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Abstract: With 1.6 million deaths per year, lung cancer is one of the leading causes of death worldwide.
One reason for this high number is the absence of a preventive medical examination method. Many
diagnoses occur in a late cancer stage with a low survival rate. An early detection could significantly
decrease the mortality. In recent decades, certain substances in human breath have been linked to
certain diseases. Different studies show that it is possible to distinguish between lung cancer patients
and a healthy control group by analyzing the volatile organic compounds (VOCs) in their breath.
We developed a sensor based on photoacoustic spectroscopy for six of the most relevant VOCs
linked to lung cancer. As a radiation source, the sensor uses an optical-parametric oscillator (OPO)
in a wavelength region from 3.2 µm to 3.5 µm. The limits of detection for a single substance range
between 5 ppb and 142 ppb. We also measured high resolution absorption spectra of the biomarkers
compared to the data currently available from the National Institute of Standards and Technology
(NIST) database, which is the basis of any selective spectroscopic detection. Future lung cancer
screening devices could be based on the further development of this sensor.

Keywords: photoacoustic spectroscopy; PAS; volatile organic compound; VOC; IR spectra; lung
cancer; biomarker; breath analysis; OPO; optical-parametric oscillator

1. Introduction

Over 1.6 million people die due to lung cancer each year [1,2], making this disease one of the
leading causes of death worldwide. So far, no methodical general screening for lung cancer has
been established [3,4]. A preventive medical examination could save thousands of lives per year, as
the survival rates decrease rapidly with increasing stages (47% in Stage 1, 1%–2% in Stage 4) [5].
An early diagnosis could also considerably relieve the health care system by reducing the cost of
cancer treatment. One promising approach for future lung cancer screening could be breath tests based
on the analysis of expiratory air [6,7]. It would make use of the fact that lung cancer patients exhale
certain substances in different combinations and concentrations as compared to healthy persons [8–10].
These substances belong to the group of volatile organic compounds (VOCs) and could be used as
biomarkers in the future, according to the definition of the WHO [11]. These VOCs are either generated
directly in the lungs or transported there via bloodstream from other parts of the body. Gas exchange
in the lungs, in combination with the high volatility of the substances, leads to exhalation and allows
for VOC detection in the breath. Several authors claim that breath tests with high sensitivity and
significance are possible [8–10]. However, authors do not agree on which VOCs are the most relevant.
This is the main reason that, up to now, no lung cancer breath test has been established, although some
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VOCs have been linked to this disease for decades. Since the literature refers to these VOC substances
as biomarkers, we will utilize this term in this paper as well.

A literature review performed in 2016 [12] revealed the six most frequently listed and, therefore,
most relevant lung cancer biomarkers found in breath. The review did not distinguish between
different stages or subtypes of lung cancer, meaning that these VOCs could provide a suitable basis for
future screening examinations, although some of them have been linked to other diseases as well.

We have developed a photoacoustic sensor that enables sensitive detection of the six most relevant
of these vaporous compounds. It is based on a continuous-wave optical-parametric oscillator (OPO)
whose spectrally narrow emission is widely tunable in the mid-infrared region between 3.2 µm and
3.5 µm. This part of the spectrum is particularly well-suited for spectroscopic detection because
it relates to the C–H stretching vibration, and hydrocarbons show very strong and characteristic
absorption here [13,14]. Furthermore, atmospheric components, such as N2, O2, H2O, Ar, or CO2, show
no or only very weak absorption which minimizes possible cross sensitivities.

2. Materials and Methods

2.1. Experimental Setup

Photoacoustic spectroscopy (PAS) takes advantage of the photoacoustic effect described by A. G.
Bell in 1881 [15]. The effect is based on the absorption of electromagnetic radiation and the transfer of
this absorbed energy into kinetic energy through molecular collisions. This non-radiative relaxation is
equivalent with a temperature increase of the irradiated volume. A modulated irradiation generates
a temperature variation that coincides with a pressure modulation. This sound wave can be easily
detected by a microphone. The advantage of PAS over traditional transmission spectroscopy is that the
signal is directly proportional to the absorption coefficient of the substance. As long as the absorption is
not saturated, the signal is proportional to the substance concentration as well. PAS is hence considered
an offset-free technique. Another advantage is based on acoustic resonances of the sample containing
chamber. Modulating the radiation source with a frequency that is equivalent to an acoustic mode
of this sample cell leads to an amplification of the generated signal and, therefore, enhances the
signal-to-noise ratio (SNR) [16,17]. In comparison to mass spectrometry and gas chromatography, PAS
has the advantage that no sample preparation is required, and the sample is not destroyed during the
measurement [18].
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Figure 1 shows the experimental setup of the photoacoustic sensor. We used a continuous-wave
optical-parametric oscillator (cw-OPO) as radiation source (Argos Model 2400-BB-5 Module C,
Lockheed Martin Aculight, Bothel, WA, USA). The OPO is equipped with a modified fiber pump
laser in order to get a narrower emission linewidth of less than 500 pm full width at half maximum.
The idler wavelength can be spectrally tuned between 3.2 µm and 3.5 µm with a maximum emission
power of approximately 2 W. Spectral tuning is achieved by adjusting the position of the fan-poled
optical nonlinear crystal (coarse tuning) and the angle of an etalon (fine tuning). Both parameters
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are controlled via USB interface and MATLAB control software. Modulation of the OPO emission is
achieved using a mechanical chopper (300CD, Scitec Instruments, Redruth, UK). Details of the OPO
principle and its control are described in an earlier publication [19].

Measurements were taken with the test gases filled into the H-shape sample cell that was designed
to have its first longitudinal resonance frequency at 2.7 kHz [20]. The cell is made of aluminum and
sealed on both ends with calcium fluoride (CaF2) windows. The flexible hoses leading the gas sample
into the cell are made of polytetrafluoroethylene (PTFE—Teflon). These connections are resistant
against many chemicals and substances show low adhesion. In order to measure the OPO wavelength
a fraction of the laser beam (7%) is separated with a beam splitter and guided to a laser spectrum
analyzer (721A-IR, Bristol Instruments, Victor, NY, USA) featuring a precision of up to ±0.2 ppm of
the absolute wavelength. The optical emission power of the OPO was measured with a power meter
behind the cell (Thermal head model 3A-FS-SH, Ophir Optronics, Jerusalem, Israel). The loss in laser
power due to absorption can be neglected for the measured VOCs. According to reference spectra
from Pacific Northwest National Laboratory (PNNL), the compound with the strongest absorption
(ethylbenzene) shows a maximum absorbance of 400 × 10 −6 at a concentration of 1 ppm, a path length
of 1 m and a temperature of 25 ◦C [21]. This corresponds to a maximum power loss of less than 1.2%
behind our sample cell filled with 100 ppm test gas. The power meter, however, provides a precision
of only ±3% according to the datasheet. The measured emission power behind the cell is used to
normalize the photoacoustic (PA) signal.

The PA signal was detected using a microelectromechanical systems (MEMS) microphone
(INMP441 from InvenSense, San Jose, CA, USA). The microphone possesses a high sensitivity of
−25 dBFS and a signal-to-noise ratio of 61 dBA. It integrates a digital I2S interface securing noise-free
data transmission. The I2S data of the microphone was further processed using a microcontroller
(PIC32 from Microchip). The acoustic signal was recorded with a frequency of 7.8 kHz, thus fulfilling
the sampling theorem. The amplitude of the acoustic input signal at the resonance frequency was
calculated using the Goertzel algorithm implemented in C language on the PIC32 [22–25]. The Goertzel
algorithm is a digital filter that calculates one specific frequency bin of the discrete Fourier transform
(DFT). Further details on the MEMS microphone and the data processing are described in earlier
publications [25,26].

2.2. Lung Cancer Biomarkers

In 2016, a systematic literature research was performed to identify compounds that could
serve as lung cancer biomarkers for future breath tests [12]. The most frequently listed substances
are 2-butanone [18,27–30], 1-propanol [18,27,29–31], isoprene [18,31–33], ethylbenzene [27,33–35],
styrene [32,33,35,36], and hexanal [9,32,34,37]. All substances have been linked to lung cancer but
some not exclusively, and the pathways are still under investigation. Some of these compounds might
also be of exogenous origin [9,38]. Table 1 lists the most relevant substances in order of priority [12].
The priorities are based on the number of research groups that declared a certain VOC a biomarker for
lung cancer.

Measurements were conducted on the six VOCs of Priorities 1 and 2. They were acquired from
Sigma-Aldrich in liquid state (at room temperature). Gaseous mixtures with a VOC concentration of
100 ppm in nitrogen were prepared in Tedlar bags. These nitrogen (purity: 5.0) filled polyvinyl fluoride
(PVF) bags represent the most commonly used mix and storage containers for gas sampling in the
field of breath analysis [39,40]. These containers do not completely prevent adsorption and diffusion
through the bag. However, due to our short storage time of approximately one hour, these effects can
be neglected [41,42].

The liquid VOC was drawn up with a 2 µL syringe and injected into the 1 L Tedlar bag. The small
puncture hole in the bag was subsequently sealed with tape. The required liquid volume VVOC for a
concentration of 100 ppm can be calculated by using the following equation:
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VVOC =
MVmixc

δVm
(1)

with M representing the VOC’s molar mass, Vmix the volume of the Tedlar bag (1 L), c the desired
concentration of VOC (100 ppm), δ the density of the liquid VOC, and Vm the molar volume of an ideal
gas at room temperature and ambient pressure. During the preparation of the sample, the measuring
cell was evacuated for one hour in order to remove any traces from previous measurements. The used
chemistry-hybrid pump is a combination of a two-stage rotary vane pump and a two-stage chemistry
diaphragm pump (RC 6 from Vacuubrand).

Table 1. Most relevant biomarkers [12].

Priority CAS Names

1 78-93-3 2-butanone, methyl ethyl ketone
71-23-8 1-propanol, n-propanol

2

8-79-5 isoprene, 2-methyl-1,3-butadiene
100-41-4 ethylbenzene
100-42-5 styrene, ethenylbenzene
66-25-1 hexanal

3

67-64-1 acetone, propanone
107-87-9 2-pentanone, methyl propyl ketone
67-63-0 2-propanol, isopropylalcohol, isopropanol
124-18-5 decane
71-43-2 benzene
111-71-7 heptanal
106-97-8 butane
123-38-6 propanal
109-66-0 n-pentane

Since the evaporation rates of VOCs are high compared to water, it can be assumed that the VOC
droplet is completely evaporated after a storage time of one hour [43]. Thereupon, the low pressure of
the evacuated system was used to suck the gas mixture from the bag into the sample cell, resulting in
ambient pressure inside the cell (approximately 1024 hPa). The screw cap valve of the Tedlar bag was
used for the connection to ensure sealing. This procedure for the generation of VOC gas mixtures is
established among researchers in this field [44]. After the gas transfer from the preparation bag to the
sample cell, the gas in- and outlet of the cell were closed. Both the transfer system and the sample cell
were at room temperature. Because of the comparably small sample cell volume (30 mL) and minimal
temperature differences between gas and cell, we assume to have reached a thermal equilibrium in
less than a minute. The measurement process was started three minutes after insertion of the gas.

2.3. Measurements

We measured photoacoustic spectra of the six most relevant lung cancer biomarkers using the
experimental setup described above. All measurements were performed under static conditions with
no gas flow. In order to do so, the spectral emission of the OPO was tuned from 3.2 µm to 3.5 µm
controlling the crystal position and the etalon angle. However, the spectral tuning is not continuous due
to the phase-matching condition. Only discrete wavelength values are accessible. Since the wavelength
steps are unequally spaced, the spectral resolution cannot be expressed by a single value.

Figure 2 shows the number of occurrences of wavelength step sizes between 3.2 µm and 3.5 µm.
The displayed data originates from ethylbenzene, but the other VOCs do not deviate significantly.
The step size between accessible wavelengths has a mean value of 0.20 nm. The relatively large
standard deviation of 0.34 nm is owed to the second distribution, with step sizes between 0.7 nm
and 1.2 nm and considerably fewer occurrences. The corresponding spectral resolution, however, is
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sufficient to measure VOC spectra considering the fact that these are comparably large molecules and
that their absorption features correspondingly broad. Furthermore, the spectral resolution is better
than that of many Fourier transform infrared spectrometers (FTIR). At each OPO configuration, i.e., at
each specific emission wavelength, we performed ten measurements and averaged the results.Sensors 2017, 17, 210  5 of 10 
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The OPO’s emission power strongly depends on the emission wavelength, i.e., on the crystal
position and the etalon angle. It can change drastically from one wavelength configuration to the
next. In order to eliminate the dependency of the photoacoustic signal on the optical output power of
the OPO, the microphone signal was normalized in regard to the output power. Figure 3 shows the
number of occurrences of the OPO output power between 3.2 µm and 3.5 µm for the ethylbenzene
measurement. The average power is equal to 0.25 W, whereas the standard deviation is 0.11 W. Again,
the other VOCs do not deviate significantly.
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In order to determine the noise level, we performed an additional measurement with a
nitrogen-filled cell (purity: 5.0). At each of the five OPO wavelengths, evenly distributed over the
spectral region, we measured 300 values of the photoacoustic signal. As with the spectra measurements,
these values were grouped into blocks of ten and averaged. Of these 300 × 5/10 = 150 measurements,
we calculated the mean value and the standard deviation.
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3. Results

Figure 4 shows the photoacoustic spectra of the six most relevant lung cancer biomarkers listed in
Table 1. The data is available as supplementary data from the journal. Each diagram also includes the
absorption spectrum from the National Institute of Standards and Technology (NIST). The diagrams of
ethylbenzene and styrene additionally display PNNL data. Since NIST does not provide any parameters
of the measurements (such as concentration or path length), the spectra are purely qualitative. In order
to enable comparability, the NIST spectra are scaled to the same root-mean-square, which represents
the area under the curve, as the measured photoacoustic spectra.
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of 100 ppm in nitrogen at atmospheric conditions (294 K, 1024 hPa).

Detection limits of the photoacoustic sensor were estimated for each biomarker. While the mean
value of noise can be considered a subtractable offset due to absorption in the windows etc., the
standard deviation determines the detection limit. The maximum signal in each spectrum must
be larger than this fluctuating noise. This allows calculation of signal-to-noise ratios and idealized
limits of detection (LODs), representing the theoretically lowest measureable concentration for each
biomarker. The transformation from SNRAmp (amplitude) to a decibel level was achieved using
SNRdB = 20log10

(
SNRAmp

)
. Table 2 lists the results.

Table 2. Detection limits for lung cancer biomarkers.

Name SNR (100 ppm) LOD (ppb)

2-butanone 17,629 => 84.92 dB 5.7
1-propanol 11,969 => 81.56 dB 8.4

isoprene 2,729 => 68.72 dB 36.6
ethylbenzene 11,645 => 81.32 dB 8.6

styrene 706 => 56.98 dB 141.6
hexanal 6491 => 76.25 dB 15.4
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4. Discussion

The photoacoustic sensor based on a cw-OPO is able to measure the six most relevant biomarkers
for lung cancer, namely, 2-butanone, 1-propanol, isoprene, ethylbenzene, styrene, and hexanal, with
high detection sensitivity.

Three of the six photoacoustic spectra in the wavelength range between 3.2 µm and 3.5 µm
are in good agreement with NIST spectra. The measured ethylbenzene spectrum, however, shows a
wavelength shift of approximately 20 nm towards lower wavelengths. The fact that the measurement is
in good accordance with PNNL data supports PNNL with regard to this compound. The photoacoustic
hexanal spectrum is similarly shifted compared to its NIST counterpart. Unfortunately, no PNNL data
is available for this substance. The spectral deviation could be a result of the fact that NIST spectra are
measured with broadband FTIR spectrometers, which provide a wide wavelength range at the costs of
wavelength accuracy. Since the future biomarker sensor will be operating on the basis of measured
reference spectra, the deviation to the database has no implications on the further development.
The difference in the spectrum of styrene cannot be put into perspective. Both reference spectra deviate
considerably from the measurement. We will investigate this further.

Each lung cancer biomarker shows a very characteristic spectrum in the mid-infrared region.
The spectral resolution of the photoacoustic sensor can be expressed by a spectral emission linewidth
of the OPO of less than 0.5 nm and an average tuning step size of 0.20 nm. Therefore, the measured
photoacoustic spectra provide a considerably higher resolution than the spectroscopic data currently
provided by NIST and PNNL. This will enable identification of compounds by their characteristic
absorption peaks. The idealized noise equivalent detection limits of the sensor for a single VOC range
between 5 ppb and 142 ppb. Some of the VOCs feature a comparably large dipole moment and can
therefore be considered chemically sticky. The consequence of the according adsorption to the cell
walls would be a reduction of the reference VOC concentration inside the cell. This is not taken into
account for the determination of the LOD. Therefore, the resulting values represent more upper limits
of the true LOD.

As a next step, measurements at different VOC concentrations will be conducted in order to verify
its sensitivity and to determine the true detection limits. This will be followed by measurements of
biomarker mixtures. Spectra will be analyzed using a sophisticated evaluation algorithm. Potential
techniques include the multivariate analysis, principle component analysis (PCA), neuronal network
approaches, and fuzzy logic [45]. The most significant wavelengths for the analysis will be determined
using interrelation miner or the like [46]. The data at hand, i.e., the high-resolution absorption
spectra, will enable the identification of single compounds and, thus, high detection selectivity.
The photoacoustic analyzer will have the potential to serve as a basis for the development of a
lung cancer screening device. A comparison with existing technologies in the detection of VOCs as well
as a discussion of pros and cons of the new analyzer will be performed once the processing algorithm
is finished.
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31. Ulanowska, A.; Kowalkowski, T.; Trawińska, E.; Buszewski, B. The application of statistical methods using
VOCs to identify patients with lung cancer. J. Breath Res. 2011, 5, 046008. [CrossRef] [PubMed]

32. Chen, X.; Xu, F.; Wang, Y.; Pan, Y.; Lu, D.; Wang, P.; Ying, K.; Chen, E.; Zhang, W. A study of the volatile
organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 2007, 110, 835–844.
[CrossRef] [PubMed]

33. Poli, D.; Carbognani, P.; Corradi, M.; Goldoni, M.; Acampa, O.; Balbi, B.; Bianchi, L.; Rusca, M.; Mutti, A.
Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested
short-term follow-up study. Respir. Res. 2005, 6, 71. [CrossRef] [PubMed]

34. Handa, H.; Usuba, A.; Maddula, S.; Baumbach, J.I.; Mineshita, M.; Miyazawa, T. Exhaled breath analysis for
lung cancer detection using ion mobility spectrometry. PLoS One 2014, 9, e114555. [CrossRef] [PubMed]

35. Rudnicka, J.; Kowalkowski, T.; Ligor, T.; Buszewski, B. Determination of volatile organic compounds as
biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. J. Chromatogr. B 2011, 879, 3360–3366.
[CrossRef] [PubMed]

36. Phillips, M.; Gleeson, K.; Hughes, J.M.B.; Greenberg, J.; Cataneo, R.N.; Baker, L.; McVay, W.P. Volatile
organic compounds in breath as markers of lung cancer: A cross-sectional study. Lancet 1999, 353, 1930–1933.
[CrossRef]

37. Fuchs, P.; Loeseken, C.; Schubert, J.K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer.
Int. J. Cancer 2010, 126, 2663–2670. [CrossRef] [PubMed]

38. Szulejko, J.E.; McCulloch, M.; Jackson, J.; McKee, D.L.; Walker, J.C.; Solouki, T. Evidence for Cancer
Biomarkers in Exhaled Breath. IEEE Sensors J. 2010, 10, 185–210. [CrossRef]

39. Krilaviciute, A.; Heiss, J.A.; Leja, M.; Kupcinskas, J.; Haick, H.; Brenner, H. Detection of cancer through
exhaled breath: a systematic review. Oncotarget 2015, 6, 38643–38657. [CrossRef] [PubMed]

40. Mochalski, P.; King, J.; Unterkofler, K.; Amann, A. Stability of selected volatile breath constituents in Tedlar,
Kynar and Flexfilm sampling bags. Analyst 2013, 138, 1405–1418. [CrossRef] [PubMed]

41. Beauchamp, J.; Herbig, J.; Gutmann, R.; Hansel, A. On the use of Tedlar®bags for breath-gas sampling and
analysis. J. Breath Res. 2008, 2, 046001. [CrossRef] [PubMed]

42. Steeghs, M.M.L.; Cristescu, S.M.; Harren, F.J.M. The suitability of Tedlar bags for breath sampling in medical
diagnostic research. Physiol. Meas. 2007, 28, 73–84.

43. Heymes, F.; Aprin, L.; Bony, A.; Forestier, S.; Cirocchi, S.; Dusserre, G. An experimental investigation of
evaporation rates for different volatile organic compounds. Proc. Safety Prog. 2013, 32, 193–198. [CrossRef]

44. Hirschmann, C.B.; Koivikko, N.S.; Raittila, J.; Tenhunen, J.; Ojala, S.; Rahkamaa-Tolonen, K.; Marbach, R.;
Hirschmann, S.; Keiski, R.L. FT-IR-cPAS–new photoacoustic measurement technique for analysis of hot
gases: a case study on VOCs. Sensors 2011, 11, 5270–5289. [CrossRef] [PubMed]

45. Kessler, W. Multivariate Datenanalyse: Für die Pharma-, Bio- und Prozessanalytik; Wiley-VCH: Weinheim,
Germany, 2007.

46. Kohl, I.; Beauchamp, J.; Cakar-Beck, F.; Herbig, J.; Dunkl, J.; Tietje, O.; Tiefenthaler, M.; Boesmueller, C.;
Wisthaler, A.; Breitenlechner, M.; et al. First observation of a potential non-invasive breath gas biomarker for
kidney function. J. Breath Res. 2013, 7, 017110. [CrossRef] [PubMed]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00216-012-6102-8
http://www.ncbi.nlm.nih.gov/pubmed/22660158
http://dx.doi.org/10.1002/cam4.162
http://www.ncbi.nlm.nih.gov/pubmed/24402867
http://www.ncbi.nlm.nih.gov/pubmed/4017231
http://dx.doi.org/10.1515/CCLM.2009.133
http://www.ncbi.nlm.nih.gov/pubmed/19397483
http://dx.doi.org/10.1088/1752-7155/5/4/046008
http://www.ncbi.nlm.nih.gov/pubmed/22071773
http://dx.doi.org/10.1002/cncr.22844
http://www.ncbi.nlm.nih.gov/pubmed/17599760
http://dx.doi.org/10.1186/1465-9921-6-71
http://www.ncbi.nlm.nih.gov/pubmed/16018807
http://dx.doi.org/10.1371/journal.pone.0114555
http://www.ncbi.nlm.nih.gov/pubmed/25490772
http://dx.doi.org/10.1016/j.jchromb.2011.09.001
http://www.ncbi.nlm.nih.gov/pubmed/21982505
http://dx.doi.org/10.1016/S0140-6736(98)07552-7
http://dx.doi.org/10.1002/ijc.24970
http://www.ncbi.nlm.nih.gov/pubmed/19839051
http://dx.doi.org/10.1109/JSEN.2009.2035669
http://dx.doi.org/ 10.18632/oncotarget.5938.
http://www.ncbi.nlm.nih.gov/pubmed/26440312
http://dx.doi.org/10.1039/c2an36193k
http://www.ncbi.nlm.nih.gov/pubmed/23323261
http://dx.doi.org/10.1088/1752-7155/2/4/046001
http://www.ncbi.nlm.nih.gov/pubmed/21386188
http://dx.doi.org/10.1002/prs.11566
http://dx.doi.org/10.3390/s110505270
http://www.ncbi.nlm.nih.gov/pubmed/22163900
http://dx.doi.org/10.1088/1752-7155/7/1/017110
http://www.ncbi.nlm.nih.gov/pubmed/23446042
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Setup 
	Lung Cancer Biomarkers 
	Measurements 

	Results 
	Discussion 

