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Abstract

Traumatic brain injury (TBI) is a major cause of death and its accurate diagnosis is an important concern of daily forensic
practice. However, it can be challenging to diagnose TBI in cases where macroscopic signs of the traumatic head impact are
lacking and little is known about the circumstances of death. In recent years, several post-mortem studies investigated the
possible use of biomarkers for providing objective evidence for TBIs as the cause of death or to estimate the survival time
and time since death of the deceased. This work systematically reviewed the available scientific literature on TBI-related
biomarkers to be used for forensic purposes. Post-mortem TBI-related biomarkers are an emerging and promising resource
to provide objective evidence for cause of death determinations as well as survival time and potentially even time since death
estimations. This literature review of forensically used TBI-biomarkers revealed that current markers have low specificity
for TBIs and only provide limited information with regards to survival time estimations and time since death estimations.
Overall, TBI fatality-related biomarkers are largely unexplored in compartments that are easily accessible during autopsies
such as urine and vitreous humor. Future research on forensic biomarkers requires a strict distinction of TBI fatalities from
control groups, sufficient sample sizes, combinations of currently established biomarkers, and novel approaches such as
metabolomics and mi-RNAs.
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Introduction of a growing population, the absolute number of TBIs is

expected to grow further [2]. A lethal outcome occurs in

As defined by the US Centers for Disease Control and
Prevention, a traumatic brain injury (TBI) describes a dis-
ruption of the brain’s normal function caused by bumps,
blows, jolts, or penetrating head injuries [1]. TBI consid-
erably contributes to the global injury burden and in light
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approximately a quarter to a third of patients who suffer a
severe TBI, which is about the same percentage compared
to the ones that fully recover from a severe traumatic head
impact [3]. A TBI-related death most often results from
intentional self-harm (33%), followed by unintentional falls

Rudolf Boehm Institute of Pharmacology and Toxicology,
University of Leipzig, Leipzig, Germany

Institute of Clinical Chemistry and Laboratory Medicine,
University Medical Center Hamburg-Eppendorf (UKE),
Hamburg, Germany

Irish Centre for Vascular Biology, School of Pharmacy
and Biomolecular Sciences, Royal College of Surgeons
in Ireland, Dublin, Ireland

Center for Thrombosis and Hemostasis (CTH), Johannes
Gutenberg University Medical Center, Mainz, Germany

Department of Forensic Pathology, LabPLUS, Auckland City
Hospital, Auckland, New Zealand

@ Springer


http://orcid.org/0000-0002-3560-3915
http://crossmark.crossref.org/dialog/?doi=10.1007/s00414-022-02785-2&domain=pdf

872

International Journal of Legal Medicine (2022) 136:871-886

(28%) and motor vehicle accidents (19%) [4]. Hence, it is
not surprising that TBI is an important topic for forensic
pathologists with cases ranging from suicidal head banging
[5] to homicidal head blows [6]. Especially, when macro-
scopic signs of head impacts such as contusions, bleedings,
or lacerations are lacking, it can be challenging to determine
a TBI as the sole or contributing cause of death [7]. Post-
mortem biochemical analyses could be a promising objective
resource for forensic pathologists to diagnose lethal TBIs as
the cause of death. Forensic biochemical investigations are
already described and widely used for the cause of death
determination of hypothermia, ketoacidosis, myocardial
infarction, drowning, or anaphylaxis [8]. From ante-mortem
studies, it is known that several biomarkers show significant
differences following traumatic head impacts compared to
atraumatic controls [9, 10]. On that basis, several forensic
groups have explored the potential to use those TBI bio-
markers for forensic purposes in a post-mortem setting [7,
11-13]. However, forensic expectations on TBI biomark-
ers as well as the conditions under which the samples are
obtained considerably differ from ante-mortem clinical prac-
tice. Clinically used TBI biomarkers provide information on
the diagnosis, prognosis, and treatment efficiency of TBIs
[14]. In contrast, forensic pathologists expect additional
objective data on TBI survival time estimations or time since
death estimations [15, 16]. Ante-mortem, TBI biomarkers
are determined in blood or cerebrospinal fluid (CSF), which
are sampled from living individuals under aseptic conditions
[17]. Contrary to that, the body fluids for the determination
of TBI biomarkers in forensic cases are sampled from dead
and often at least partly putrefied individuals during forensic
autopsies. Post-mortem changes and sampling conditions
raise the question of whether forensic biochemical investi-
gations can provide any valuable information at all [7, 18].
Contrary to the clinical setting, practically all tissues of the
human body can be used to determine TBI biomarkers in
forensic investigations. However, as post-mortem reference
values for different causes of death are lacking, their poten-
tial value for forensic investigations related to TBI fatalities
has to be explored from scratch. This given work provides
an up-to-date review of the post-mortem biochemistry of
lethal TBIs including information on their value for forensi-
cally relevant topics such as cause of death determinations,
survival time estimations, and time since death estimations.
Also, it will be compiled whether these TBI biomarkers are
relevantly influenced by factors such as age, sex, hemoly-
sis, perimortem rescue procedures, or storage conditions.
Thus far, a forensically focused TBI biomarker review is
not available. The following eight biomarkers were chosen
to be presented in this review: S100 calcium-binding protein
B (S100B), neuron-specific enolase (NSE), glial fibrillary
acidic protein (GFAP), interleukin-6 (IL-6), brain-derived
neurotrophic factor (BDNF), and microtubule-associated
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protein tau (MAPT), which were selected as these are well-
known candidate fluid biomarkers related to TBI pathophysi-
ology [19]. Furthermore, lactate dehydrogenase (LDH), fer-
ritin, and neutrophil gelatinase-associated lipocalin (NGAL)
were chosen to be presented here based on previous own
post-mortem studies of the authors. However, the search
strategy was not limited to the selected biomarkers to avoid
the risk of missing important others.

Materials/Methods

The here performed review of post-mortem TBI biomark-
ers contains the following two components: (i) a system-
atic component of previous post-mortem studies to detect a
fatal TBI including the following biomarkers: S100B, NSE,
GFAP, IL-6, LDH, Ferritin, BDNF, NGAL, and MPAT; (ii)
data from peer-reviewed studies that summarize information
from clinical studies on the respective biomarker or labora-
tory analyses, which were not part of the strategic search
but provide important context for the forensic investigations.
This literature review compiles the following information for
each of the abovementioned biomarkers:

e Molecular weight - what is the molecular weight of the
respective marker?

e Expression - where is the biomarker expressed within the
human body?

¢ Function - which function does the marker serve within
the human body (as far as this has been answered to
date)?

e Cause of death determination - does the biomarker allow
to significantly differentiate lethal TBIs and non-TBI
control cases?

e Survival time estimation - does the biomarker discrimi-
nate different survival times between the traumatic head
impact and the death on a statistically significant level?

e Post-mortem interval correlation - was the marker dis-
criminative with regards to the post-mortem interval
(PMI) on a statistically significant level? The PMI refers
to the time between the death of the cadaver and the
autopsy, in which the tissues undergo alterations such as
degradation or putrefaction.

e Reason for biomarker level change within compartment
- which mechanism underlies the significantly different
biomarker concentration between TBI fatalities and con-
trols in the respective compartment?

e Age- or sex-dependence - did the biomarker correlate
with the age at death or the sex of the deceased in the
respective compartment on a statistically significant
level?
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e Hemolysis index (H-index) dependence - did the bio-
marker level correlate with the hemolysis index of the
fluid sample on a statistically significant level?

¢ Influence of rescue procedures or intensive care proce-
dures - was the biomarker level in the respective com-
partment significantly different, if the deceased was
subjected to rescue (e.g., cardiopulmonary resuscitation
attempt) or intensive care unit procedures (e.g., neuro-
surgical intervention)?

e Comparison to clinical biomarker levels - how were the
TBI-related biomarker levels measured in a forensic set-
ting compared to known clinical values of the identical
compartment?

e In vitro freeze—thaw-cycle influence - did the in vitro bio-
marker concentration within a forensically relevant com-
partment correlate with the number of applied freeze—
thaw cycles on a statistically significant level?

e In vitro biomarker stability - does the in vitro measured
biomarker concentration within a forensically relevant
compartment change over time on a statistically signifi-
cant level? P-values of 0.05 or less were considered to
be statistically significant.

The information for the points cause of death determi-
nation, survival time estimation, age- or sex-dependence,
H-index, and the post-mortem biomarker levels for the
comparison to the clinical values were extracted from Pub-
Med-listed forensic studies. These were searched up until
August 2021 according to the Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) guide-
lines [20] (Fig. 1). Initially, the articles were screened by
their title and abstract. If the title and/or abstract revealed
that the selected TBI-related biomarkers were measured in
post-mortem tissues, the full text was sought for retrieval
and assessed for eligibility. Then, the reference lists of the
respective papers were screened. The following inclusion
criteria were defined: (i) TBI as the cause of death, (ii) study
must contain a control group, (iii) only studies on humans,

Fig. 1 The search strategy for
the systematic part of this litera-

and (iv) only peer-reviewed original works. The systematic
part of the literature review was independently performed by
two authors (JZ and RK) according to the inclusion criteria
that are listed in Fig. 1. A third author (BO) checked the
results for accuracy and decided, whether information that
the two authors (JZ and RK) could not agree on should be
included.

Results

A total of 17 studies were identified from the literature
search (Fig. 2). Of these, six studies reported results deal-
ing with IL-6 [21-26]; five with GFAP [11, 13, 24, 26, 27],
LDH [23, 24, 26, 28, 29], and S100B [7, 26, 30-32]; four
with NSE [24, 26, 30, 31]; three with BDNF [11, 24, 26],
MAPT [13, 33, 34], and ferritin [23, 24, 26]; and two with
NGAL [11, 26]. Information regarding cause of death deter-
mination and survival time estimation are presented below.
The rest of the extracted data is compiled in Tables 1, 2,
and 3. The used body fluids for the measurement of TBI-
related biomarkers in previous studies and the hypotheses
that explain the biomarker alterations after the traumatic
head impact are depicted in Figs. 3 and 4.

$100 calcium-binding protein B
Cause of death determination

CSF concentrations of S100B were significantly higher in
TBI fatalities compared to controls (isolated torso trauma,
cerebrovascular injury, and sudden natural deaths) [30, 31].
Recently, it was stated that a fatal acute TBI (survival time
less than 2 h) can be detected with 79% accuracy and 97%
specificity in post-mortem CSF when the S100B concen-
tration reaches a threshold of 2267 ng/ml [26]. In serum,
S100B was significantly higher in TBI cases compared with

Literature search strategy

ture review is depicted

(forensic* OR postmort* OR post-mort*)

(biochemi* OR biomarker* OR S100B OR GFAP OR glial fibrillary acidic protein
OR NSE OR neuron specific enolase OR enolase 2 OR IL-6 OR interleukin-6 OR
LDH OR lactate dehydrogenase OR LD OR ferritin OR BDNF OR brain-derived
neurotrophic factor OR abrineurin OR NGAL OR neutrophil gelatinase-associated
lipocalin OR lipocalin-2 OR oncogene 24p3 OR MAPT OR microtubule-associated

(traumatic brain injur* OR TBI)

AND

protein tau OR tau protein)
AND

@ Springer
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Fig.2 PRISMA flow chart for
the methodology undertaken for
the screening of relevant litera-
ture based on Moher et al. [20]

Study identification via database search

isolated torso traumas but was not statistically different from
cases with cerebrovascular insufficiency and sudden natural
deaths in a small sample size investigating 17 TBI fatalities
and 23 controls [30]. However, all aforementioned controls
were not statistically different from TBI fatalities in serum in
a larger sample size of 45 TBI fatalities and 47 controls [31].
Serum S100B levels were significantly correlated with the
severity of head injury [7]. It was observed that post-mortem
serum S100B levels were also significantly elevated in fatali-
ties with non-TBI-related brain injuries such as strangulation
or hanging [7]. Also, significantly higher S100B concentra-
tions were observed in serum of TBI fatalities compared to
isolated torso traumas but not cerebrovascular injuries and
sudden natural deaths [30].

Survival time estimation

CSF S100B levels were consistently increased compared
to controls throughout survival times of up to 10 days [30,
31]. CSF S100B levels > 10,000 ng/ml were observed only
in TBI fatalities with survival times of at least 20 min and
in every TBI fatality with survival times between 2 h and
5 days [30]. Serum levels of subacute TBI fatalities (survival
times between 3 and 48 h) were significantly higher com-
pared to acute (survival time of few seconds to 42 min) TBI
fatalities [30]. Serum S100B levels decreased again 72 h
after traumatic head impact [30].

Neuron-specific enolase
Cause of death determination

CSF samples of NSE have been determined as reliable
measurements of TBI fatalities as levels were significantly

@ Springer
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Records Records Reports Studies included
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citation searching
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elevated in TBI cases when compared to controls that died
from isolated torso traumas and sudden natural deaths but
not from acute myocardial infarctions [31]. NSE values in
CSF > 6000 ng/ml were only observed in TBI fatalities, but
not in control fatalities (isolated torso trauma, cerebrovascu-
lar insufficiency, and sudden natural death) [30]. Both NSE
CSF and serum levels were not statistically different in TBI
fatalities that showed a macroscopically visible brain con-
tusion (and intracerebral bleeding) compared to cases that
only revealed intracerebral bleeding [31]. Serum levels of
TBI fatalities were statistically non-different from control
cases (isolated torso trauma, cerebrovascular insufficiency,
and sudden natural death) [30].

Survival time estimation

CSF NSE values > 6000 ng/ml were exclusively detected in
TBI cases with a survival time between 15 min and 5 days
[30]. Recently, it was stated that a lethal acute TBI (survival
time less than 2 h) can be detected with an accuracy of 83%
and a specificity of 97% in post-mortem CSF when the NSE
concentration reaches a threshold value of 599 ng/ml [26].
Peak CSF concentrations of NSE were reached within sur-
vival times of 3 to 4 days [31]. No significantly different CSF
NSE concentrations between TBI fatalities and controls that
died from hypoxia, sudden cardiac events, or miscellaneous
causes were observed within a mean TBI survival time of
1 h [29]. For TBI fatalities with a maximum survival time
of up to 2 h, CSF NSE levels were shown to be significantly
higher compared to cases of diffuse cerebral hypoxia and
isolated torso trauma, but not acute myocardial infarctions
[31]. Serum levels of NSE did not correlate with the survival
times of TBI fatalities on a statistically significant level [30].
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Table 3 A summary of the selected forensically used traumatic brain injury (TBI) biomarker (MAPT) is given. R values are only provided if the
p-value of that correlation was significant (<0.05) and the values were stated in the related studies

MAPT

Molecular weight [kDa]
Expression
Functions

Reason for biomarker level change within compartment
after traumatic head impact

Age-dependency

Sex-dependency

H-index-dependency

Intensive care procedure/rescue procedure-dependency
In-vitro freeze-thaw-cycle-dependency

In vitro biomarker stability

Post-mortem interval correlation

TBI CSF ante-mortem TBI CSF post-
mortem

Control CSF ante-mortem Control CSF post-
mortem

TBI serum ante-mortem TBI serum post-

mortem
Control serum ante-mortem Control serum post-

mortem

48-68 [125]

Associated with microtubules in neurons, astrocytes and oligodendrocytes [126, 127], peripheral nerves [128]
Cell signaling, synaptic plasticity, regulation of genomic stability [127]

Hypothesis for blood: Diffusion across disrupted BBB from CSF [129]

n/a

CSF: stable for at least 6 cycles at—80 °C [130]

CSF: stable for at least 22 days when stored at —80 °C, 4 °C, or 18 °C, level decrease after 12 days when stored
at 37 °C [130]

Not investigated before

0.08-0.14 ng/ml [131] 48.43 £8.33 ng/ml® [132]

0.19+0.06 ng/ml [133] 3.84+0.31 ng/ml® [132]
0.24+0.39 ng/ml¢ [132] 22.42 +16.59 ng/ml¢ [132]

0.01+0.02 ng/ml (undetectable in 9/10 cases) [132] 1.10+0.31 ng/ml [132]

“Value read from graph; a, pediatric study cohort (age range 2—17 years); b, plasma value; ¢, sampling time not specified; d, TBI survival time

not stated; n/a, not available; r, correlation index

Glial fibrillary acidic protein

Cause of death determination

Fig.3 The sampling fluids to
measure TBI-related biomarker
concentrations in forensic stud-
ies are depicted. Available fluids
that can be sampled during
autopsy but have not been used
for TBI-related biomarker meas-
urements so far are depicted in
red color

MPAT

S100B, NSE, GFAP,
IL-6, LDH, Ferritin,
BDNF, MPAT

S100B, NSE, GFAP,
LDH, Ferritin, BDNF, NGAL,

CSF and serum GFAP levels have been shown to be signifi-
cantly increased in TBI fatalities compared to myocardial
infarction and isolated torso trauma deaths, but not diffuse
cerebral hypoxia [11, 13]. Post-mortem CSF GFAP levels

Vitreous humour | LDH, MPAT
Tear fluid

. |CSF

Pericardial fluid

MPAT | Saliva

Urine | MPAT

| Serum Synovial fluid
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Fig.4 Several methods for the
change in biomarker concen-
trations following traumatic
head impacts are depicted for
CSF and blood (exemplified

on astrocytes). In response to a
traumatic head impact, biomark-
ers can be secreted from intact
astrocytes (A) or released from
damaged astrocytes (B). Blood—
brain barrier disruptions then
cause an increase of biomarkers
in the blood (C). Also, elevated
biomarkers from the periphery
could leak into the CSF via the
disrupted blood-brain barrier
D)

Intact
astrocyte

Intact blood-brain barrier

are not specific for TBI fatalities, as they revealed a higher
median for diffuse cerebral hypoxia compared to acute (sur-
vival times of less than 2 h) and delayed (survival times
between 72 and 456 h) TBI fatalities [11]. When the GFAP
CSF level exceeds 385.5 ng/ml, a fatal TBI can be diag-
nosed with a sensitivity of 71.1% and a specificity of 71.4%
[11]. For fatal TBIs with a survival time of fewer than 2 h, a
GFAP CSF concentration of 134 ng/ml discriminates a TBI
fatality from control fatalities (acute myocardial infarction,
diffuse cerebral hypoxia, and isolated torso trauma) with an
accuracy of 78% and a specificity of 94% [26]. Contrary to
the study of Ondruschka et al. [11], another post-mortem
study revealed no differences in serum GFAP level between
fatalities with macroscopically visible brain damage (includ-
ing TBI) compared to control fatalities (cardiac cause, res-
piratory cause, intoxications, exsanguinations, or multi-
organ failures) [27]. In serum, a fatal TBI can be diagnosed
with a sensitivity of 76.2% and a specificity of 73.8% once
the GFAP concentration surpasses 0.91 ng/ml [11]. Huge
inter-individual variations were observed for both GFAP
CSF and serum levels [11].

Survival time estimation

In CSF, the GFAP level peaks in the subacute group (sur-
vival time between 2 and 60 h). However, no significant
difference was detected between the different TBI survival
times neither in CSF nor in serum [11]. In serum, GFAP
levels peak in acute TBI fatalities (survival times of less than
2 h) and, with increasing TBI survival times up to 456 h,
approximate the concentrations of the control group (acute

@ Springer

Damaged
astrocyte

Damaged blood-brain barrier

myocardial infarction, diffuse cerebral hypoxia, and isolated
torso trauma) [11].

Interleukin-6
Cause of death determination

IL-6 levels in CSF and serum are significantly higher in TBI
fatalities compared to non-infectious controls for which the
survival time was assumed to be zero such as atraumatic
hypoxic brain damage or acute myocardial infarction [11,
21]. When IL-6 levels of TBI fatalities were compared to
fatalities that died from isolated torso trauma, CSF but not
serum levels were significantly higher [11]. Recently, it was
shown that a lethal acute TBI (survival time less than 2 h)
can be detected with an accuracy of 86% and a specificity
of 96% in post-mortem CSF when the IL-6 concentration
reaches a threshold value of 99.1 pg/ml [26]. Trauma fatali-
ties including TBI fatalities revealed significantly higher
serum values compared to atraumatic deaths resulting from
atraumatic causes of death as well as natural deaths [22].

Survival time estimation

With regards to the TBI survival time, no statistically signifi-
cant differences of IL-6 levels were detected in post-mortem
CSF and serum samples within an investigated survival time
span of at least 3 days [11]. However, CSF IL-6 levels of
more than 100,000 pg/ml were only detected in TBI fatalities
with a survival time of more than three days [23].
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Lactate dehydrogenase
Cause of death determination

LDH CSF levels of TBI fatalities (all survival times pooled
between a few seconds and 19 days) are significantly higher
compared to controls that died from isolated torso trauma,
diffuse cerebral hypoxia, or acute myocardial infarction [23].
Also, LDH CSF levels were higher in TBI fatalities compared
to fatalities due to hypoxia, sudden cardiac death, or natural
and non-natural deaths that could not be attributed to any of the
former [28, 29]. Recently, it was stated that a lethal acute TBI
(survival time less than 2 h) can be detected with an accuracy
of 81% and a specificity of 97% in post-mortem CSF when the
LDH concentration reaches a threshold value of 16.71 ukat/l
[26]. Serum LDH levels of TBI fatalities (all survival times
between a few seconds and 19 days pooled) were only higher
compared to isolated torso traumas, but not for diffuse cer-
ebral hypoxia or acute myocardial infarctions [23]. In vitreous
humor, LDH levels were higher in TBI fatalities compared to
sudden cardiac deaths, but lower than hypoxia-related deaths
or natural and non-natural deaths that could not be classified as
TBI-related, hypoxia, or sudden cardiac deaths [28]. However,
it was not mentioned whether the former results in vitreous
humor were statistically significant [28].

Survival time estimation

For CSF, LDH levels were shown to be stable for survival
times between a few seconds and 19 days in one study [23]
but decreased in another study that investigated a TBI fatal-
ity group with a mean survival time of 1 h [29]. Serum LDH
levels have not been stated to vary on a statistically significant
level for TBI fatalities with survival times ranging from a few
seconds to 19 days [23]. No statistically significant survival
time dependence was stated for vitreous humor levels of LDH
[29].

Ferritin
Cause of death determination

CSF ferritin levels of TBI fatalities were significantly higher
compared to each of the following fatality groups: isolated
torso trauma, diffuse cerebral hypoxia, and acute myocardial
infarction [23]. CSF ferritin levels of > 8.0 mg/l were only
reached by TBI fatalities but none of the aforementioned
controls fatalities [23]. Recently, it was stated that a lethal
acute TBI (survival time less than 2 h) can be detected with
an accuracy of 87% and a specificity of 96% in post-mortem
CSF when the ferritin concentration reaches a threshold value
of 1.73 mg/1 [26]. In serum, the pooled TBI fatalities were
only significantly higher compared to diffuse cerebral hypoxia

fatalities, but not for acute myocardial infarctions of isolated
torso traumata [23].

Survival time estimation

Both CSF and serum levels of ferritin were significantly higher
for TBI fatalities with a survival time of more than 72 h (maxi-
mum 19 days) compared to survival times between a few sec-
onds and 43 h [23]. A CSF ferritin level of >30.0 mg/l was
only reached after a minimum TBI survival time of 2 h [23].

Brain-derived neurotrophic factor
Cause of death determination

CSF BDNF values are discriminative between TBI fatali-
ties and fatalities that died from diffuse cerebral hypoxia
and acute myocardial infarction but not from isolated torso
trauma [11]. A TBI fatality can be diagnosed post-mortem
with a sensitivity of 71.0% and a specificity of 83.3% when
a CSF BDNF level of 29.0 pg/ml is reached [11]. Recently,
it was noted that a lethal acute TBI (survival time less than
2 h) can be detected with an accuracy of 86% and a specific-
ity of 96% in post-mortem CSF when the BDNF concentra-
tion reaches a threshold value of 11.1 pg/ml [26]. Serum
BDNF values of TBI fatalities were statistically non-dif-
ferent from the aforementioned control groups [11]. Huge
inter-individual variations were observed for BDNF CSF
and serum levels [11].

Survival time estimation

Both CSF and serum levels of TBI fatalities revealed the
highest median levels in acute TBI fatalities with a survival
time between a few seconds and 107 min [11]. The CSF and
serum values of BDNF decreased with increasing survival
times [11]. However, neither CSF nor serum levels revealed
statistically significant BDNF level changes between the
trauma survival time groups (survival times between a few
seconds and 456 h), which renders the marker not useful for
survival time estimations [11].

Neutrophil gelatinase-associated
lipocalin(lipocalin-2)

Cause of death determination

NGAL CSF levels of TBI fatalities were significantly higher
compared to each of the following control fatalities: isolated

torso trauma, diffuse cerebral hypoxia, and acute myocardial
infarction [11]. A CSF NGAL value of 1050.5 ng/ml detects
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a lethal TBI with a sensitivity of 72.7% and a specificity of
89.7% [11]. Huge inter-individual variations were observed
for NGAL CSF levels [11]. A lethal acute TBI (survival time
less than 2 h) can be detected with an accuracy of 84% and
a specificity of 94% in post-mortem CSF when the NGAL
concentration reaches a threshold value of 334.4 ng/ml [26].
Post-mortem NGAL serum measurements are not described
yet.

Survival time estimation

CSF values of NGAL revealed the highest median values
for survival times between 2 and 72 h; however, no statisti-
cally significant differences were observed regardless of the
investigated survival times between a few seconds and 456 h
of TBI fatalities [11].

Microtubule-associated protein Tau
Cause of death determination

Post-mortem CSF, serum, urine, and saliva levels of MAPT
were significantly higher in a group consisting of TBI fatali-
ties and fatalities with a suspected TBI as a co-morbidity
based on macroscopic signs compared to a control group
that consisted of deaths from sudden cardiopulmonary fail-
ures [33]. However, no statistically significant MAPT levels
were found in vitreous humor between the aforementioned
groups [33].

Discussion

Accurate and reliable evidence collection is an essen-
tial component of forensic medicine and thus makes an
important contribution to the proper function of the legal
system. Forensic biochemistry is an accepted part of par-
ticular forensic investigations [8] and research efforts have
increased dramatically in the last decade [11-13, 23, 24, 26,
30, 33]. This review paper summarized the current literature
on post-mortem biomarkers in TBI-related forensic ques-
tions. A critical consideration of the summarized findings
and an outlook on this forensic niche is provided below.

The value of forensic biomarkers to determine a TBI
as the cause of death

The summary given here revealed that several biomarkers
discriminate between TBI fatalities and several different
control fatalities at a statistically significant level. This indi-
cates that forensic biochemistry is a promising field to pro-
vide additional objective data to determine TBI as the cause

@ Springer

of death. Regarding this, several points have to be critically
discussed based on this given review. Ideally, if a biomarker
reaches a particular threshold value in a certain compart-
ment, a lethal TBI can be diagnosed with 100% sensitiv-
ity and specificity, respectively. However, none of the bio-
markers used in forensic science is specific for fatal TBI but
shows significant changes in marker values in other fatalities
as well, which is commonly much higher when compared to
living subjects. Moreover, this summary highlights that each
individual biomarker was statistically dependent on at least
one co-factor such as PMI, hemolysis, or whether neurosur-
gery was performed. Together with unpredictable peri- and
post-mortem changes including untraceable biomarker con-
centration changes in the respective compartments [134], the
TBI-related biomarkers show enormous standard variations
in both TBI fatalities and controls, which usually overlap.
Therefore, none of the biomarkers used forensically to date
is able to distinguish between TBI and non-TBI fatalities
based on the concentration of a particular biomarker in 100%
of cases. However, several cut-off values, mainly in CSF,
have already been reported to corroborate the suspicion of
a lethal TBI together with other post-mortem investigation
results rather than to prove it independently [11, 23, 26, 30].
Indeed, the selection and careful categorization of control
fatalities within the studies on post-mortem TBI-biomarkers
are of special interest. For example, serum IL-6 can dis-
criminate TBI fatalities from fatalities due to acute myocar-
dial infarctions and diffuse cerebral hypoxias, but not from
isolated torso traumas [23]. This information can provide
valuable objective evidence when serum IL-6 concentra-
tion is considered together with other autopsy findings, e.g.,
when an isolated torso trauma can be excluded. Therefore,
it is of higher importance to compare TBI fatalities with
homogenous individual control groups rather than with a
pooled control group of all non-TBI cases. When thresholds
are set by individual studies, this is essentially against the
selected (or available) control deaths. However, this litera-
ture review revealed that there is considerable variation in
the definition of control deaths between studies, potentially
affecting the respective results and conclusions. Apart from
the voluntary allocation of fatalities to the TBI and control
groups, a TBI fatality, or at least a fatality with a TBI as a
confounding cause, could easily end up in the control group
in some studies, affecting the results, which is more likely in
cases without macroscopic correlates of the traumatic event
against the head. Lastly, using forensic biochemistry might
be challenging to reliably discriminate between TBI fatali-
ties and control cases whenever the entire cohort is consid-
ered. However, it seems to be realistic to define “extreme”
biomarker levels that are just achieved by TBI fatalities,
which essentially means defining upper cut-off values that
reflect 100% specificity with poor sensitivity. The CSF NSE
values > 6000 ng/ml, which have just been reached in TBI
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fatalities [30], are an example of such an “extreme” cut-off
value. It has to be mentioned that threshold values apply
only when the same laboratory testing setup, and a measure-
ment kit is used as in the respective study. However, this has
to be validated against a broad variety of control fatalities to
be valid with reasonable certainty. Some of the aforemen-
tioned studies revealed difficulties in defining cut-off values
due to different measurement methods and inter-individual
differences.

Post-mortem biomarkers for TBI survival time
estimations - are they useful?

The previous research on TBI-related post-mortem biomark-
ers uncovered the potential of several biomarkers in various
compartments to discriminate between different survival
times of TBI fatalities. The factors that influence the cause
of death determination can equally be listed for survival time
estimations, explaining why particular biomarker levels that
pinpoint certain survival times are lacking to date or, in fact,
most likely impossible to achieve. However, the here given
literature summary observed a trend that certain post-mor-
tem TBI biomarkers can indicate minimum survival times
if high biomarker values are reached [23, 30]. CSF levels
of > 10,000 ng/ml for S100B [30], > 6000 ng/ml for NSE
[30],>30 mg/1 for ferritin [23], and > 100,000 pg/ml for IL-6
[23] were only observed for minimum survival times of 20,
15, 120 min, and 3 days, respectively. Since a tendency for
low biomarker concentrations can be suspected for short sur-
vival times [23], more such cut-off values for determining
a minimum survival time probably exist for other compart-
ments besides CSF but have not received sufficient atten-
tion so far. Future research on TBI survival time estimations
using post-mortem biomarkers should report cut-off values
for minimum survival times to further explore the potential
of whether post-mortem biochemistry can provide reliable
cut-off values for minimum survival times in TBI fatalities.

The role of post-mortem biomarkers in time
since death estimations of TBI fatalities

Several biomarkers of various compartments correlated with
the PMI [23, 28, 30, 31], being the fundamental requirement
to be used for time since death estimations. However, this
correlation was largely attributed to the increasing hemoly-
sis occurring with increasing PMI. Future studies on fluid
TBI-related biomarkers should provide additional quantita-
tive information on the correlation between the biomarker
concentrations and the PMI. Moreover, the use of cut-off
values should be explored for PMI correlations as well. In
light of the potentially inevitable influence of the progressive
hemolysis in post-mortem samples, cut-off values for par-
ticularly short PMIs yielding low biomarker concentrations

seem most promising in this regard. However, given the cur-
rently available information, post-mortem biomarkers seem
to be of no merit for time since death estimations of TBI
fatalities.

The present and future of post-mortem TBI-related
biomarkers

This literature review demonstrated the potential of post-
mortem biomarkers to provide objective evidence for
cause of death determinations and survival time estima-
tions of TBI fatalities. However, forensic biochemistry, as
a promising investigative branch of forensic medicine, is
still at the very beginning and data on particular causes
of death such as TBI fatalities are scarce. Therefore, it is
yet too early to include current observations into the daily
routine without further verifications that respect detected
pitfalls such as the influence of perimortem procedures or
hemolysis on the biomarker levels. Equally, TBI-related
biomarkers that did not reveal sufficient potential to pro-
vide additional information for forensically relevant inves-
tigations should not be neglected too soon as these results
could have been biased by limited sample sizes or the inac-
curate allocation of TBI fatalities to the control group and
vice versa. LDH and MPAT were the only two biomark-
ers that were investigated in post-mortem samples other
than CSF, serum, or the brain so far [28, 33]. Especially,
MPAT demonstrated the potential of discriminating TBI
fatalities from controls in urine and saliva and these two
compartments should be further investigated using other
biomarkers. Moreover, other promising clinically relevant
TBI biomarkers should be investigated in post-mortem
body fluids in the future. These include for example all-
spectrin breakdown products, myelin basic protein, neu-
rofilament proteins, ubiquitin C-terminal hydrolase-L1,
tumor necrosis factor alpha, or interleukin-1B [19]. Ide-
ally, all observations on post-mortem biomarkers includ-
ing but not limited to the ones of TBI fatalities should
be collected in forensic biochemical databases to further
explore the opportunities and challenges of this emerging
post-mortem field allowing for collective sample sizes that
surpass the ones of individual departments by far.

Recent pioneering works regarding the consideration of
mi-RNAs [135] or the entity of metabolites (metabolome)
[136, 137] to prove lethal TBIs in a forensic setting should
be further explored. Using a combination of six different
mi-RNAs, it was possible to discriminate TBI cases from
controls that were free of neurological symptoms [135].
Even though the former study was based on ante-mortem
blood samples, the six candidate mi-RNAs were identi-
fied and validated on 38 post-mortem brain tissues before
[135, 138]. Groups of metabolites were shown to be rel-
evantly elevated in TBI fatalities compared to controls in

@ Springer



882

International Journal of Legal Medicine (2022) 136:871-886

post-mortem CSF [136]. Future studies will tell whether
mi-RNAs and metabolites are superior to the forensically
used TBI biomarkers that were discussed in this review
and if/how much a combination of all these fluid bio-
marker groups can benefit forensic practice.

Limitations

Based on the selected search criteria, especially the
selected search terms, some relevant articles might have
been missed. Initially, the articles were retrieved through
title screening, which might have led to an exclusion of
relevant articles based on inappropriate title selection by
the respective authors or misinterpretation by the authors
of this given literature review. Location bias might have
led to an oversight of articles in less accessible journals.

Conclusions

Forensic TBI-biomarkers are an emerging and promising
resource to provide objective evidence for cause of death
determinations and survival time estimations. However,
all TBI-biomarkers that were forensically investigated to
date are unspecific for TBIs and only allow for particular
information such as detections of TBI fatalities with poor
sensitivity or minimum survival time estimations. Future
research on forensic biomarkers requires a strict separa-
tions of TBI fatalities and control groups with sufficient
sample sizes, the exploration of the current biomarkers in
additional compartments such as urine, saliva, and vitre-
ous humor, the addition of further clinically promising
biomarkers to the forensic field, and the in-depth forensic
exploration of promising biomarker categories such as
metabolites or mi-RNAs.
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