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Abstract
Traumatic brain injury (TBI) is a major cause of death and its accurate diagnosis is an important concern of daily forensic 
practice. However, it can be challenging to diagnose TBI in cases where macroscopic signs of the traumatic head impact are 
lacking and little is known about the circumstances of death. In recent years, several post-mortem studies investigated the 
possible use of biomarkers for providing objective evidence for TBIs as the cause of death or to estimate the survival time 
and time since death of the deceased. This work systematically reviewed the available scientific literature on TBI-related 
biomarkers to be used for forensic purposes. Post-mortem TBI-related biomarkers are an emerging and promising resource 
to provide objective evidence for cause of death determinations as well as survival time and potentially even time since death 
estimations. This literature review of forensically used TBI-biomarkers revealed that current markers have low specificity 
for TBIs and only provide limited information with regards to survival time estimations and time since death estimations. 
Overall, TBI fatality-related biomarkers are largely unexplored in compartments that are easily accessible during autopsies 
such as urine and vitreous humor. Future research on forensic biomarkers requires a strict distinction of TBI fatalities from 
control groups, sufficient sample sizes, combinations of currently established biomarkers, and novel approaches such as 
metabolomics and mi-RNAs.

Keywords Biomarker · Cause of death · Forensic biochemistry · Survival time · Time since death · Traumatic brain injury · 
Post-mortem

Introduction

As defined by the US Centers for Disease Control and 
Prevention, a traumatic brain injury (TBI) describes a dis-
ruption of the brain’s normal function caused by bumps, 
blows, jolts, or penetrating head injuries [1]. TBI consid-
erably contributes to the global injury burden and in light 

of a growing population, the absolute number of TBIs is 
expected to grow further [2]. A lethal outcome occurs in 
approximately a quarter to a third of patients who suffer a 
severe TBI, which is about the same percentage compared 
to the ones that fully recover from a severe traumatic head 
impact [3]. A TBI-related death most often results from 
intentional self-harm (33%), followed by unintentional falls 
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(28%) and motor vehicle accidents (19%) [4]. Hence, it is 
not surprising that TBI is an important topic for forensic 
pathologists with cases ranging from suicidal head banging 
[5] to homicidal head blows [6]. Especially, when macro-
scopic signs of head impacts such as contusions, bleedings, 
or lacerations are lacking, it can be challenging to determine 
a TBI as the sole or contributing cause of death [7]. Post-
mortem biochemical analyses could be a promising objective 
resource for forensic pathologists to diagnose lethal TBIs as 
the cause of death. Forensic biochemical investigations are 
already described and widely used for the cause of death 
determination of hypothermia, ketoacidosis, myocardial 
infarction, drowning, or anaphylaxis [8]. From ante-mortem 
studies, it is known that several biomarkers show significant 
differences following traumatic head impacts compared to 
atraumatic controls [9, 10]. On that basis, several forensic 
groups have explored the potential to use those TBI bio-
markers for forensic purposes in a post-mortem setting [7, 
11–13]. However, forensic expectations on TBI biomark-
ers as well as the conditions under which the samples are 
obtained considerably differ from ante-mortem clinical prac-
tice. Clinically used TBI biomarkers provide information on 
the diagnosis, prognosis, and treatment efficiency of TBIs 
[14]. In contrast, forensic pathologists expect additional 
objective data on TBI survival time estimations or time since 
death estimations [15, 16]. Ante-mortem, TBI biomarkers 
are determined in blood or cerebrospinal fluid (CSF), which 
are sampled from living individuals under aseptic conditions 
[17]. Contrary to that, the body fluids for the determination 
of TBI biomarkers in forensic cases are sampled from dead 
and often at least partly putrefied individuals during forensic 
autopsies. Post-mortem changes and sampling conditions 
raise the question of whether forensic biochemical investi-
gations can provide any valuable information at all [7, 18]. 
Contrary to the clinical setting, practically all tissues of the 
human body can be used to determine TBI biomarkers in 
forensic investigations. However, as post-mortem reference 
values for different causes of death are lacking, their poten-
tial value for forensic investigations related to TBI fatalities 
has to be explored from scratch. This given work provides 
an up-to-date review of the post-mortem biochemistry of 
lethal TBIs including information on their value for forensi-
cally relevant topics such as cause of death determinations, 
survival time estimations, and time since death estimations. 
Also, it will be compiled whether these TBI biomarkers are 
relevantly influenced by factors such as age, sex, hemoly-
sis, perimortem rescue procedures, or storage conditions. 
Thus far, a forensically focused TBI biomarker review is 
not available. The following eight biomarkers were chosen 
to be presented in this review: S100 calcium-binding protein 
B (S100B), neuron-specific enolase (NSE), glial fibrillary 
acidic protein (GFAP), interleukin-6 (IL-6), brain-derived 
neurotrophic factor (BDNF), and microtubule-associated 

protein tau (MAPT), which were selected as these are well-
known candidate fluid biomarkers related to TBI pathophysi-
ology [19]. Furthermore, lactate dehydrogenase (LDH), fer-
ritin, and neutrophil gelatinase-associated lipocalin (NGAL) 
were chosen to be presented here based on previous own 
post-mortem studies of the authors. However, the search 
strategy was not limited to the selected biomarkers to avoid 
the risk of missing important others.

Materials/Methods

The here performed review of post-mortem TBI biomark-
ers contains the following two components: (i) a system-
atic component of previous post-mortem studies to detect a 
fatal TBI including the following biomarkers: S100B, NSE, 
GFAP, IL-6, LDH, Ferritin, BDNF, NGAL, and MPAT; (ii) 
data from peer-reviewed studies that summarize information 
from clinical studies on the respective biomarker or labora-
tory analyses, which were not part of the strategic search 
but provide important context for the forensic investigations. 
This literature review compiles the following information for 
each of the abovementioned biomarkers:

• Molecular weight - what is the molecular weight of the 
respective marker?

• Expression - where is the biomarker expressed within the 
human body?

• Function - which function does the marker serve within 
the human body (as far as this has been answered to 
date)?

• Cause of death determination - does the biomarker allow 
to significantly differentiate lethal TBIs and non-TBI 
control cases?

• Survival time estimation - does the biomarker discrimi-
nate different survival times between the traumatic head 
impact and the death on a statistically significant level?

• Post-mortem interval correlation - was the marker dis-
criminative with regards to the post-mortem interval 
(PMI) on a statistically significant level? The PMI refers 
to the time between the death of the cadaver and the 
autopsy, in which the tissues undergo alterations such as 
degradation or putrefaction.

• Reason for biomarker level change within compartment 
- which mechanism underlies the significantly different 
biomarker concentration between TBI fatalities and con-
trols in the respective compartment?

• Age- or sex-dependence - did the biomarker correlate 
with the age at death or the sex of the deceased in the 
respective compartment on a statistically significant 
level?
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• Hemolysis index (H-index) dependence - did the bio-
marker level correlate with the hemolysis index of the 
fluid sample on a statistically significant level?

• Influence of rescue procedures or intensive care proce-
dures - was the biomarker level in the respective com-
partment significantly different, if the deceased was 
subjected to rescue (e.g., cardiopulmonary resuscitation 
attempt) or intensive care unit procedures (e.g., neuro-
surgical intervention)?

• Comparison to clinical biomarker levels - how were the 
TBI-related biomarker levels measured in a forensic set-
ting compared to known clinical values of the identical 
compartment?

• In vitro freeze–thaw-cycle influence - did the in vitro bio-
marker concentration within a forensically relevant com-
partment correlate with the number of applied freeze–
thaw cycles on a statistically significant level?

• In vitro biomarker stability - does the in vitro measured 
biomarker concentration within a forensically relevant 
compartment change over time on a statistically signifi-
cant level? P-values of 0.05 or less were considered to 
be statistically significant.

The information for the points cause of death determi-
nation, survival time estimation, age- or sex-dependence, 
H-index, and the post-mortem biomarker levels for the 
comparison to the clinical values were extracted from Pub-
Med-listed forensic studies. These were searched up until 
August 2021 according to the Preferred Reporting Items for 
Systematic Reviews and Meta-analyses (PRISMA) guide-
lines [20] (Fig. 1). Initially, the articles were screened by 
their title and abstract. If the title and/or abstract revealed 
that the selected TBI-related biomarkers were measured in 
post-mortem tissues, the full text was sought for retrieval 
and assessed for eligibility. Then, the reference lists of the 
respective papers were screened. The following inclusion 
criteria were defined: (i) TBI as the cause of death, (ii) study 
must contain a control group, (iii) only studies on humans, 

and (iv) only peer-reviewed original works. The systematic 
part of the literature review was independently performed by 
two authors (JZ and RK) according to the inclusion criteria 
that are listed in Fig. 1. A third author (BO) checked the 
results for accuracy and decided, whether information that 
the two authors (JZ and RK) could not agree on should be 
included.

Results

A total of 17 studies were identified from the literature 
search (Fig. 2). Of these, six studies reported results deal-
ing with IL-6 [21–26]; five with GFAP [11, 13, 24, 26, 27], 
LDH [23, 24, 26, 28, 29], and S100B [7, 26, 30–32]; four 
with NSE [24, 26, 30, 31]; three with BDNF [11, 24, 26], 
MAPT [13, 33, 34], and ferritin [23, 24, 26]; and two with 
NGAL [11, 26]. Information regarding cause of death deter-
mination and survival time estimation are presented below. 
The rest of the extracted data is compiled in Tables 1, 2, 
and 3. The used body fluids for the measurement of TBI-
related biomarkers in previous studies and the hypotheses 
that explain the biomarker alterations after the traumatic 
head impact are depicted in Figs. 3 and 4.

S100 calcium‑binding protein B

Cause of death determination

CSF concentrations of S100B were significantly higher in 
TBI fatalities compared to controls (isolated torso trauma, 
cerebrovascular injury, and sudden natural deaths) [30, 31]. 
Recently, it was stated that a fatal acute TBI (survival time 
less than 2 h) can be detected with 79% accuracy and 97% 
specificity in post-mortem CSF when the S100B concen-
tration reaches a threshold of 2267 ng/ml [26]. In serum, 
S100B was significantly higher in TBI cases compared with 

Fig. 1  The search strategy for 
the systematic part of this litera-
ture review is depicted
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isolated torso traumas but was not statistically different from 
cases with cerebrovascular insufficiency and sudden natural 
deaths in a small sample size investigating 17 TBI fatalities 
and 23 controls [30]. However, all aforementioned controls 
were not statistically different from TBI fatalities in serum in 
a larger sample size of 45 TBI fatalities and 47 controls [31]. 
Serum S100B levels were significantly correlated with the 
severity of head injury [7]. It was observed that post-mortem 
serum S100B levels were also significantly elevated in fatali-
ties with non-TBI-related brain injuries such as strangulation 
or hanging [7]. Also, significantly higher S100B concentra-
tions were observed in serum of TBI fatalities compared to 
isolated torso traumas but not cerebrovascular injuries and 
sudden natural deaths [30].

Survival time estimation

CSF S100B levels were consistently increased compared 
to controls throughout survival times of up to 10 days [30, 
31]. CSF S100B levels > 10,000 ng/ml were observed only 
in TBI fatalities with survival times of at least 20 min and 
in every TBI fatality with survival times between 2 h and 
5 days [30]. Serum levels of subacute TBI fatalities (survival 
times between 3 and 48 h) were significantly higher com-
pared to acute (survival time of few seconds to 42 min) TBI 
fatalities [30]. Serum S100B levels decreased again 72 h 
after traumatic head impact [30].

Neuron‑specific enolase

Cause of death determination

CSF samples of NSE have been determined as reliable 
measurements of TBI fatalities as levels were significantly 

elevated in TBI cases when compared to controls that died 
from isolated torso traumas and sudden natural deaths but 
not from acute myocardial infarctions [31]. NSE values in 
CSF > 6000 ng/ml were only observed in TBI fatalities, but 
not in control fatalities (isolated torso trauma, cerebrovascu-
lar insufficiency, and sudden natural death) [30]. Both NSE 
CSF and serum levels were not statistically different in TBI 
fatalities that showed a macroscopically visible brain con-
tusion (and intracerebral bleeding) compared to cases that 
only revealed intracerebral bleeding [31]. Serum levels of 
TBI fatalities were statistically non-different from control 
cases (isolated torso trauma, cerebrovascular insufficiency, 
and sudden natural death) [30].

Survival time estimation

CSF NSE values > 6000 ng/ml were exclusively detected in 
TBI cases with a survival time between 15 min and 5 days 
[30]. Recently, it was stated that a lethal acute TBI (survival 
time less than 2 h) can be detected with an accuracy of 83% 
and a specificity of 97% in post-mortem CSF when the NSE 
concentration reaches a threshold value of 599 ng/ml [26]. 
Peak CSF concentrations of NSE were reached within sur-
vival times of 3 to 4 days [31]. No significantly different CSF 
NSE concentrations between TBI fatalities and controls that 
died from hypoxia, sudden cardiac events, or miscellaneous 
causes were observed within a mean TBI survival time of 
1 h [29]. For TBI fatalities with a maximum survival time 
of up to 2 h, CSF NSE levels were shown to be significantly 
higher compared to cases of diffuse cerebral hypoxia and 
isolated torso trauma, but not acute myocardial infarctions 
[31]. Serum levels of NSE did not correlate with the survival 
times of TBI fatalities on a statistically significant level [30].

Fig. 2  PRISMA flow chart for 
the methodology undertaken for 
the screening of relevant litera-
ture based on Moher et al. [20]
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Glial fibrillary acidic protein

Cause of death determination

CSF and serum GFAP levels have been shown to be signifi-
cantly increased in TBI fatalities compared to myocardial 
infarction and isolated torso trauma deaths, but not diffuse 
cerebral hypoxia [11, 13]. Post-mortem CSF GFAP levels 

Table 3  A summary of the selected forensically used traumatic brain injury (TBI) biomarker (MAPT) is given. R values are only provided if the 
p-value of that correlation was significant (≤ 0.05) and the values were stated in the related studies

* Value read from graph; a, pediatric study cohort (age range 2–17 years); b, plasma value; c, sampling time not specified; d, TBI survival time 
not stated; n/a, not available; r, correlation index

MAPT

Molecular weight [kDa] 48–68 [125]
Expression Associated with microtubules in neurons, astrocytes and oligodendrocytes [126, 127], peripheral nerves [128]
Functions Cell signaling, synaptic plasticity, regulation of genomic stability [127]
Reason for biomarker level change within compartment 

after traumatic head impact
Hypothesis for blood: Diffusion across disrupted BBB from CSF [129]

Age-dependency n/a
Sex-dependency
H-index-dependency
Intensive care procedure/rescue procedure-dependency
In-vitro freeze-thaw-cycle-dependency CSF: stable for at least 6 cycles at − 80 °C [130]
In vitro biomarker stability CSF: stable for at least 22 days when stored at − 80 °C, 4 °C, or 18 °C, level decrease after 12 days when stored 

at 37 °C [130]
Post-mortem interval correlation Not investigated before
TBI CSF ante-mortem TBI CSF post-

mortem
0.08–0.14 ng/ml [131] 48.43 ± 8.33 ng/mld [132]

Control CSF ante-mortem Control CSF post-
mortem

0.19 ± 0.06 ng/ml [133] 3.84 ± 0.31 ng/mld [132]

TBI serum ante-mortem TBI serum post-
mortem

0.24 ± 0.39 ng/mld [132] 22.42 ± 16.59 ng/mld [132]

Control serum ante-mortem Control serum post-
mortem

0.01 ± 0.02 ng/ml (undetectable in 9/10 cases) [132] 1.10 ± 0.31 ng/ml [132]

Fig. 3  The sampling fluids to 
measure TBI-related biomarker 
concentrations in forensic stud-
ies are depicted. Available fluids 
that can be sampled during 
autopsy but have not been used 
for TBI-related biomarker meas-
urements so far are depicted in 
red color
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are not specific for TBI fatalities, as they revealed a higher 
median for diffuse cerebral hypoxia compared to acute (sur-
vival times of less than 2 h) and delayed (survival times 
between 72 and 456 h) TBI fatalities [11]. When the GFAP 
CSF level exceeds 385.5 ng/ml, a fatal TBI can be diag-
nosed with a sensitivity of 71.1% and a specificity of 71.4% 
[11]. For fatal TBIs with a survival time of fewer than 2 h, a 
GFAP CSF concentration of 134 ng/ml discriminates a TBI 
fatality from control fatalities (acute myocardial infarction, 
diffuse cerebral hypoxia, and isolated torso trauma) with an 
accuracy of 78% and a specificity of 94% [26]. Contrary to 
the study of Ondruschka et al. [11], another post-mortem 
study revealed no differences in serum GFAP level between 
fatalities with macroscopically visible brain damage (includ-
ing TBI) compared to control fatalities (cardiac cause, res-
piratory cause, intoxications, exsanguinations, or multi-
organ failures) [27]. In serum, a fatal TBI can be diagnosed 
with a sensitivity of 76.2% and a specificity of 73.8% once 
the GFAP concentration surpasses 0.91 ng/ml [11]. Huge 
inter-individual variations were observed for both GFAP 
CSF and serum levels [11].

Survival time estimation

In CSF, the GFAP level peaks in the subacute group (sur-
vival time between 2 and 60 h). However, no significant 
difference was detected between the different TBI survival 
times neither in CSF nor in serum [11]. In serum, GFAP 
levels peak in acute TBI fatalities (survival times of less than 
2 h) and, with increasing TBI survival times up to 456 h, 
approximate the concentrations of the control group (acute 

myocardial infarction, diffuse cerebral hypoxia, and isolated 
torso trauma) [11].

Interleukin‑6

Cause of death determination

IL-6 levels in CSF and serum are significantly higher in TBI 
fatalities compared to non-infectious controls for which the 
survival time was assumed to be zero such as atraumatic 
hypoxic brain damage or acute myocardial infarction [11, 
21]. When IL-6 levels of TBI fatalities were compared to 
fatalities that died from isolated torso trauma, CSF but not 
serum levels were significantly higher [11]. Recently, it was 
shown that a lethal acute TBI (survival time less than 2 h) 
can be detected with an accuracy of 86% and a specificity 
of 96% in post-mortem CSF when the IL-6 concentration 
reaches a threshold value of 99.1 pg/ml [26]. Trauma fatali-
ties including TBI fatalities revealed significantly higher 
serum values compared to atraumatic deaths resulting from 
atraumatic causes of death as well as natural deaths [22].

Survival time estimation

With regards to the TBI survival time, no statistically signifi-
cant differences of IL-6 levels were detected in post-mortem 
CSF and serum samples within an investigated survival time 
span of at least 3 days [11]. However, CSF IL-6 levels of 
more than 100,000 pg/ml were only detected in TBI fatalities 
with a survival time of more than three days [23].

Fig. 4  Several methods for the 
change in biomarker concen-
trations following traumatic 
head impacts are depicted for 
CSF and blood (exemplified 
on astrocytes). In response to a 
traumatic head impact, biomark-
ers can be secreted from intact 
astrocytes (A) or released from 
damaged astrocytes (B). Blood–
brain barrier disruptions then 
cause an increase of biomarkers 
in the blood (C). Also, elevated 
biomarkers from the periphery 
could leak into the CSF via the 
disrupted blood–brain barrier 
(D)
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Lactate dehydrogenase

Cause of death determination

LDH CSF levels of TBI fatalities (all survival times pooled 
between a few seconds and 19 days) are significantly higher 
compared to controls that died from isolated torso trauma, 
diffuse cerebral hypoxia, or acute myocardial infarction [23]. 
Also, LDH CSF levels were higher in TBI fatalities compared 
to fatalities due to hypoxia, sudden cardiac death, or natural 
and non-natural deaths that could not be attributed to any of the 
former [28, 29]. Recently, it was stated that a lethal acute TBI 
(survival time less than 2 h) can be detected with an accuracy 
of 81% and a specificity of 97% in post-mortem CSF when the 
LDH concentration reaches a threshold value of 16.71 ukat/l 
[26]. Serum LDH levels of TBI fatalities (all survival times 
between a few seconds and 19 days pooled) were only higher 
compared to isolated torso traumas, but not for diffuse cer-
ebral hypoxia or acute myocardial infarctions [23]. In vitreous 
humor, LDH levels were higher in TBI fatalities compared to 
sudden cardiac deaths, but lower than hypoxia-related deaths 
or natural and non-natural deaths that could not be classified as 
TBI-related, hypoxia, or sudden cardiac deaths [28]. However, 
it was not mentioned whether the former results in vitreous 
humor were statistically significant [28].

Survival time estimation

For CSF, LDH levels were shown to be stable for survival 
times between a few seconds and 19 days in one study [23] 
but decreased in another study that investigated a TBI fatal-
ity group with a mean survival time of 1 h [29]. Serum LDH 
levels have not been stated to vary on a statistically significant 
level for TBI fatalities with survival times ranging from a few 
seconds to 19 days [23]. No statistically significant survival 
time dependence was stated for vitreous humor levels of LDH 
[29].

Ferritin

Cause of death determination

CSF ferritin levels of TBI fatalities were significantly higher 
compared to each of the following fatality groups: isolated 
torso trauma, diffuse cerebral hypoxia, and acute myocardial 
infarction [23]. CSF ferritin levels of > 8.0 mg/l were only 
reached by TBI fatalities but none of the aforementioned 
controls fatalities [23]. Recently, it was stated that a lethal 
acute TBI (survival time less than 2 h) can be detected with 
an accuracy of 87% and a specificity of 96% in post-mortem 
CSF when the ferritin concentration reaches a threshold value 
of 1.73 mg/l [26]. In serum, the pooled TBI fatalities were 
only significantly higher compared to diffuse cerebral hypoxia 

fatalities, but not for acute myocardial infarctions of isolated 
torso traumata [23].

Survival time estimation

Both CSF and serum levels of ferritin were significantly higher 
for TBI fatalities with a survival time of more than 72 h (maxi-
mum 19 days) compared to survival times between a few sec-
onds and 43 h [23]. A CSF ferritin level of > 30.0 mg/l was 
only reached after a minimum TBI survival time of 2 h [23].

Brain‑derived neurotrophic factor

Cause of death determination

CSF BDNF values are discriminative between TBI fatali-
ties and fatalities that died from diffuse cerebral hypoxia 
and acute myocardial infarction but not from isolated torso 
trauma [11]. A TBI fatality can be diagnosed post-mortem 
with a sensitivity of 71.0% and a specificity of 83.3% when 
a CSF BDNF level of 29.0 pg/ml is reached [11]. Recently, 
it was noted that a lethal acute TBI (survival time less than 
2 h) can be detected with an accuracy of 86% and a specific-
ity of 96% in post-mortem CSF when the BDNF concentra-
tion reaches a threshold value of 11.1 pg/ml [26]. Serum 
BDNF values of TBI fatalities were statistically non-dif-
ferent from the aforementioned control groups [11]. Huge 
inter-individual variations were observed for BDNF CSF 
and serum levels [11].

Survival time estimation

Both CSF and serum levels of TBI fatalities revealed the 
highest median levels in acute TBI fatalities with a survival 
time between a few seconds and 107 min [11]. The CSF and 
serum values of BDNF decreased with increasing survival 
times [11]. However, neither CSF nor serum levels revealed 
statistically significant BDNF level changes between the 
trauma survival time groups (survival times between a few 
seconds and 456 h), which renders the marker not useful for 
survival time estimations [11].

Neutrophil gelatinase‑associated 
lipocalin(lipocalin‑2)

Cause of death determination

NGAL CSF levels of TBI fatalities were significantly higher 
compared to each of the following control fatalities: isolated 
torso trauma, diffuse cerebral hypoxia, and acute myocardial 
infarction [11]. A CSF NGAL value of 1050.5 ng/ml detects 
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a lethal TBI with a sensitivity of 72.7% and a specificity of 
89.7% [11]. Huge inter-individual variations were observed 
for NGAL CSF levels [11]. A lethal acute TBI (survival time 
less than 2 h) can be detected with an accuracy of 84% and 
a specificity of 94% in post-mortem CSF when the NGAL 
concentration reaches a threshold value of 334.4 ng/ml [26]. 
Post-mortem NGAL serum measurements are not described 
yet.

Survival time estimation

CSF values of NGAL revealed the highest median values 
for survival times between 2 and 72 h; however, no statisti-
cally significant differences were observed regardless of the 
investigated survival times between a few seconds and 456 h 
of TBI fatalities [11].

Microtubule‑associated protein Tau

Cause of death determination

Post-mortem CSF, serum, urine, and saliva levels of MAPT 
were significantly higher in a group consisting of TBI fatali-
ties and fatalities with a suspected TBI as a co-morbidity 
based on macroscopic signs compared to a control group 
that consisted of deaths from sudden cardiopulmonary fail-
ures [33]. However, no statistically significant MAPT levels 
were found in vitreous humor between the aforementioned 
groups [33].

Discussion

Accurate and reliable evidence collection is an essen-
tial component of forensic medicine and thus makes an 
important contribution to the proper function of the legal 
system. Forensic biochemistry is an accepted part of par-
ticular forensic investigations [8] and research efforts have 
increased dramatically in the last decade [11–13, 23, 24, 26, 
30, 33]. This review paper summarized the current literature 
on post-mortem biomarkers in TBI-related forensic ques-
tions. A critical consideration of the summarized findings 
and an outlook on this forensic niche is provided below.

The value of forensic biomarkers to determine a TBI 
as the cause of death

The summary given here revealed that several biomarkers 
discriminate between TBI fatalities and several different 
control fatalities at a statistically significant level. This indi-
cates that forensic biochemistry is a promising field to pro-
vide additional objective data to determine TBI as the cause 

of death. Regarding this, several points have to be critically 
discussed based on this given review. Ideally, if a biomarker 
reaches a particular threshold value in a certain compart-
ment, a lethal TBI can be diagnosed with 100% sensitiv-
ity and specificity, respectively. However, none of the bio-
markers used in forensic science is specific for fatal TBI but 
shows significant changes in marker values in other fatalities 
as well, which is commonly much higher when compared to 
living subjects. Moreover, this summary highlights that each 
individual biomarker was statistically dependent on at least 
one co-factor such as PMI, hemolysis, or whether neurosur-
gery was performed. Together with unpredictable peri- and 
post-mortem changes including untraceable biomarker con-
centration changes in the respective compartments [134], the 
TBI-related biomarkers show enormous standard variations 
in both TBI fatalities and controls, which usually overlap. 
Therefore, none of the biomarkers used forensically to date 
is able to distinguish between TBI and non-TBI fatalities 
based on the concentration of a particular biomarker in 100% 
of cases. However, several cut-off values, mainly in CSF, 
have already been reported to corroborate the suspicion of 
a lethal TBI together with other post-mortem investigation 
results rather than to prove it independently [11, 23, 26, 30]. 
Indeed, the selection and careful categorization of control 
fatalities within the studies on post-mortem TBI-biomarkers 
are of special interest. For example, serum IL-6 can dis-
criminate TBI fatalities from fatalities due to acute myocar-
dial infarctions and diffuse cerebral hypoxias, but not from 
isolated torso traumas [23]. This information can provide 
valuable objective evidence when serum IL-6 concentra-
tion is considered together with other autopsy findings, e.g., 
when an isolated torso trauma can be excluded. Therefore, 
it is of higher importance to compare TBI fatalities with 
homogenous individual control groups rather than with a 
pooled control group of all non-TBI cases. When thresholds 
are set by individual studies, this is essentially against the 
selected (or available) control deaths. However, this litera-
ture review revealed that there is considerable variation in 
the definition of control deaths between studies, potentially 
affecting the respective results and conclusions. Apart from 
the voluntary allocation of fatalities to the TBI and control 
groups, a TBI fatality, or at least a fatality with a TBI as a 
confounding cause, could easily end up in the control group 
in some studies, affecting the results, which is more likely in 
cases without macroscopic correlates of the traumatic event 
against the head. Lastly, using forensic biochemistry might 
be challenging to reliably discriminate between TBI fatali-
ties and control cases whenever the entire cohort is consid-
ered. However, it seems to be realistic to define “extreme” 
biomarker levels that are just achieved by TBI fatalities, 
which essentially means defining upper cut-off values that 
reflect 100% specificity with poor sensitivity. The CSF NSE 
values > 6000 ng/ml, which have just been reached in TBI 
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fatalities [30], are an example of such an “extreme” cut-off 
value. It has to be mentioned that threshold values apply 
only when the same laboratory testing setup, and a measure-
ment kit is used as in the respective study. However, this has 
to be validated against a broad variety of control fatalities to 
be valid with reasonable certainty. Some of the aforemen-
tioned studies revealed difficulties in defining cut-off values 
due to different measurement methods and inter-individual 
differences.

Post‑mortem biomarkers for TBI survival time 
estimations ‑ are they useful?

The previous research on TBI-related post-mortem biomark-
ers uncovered the potential of several biomarkers in various 
compartments to discriminate between different survival 
times of TBI fatalities. The factors that influence the cause 
of death determination can equally be listed for survival time 
estimations, explaining why particular biomarker levels that 
pinpoint certain survival times are lacking to date or, in fact, 
most likely impossible to achieve. However, the here given 
literature summary observed a trend that certain post-mor-
tem TBI biomarkers can indicate minimum survival times 
if high biomarker values are reached [23, 30]. CSF levels 
of > 10,000 ng/ml for S100B [30], > 6000 ng/ml for NSE 
[30], > 30 mg/l for ferritin [23], and > 100,000 pg/ml for IL-6 
[23] were only observed for minimum survival times of 20, 
15, 120 min, and 3 days, respectively. Since a tendency for 
low biomarker concentrations can be suspected for short sur-
vival times [23], more such cut-off values for determining 
a minimum survival time probably exist for other compart-
ments besides CSF but have not received sufficient atten-
tion so far. Future research on TBI survival time estimations 
using post-mortem biomarkers should report cut-off values 
for minimum survival times to further explore the potential 
of whether post-mortem biochemistry can provide reliable 
cut-off values for minimum survival times in TBI fatalities.

The role of post‑mortem biomarkers in time 
since death estimations of TBI fatalities

Several biomarkers of various compartments correlated with 
the PMI [23, 28, 30, 31], being the fundamental requirement 
to be used for time since death estimations. However, this 
correlation was largely attributed to the increasing hemoly-
sis occurring with increasing PMI. Future studies on fluid 
TBI-related biomarkers should provide additional quantita-
tive information on the correlation between the biomarker 
concentrations and the PMI. Moreover, the use of cut-off 
values should be explored for PMI correlations as well. In 
light of the potentially inevitable influence of the progressive 
hemolysis in post-mortem samples, cut-off values for par-
ticularly short PMIs yielding low biomarker concentrations 

seem most promising in this regard. However, given the cur-
rently available information, post-mortem biomarkers seem 
to be of no merit for time since death estimations of TBI 
fatalities.

The present and future of post‑mortem TBI‑related 
biomarkers

This literature review demonstrated the potential of post-
mortem biomarkers to provide objective evidence for 
cause of death determinations and survival time estima-
tions of TBI fatalities. However, forensic biochemistry, as 
a promising investigative branch of forensic medicine, is 
still at the very beginning and data on particular causes 
of death such as TBI fatalities are scarce. Therefore, it is 
yet too early to include current observations into the daily 
routine without further verifications that respect detected 
pitfalls such as the influence of perimortem procedures or 
hemolysis on the biomarker levels. Equally, TBI-related 
biomarkers that did not reveal sufficient potential to pro-
vide additional information for forensically relevant inves-
tigations should not be neglected too soon as these results 
could have been biased by limited sample sizes or the inac-
curate allocation of TBI fatalities to the control group and 
vice versa. LDH and MPAT were the only two biomark-
ers that were investigated in post-mortem samples other 
than CSF, serum, or the brain so far [28, 33]. Especially, 
MPAT demonstrated the potential of discriminating TBI 
fatalities from controls in urine and saliva and these two 
compartments should be further investigated using other 
biomarkers. Moreover, other promising clinically relevant 
TBI biomarkers should be investigated in post-mortem 
body fluids in the future. These include for example αII-
spectrin breakdown products, myelin basic protein, neu-
rofilament proteins, ubiquitin C-terminal hydrolase-L1, 
tumor necrosis factor alpha, or interleukin-1B [19]. Ide-
ally, all observations on post-mortem biomarkers includ-
ing but not limited to the ones of TBI fatalities should 
be collected in forensic biochemical databases to further 
explore the opportunities and challenges of this emerging 
post-mortem field allowing for collective sample sizes that 
surpass the ones of individual departments by far.

Recent pioneering works regarding the consideration of 
mi-RNAs [135] or the entity of metabolites (metabolome) 
[136, 137] to prove lethal TBIs in a forensic setting should 
be further explored. Using a combination of six different 
mi-RNAs, it was possible to discriminate TBI cases from 
controls that were free of neurological symptoms [135]. 
Even though the former study was based on ante-mortem 
blood samples, the six candidate mi-RNAs were identi-
fied and validated on 38 post-mortem brain tissues before 
[135, 138]. Groups of metabolites were shown to be rel-
evantly elevated in TBI fatalities compared to controls in 
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post-mortem CSF [136]. Future studies will tell whether 
mi-RNAs and metabolites are superior to the forensically 
used TBI biomarkers that were discussed in this review 
and if/how much a combination of all these fluid bio-
marker groups can benefit forensic practice.

Limitations

Based on the selected search criteria, especially the 
selected search terms, some relevant articles might have 
been missed. Initially, the articles were retrieved through 
title screening, which might have led to an exclusion of 
relevant articles based on inappropriate title selection by 
the respective authors or misinterpretation by the authors 
of this given literature review. Location bias might have 
led to an oversight of articles in less accessible journals.

Conclusions

Forensic TBI-biomarkers are an emerging and promising 
resource to provide objective evidence for cause of death 
determinations and survival time estimations. However, 
all TBI-biomarkers that were forensically investigated to 
date are unspecific for TBIs and only allow for particular 
information such as detections of TBI fatalities with poor 
sensitivity or minimum survival time estimations. Future 
research on forensic biomarkers requires a strict separa-
tions of TBI fatalities and control groups with sufficient 
sample sizes, the exploration of the current biomarkers in 
additional compartments such as urine, saliva, and vitre-
ous humor, the addition of further clinically promising 
biomarkers to the forensic field, and the in-depth forensic 
exploration of promising biomarker categories such as 
metabolites or mi-RNAs.
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