated to be associated with cancer progression. 

LncRNA MIR181A2HG inhibits the proliferation, migra‑
tion and capillary‑like structures of vascular endothelial 
cells through dysregulation of the miRNAs/AKT2 axis (56). 
Another study demonstrated that MIR181A2HG is a prog‑
nostic predictor of bladder cancer survival time and is an 
immune checkpoint inhibitor (57). The MIR181A2HG gene 
is also overexpressed in the thyroid and there is a connec‑
tion between MIR181A2HG and the prognosis of thyroid 
cancer (58,59). In addition, LncRNA AC104695.4 as a compo‑
nent of the prediction model, is positively correlated with 

Table II. Results of the correlation between tumor‑infiltrating immune cells and risk score.

	 Spearman correlation	
Symbol	 coefficient 	 P‑value

B cell_TIMER	 0.140020872	 0.001444718
T cell CD4+_TIMER	 0.095646701	 0.029986209
T cell CD8+_TIMER	 0.093339716	 0.034201057
Neutrophil_TIMER	 0.123325136	 0.005069284
Myeloid dendritic cell_TIMER	 0.130194203	 0.003076337
NK cell resting_CIBERSORT	 ‑0.20379316	 3.12x10‑6

NK cell activated_CIBERSORT	 0.189706121	 1.46x10‑5

Macrophage M1_CIBERSORT	 0.123725861	 0.004926897
Myeloid dendritic cell resting_CIBERSORT	 ‑0.101734416	 0.020937744
Mast cell resting_CIBERSORT	 ‑0.116602694	 0.008079078
T cell CD8+_CIBERSORT‑ABS	 0.120419134	 0.006217829
T cell follicular helper_CIBERSORT‑ABS	 0.136542775	 0.001898442
NK cell resting_CIBERSORT‑ABS	 ‑0.180865302	 3.65x10‑5

NK cell activated_CIBERSORT‑ABS	 0.196574724	 6.99x10‑6

Macrophage M1_CIBERSORT‑ABS	 0.141280063	 0.001306712
Myeloid dendritic cell resting_CIBERSORT‑ABS	 ‑0.099423856	 0.024045776
B cell_QUANTISEQ	 0.096337307	 0.028814455
Neutrophil_QUANTISEQ	 ‑0.088510252	 0.044677492
cytotoxicity score_MCPCOUNTER	 0.126957411	 0.003904117
NK cell_MCPCOUNTER	 0.090727199	 0.039573709
Neutrophil_MCPCOUNTER	 ‑0.111578196	 0.011280863
Myeloid dendritic cell activated_XCELL	 0.087432741	 0.047351518
B cell_XCELL	 0.101477075	 0.021265689
T cell CD4+ memory_XCELL	 0.114174225	 0.009508347
T cell CD4+ central memory_XCELL	 ‑0.126344576	 0.004081879
T cell CD8+ naive_XCELL	 0.112402483	 0.010688716
T cell CD8+_XCELL	 0.1079606	 0.014236864
T cell CD8+ central memory_XCELL	 0.114425918	 0.009350425
Common lymphoid progenitor_XCELL	 0.124081452	 0.004803578
Endothelial cell_XCELL	 ‑0.09362572	 0.033652529
Eosinophil_XCELL	 ‑0.086455384	 0.049891825
Mast cell_XCELL	 0.128617222	 0.003457318
Neutrophil_XCELL	 ‑0.17086684	 9.74x10‑5

T cell CD4+ Th2_XCELL	 0.135172714	 0.00211051
stroma score_XCELL	 ‑0.099411962	 0.024062755
Cancer associated fibroblast_EPIC	 0.092110535	 0.036646054
T cell CD4+_EPIC	 0.137868277	 0.00171202

NK, natural killer; Th2, type 2 T‑helper.
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TGFβ1 expression in triple negative breast cancer tissue (60). 
LncRNA ARHGEF38‑IT1 was significantly associated with 
the survival time, clinical features, immune cells in the 
tumor microenvironment, TMB and cancer‑related pathways 
of stomach adenocarcinoma  (61). In the present study, an 
early‑stage CRC tissue sample was selected and the expres‑
sion of six pairs of lncRNA were verified by RT‑qPCR. The 
results indicated that the sample was in the low‑risk group and 
consistent with clinical diagnosis. To further improve the cred‑
ibility of the algorithm, a lncRNA was randomly selected and 
the biological process in oncosis was verified. Flow cytometry 
and fluorescence confocal microscopy results indicated that 
knockdown of MIR181A2HG expression promoted the oncosis 
of LoVo cells, which indicated MIR181A2HG was associated 
with oncosis. All the aforementioned studies verified the vali‑
dation of the algorithm. The remaining DEorlncRNAs were 
reported in the present study for the first time and require 
further exploration and research.

In the present study, a novel algorithm based on oncosis was 
established to explore the clinical implications of risk assess‑
ment models. The algorithm indicated that DEorLncRNAs may 
be identified and associated vital pairs may be constructed. 
The AUC values of the 1‑, 3‑ and 5‑year ROC curves of the 
model were all >0.7, exhibiting a fair predictive performance. 
There have been multiple studies on the establishment of 
lncRNA‑related prediction models for CRC and each algorithm 
have their own advantages, such as using simple predictors, 
and disadvantages, such as insufficient clinical and molecular 
biological validation (62,63). In the present study, orlncRNAs 
were applied for the construction of the CRC prediction model 
for the first time and differential orlncRNAs were identified 
to form DEorlncRNA pairs. The study models used by others 
frequently require the batch correction of clinical data. Thus, 
since the present model uses DEorlncRNA pairs, only the 
expression levels of the lncRNA pairs require to be compared, 
thereby avoiding the need for data correction. Therefore, there 
is a substantially lower threshold for the clinical application of 
this model and errors related to differences in the detection of 
marker expression are largely avoided.

There are certain limitations to the present study. First, 
since the data were obtained from open public databases, the 
sample size may be relatively small and there may be certain 
bias in the analyzed profile. Furthermore, the data in the 
TCGA database were used to internally verify the constructed 
risk assessment model, but it should also be externally verified. 
In addition, the correlation between the model and immune 
cell features requires to be verified by clinical data and other 
experiments. Finally, the new algorithm ultimately serves 
clinical treatment and in future clinical work, our clinical case 
validation of this model is insufficient since only one sample 
was verified by PCR and there is a requirement to collect addi‑
tional samples to verify the predictive ability of this algorithm 
for the clinical treatment of patients with CRC.

In summary, the present study successfully established 
a new algorithm consisting of paired orlncRNAs in CRC 
and the algorithm was verified to a certain extent. Only the 
expression levels of six lncRNA pairs needed to be detected 
and compared to divide CRC patients into high‑ and low‑risk 
groups and to predict their survival outcomes, related tumor 
immune cell infiltration and sensitivity to drug treatment. The 

model may provide individualized management and treatment 
for patients with CRC.
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