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Although composing two words into a complex representation (e.g., “coffee cake”) is conceptually different from forming
associations between a pair of words (e.g., “coffee, cake”), the brain regions supporting semantic composition have also been
implicated for associative encoding. Here, we adopted a two-word magnetoencephalography (MEG) paradigm which varies
compositionality (“French/Korean cheese” vs “France/Korea cheese”) and strength of association (“France/French cheese” vs
“Korea/Korean cheese”) between the two words. We collected MEG data while 42 English speakers (24 females) viewed the
two words successively in the scanner, and we applied both univariate regression analyses and multivariate pattern classifica-
tion to the source estimates of the two words. We show that the left anterior temporal lobe (LATL) and left middle temporal
lobe (LMTL) are distinctively modulated by semantic composition and semantic association. Specifically, the LATL is mostly
sensitive to high-association compositional phrases, while the LMTL responds more to low-association compositional phrases.
Pattern-based directed connectivity analyses further revealed a continuous information flow from the anterior to the middle
temporal region, suggesting that the integration of adjective and noun properties originated earlier in the LATL is consis-
tently delivered to the LMTL when the complex meaning is newly encountered. Taken together, our findings shed light into a
functional dissociation within the left temporal lobe for compositional and distributional semantic processing.
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Significance Statement

Prior studies on semantic composition and associative encoding have been conducted independently within the subfields of
language and memory, and they typically adopt similar two-word experimental paradigms. However, no direct comparison
has been made on the neural substrates of the two processes. The current study relates the two streams of literature, and
appeals to audiences in both subfields within cognitive neuroscience. Disentangling the neural computations for semantic
composition and association also offers insight into modeling compositional and distributional semantics, which has been the
subject of much discussion in natural language processing and cognitive science.

Introduction
When we hear a pair of words such as “coffee” and “cake,” we
could form a complex meaning of a coffee-flavored cake, or
recall an experience where coffee and cake occurred together.
These two processes, though conceptually different, have been

localized to similar brain regions in the left temporal lobe. For
example, a minimal adjective-noun phrase such as “red boat”
elicits increased activity in the left anterior temporal lobe (LATL)
compared with non-compositional word lists such as “cup, boat”
(Bemis and Pylkkänen, 2011, 2013), and a similar effect has been
observed for a language with the reverse word order (Westerlund
et al., 2015) and for American sign language (Blanco-Elorrieta et
al., 2018), suggesting a role of the LATL in conceptual combina-
tion. However, the LATL is also activated when forming arbitrary
associations between pairs of words such as “ring” and “cheese”
(Jang et al., 2017), and shows greater oscillatory responses for
word pairs with stronger associations (Teige et al., 2018, 2019).
Additionally, a temporary virtual lesion induced by repetitive
transcranial magnetic stimulation (rTMS) over the LATL signifi-
cantly slows synonym judgment times (Pobric et al., 2007), mir-
roring a core feature of semantic dementia (SD) patients with a
focal atrophy of the ATL (Hodges et al., 1992; Galton et al., 2001;
Nestor et al., 2006). The LATL is also engaged in human face-
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name (Wang et al., 2017) and face-location (Nieuwenhuis et al.,
2012) associations, and single neuron recordings in the ATL of
macaque monkey’s brain suggested that a group of pair-encoding
neurons responded only to associated pairs of abstract shapes dur-
ing the training phase (Sakai and Miyashita, 1991; Hirabayashi et
al., 2014).

Prior studies on semantic composition and associative encod-
ing have been conducted independently within the subfields of
language and memory, and they typically adopt similar two-
word experimental paradigms. However, no direct comparison
has been made on the neural substrates of the two processes.
They both involve connecting two elements, albeit in intuitively
different ways. The converging neural evidence in the left ante-
rior temporal cortex raises the question of whether they may
involve some shared processing routines. This study aims to
characterize how effects of composition and association compare
to each other and possibly interact in the left temporal lobe. We
adopted the same two-word paradigm but crossed composition-
ality and strength of association between the two words using the
adjectival and noun forms of a country word and our world
knowledge of food. “France cheese” and “French cheese,” for
example, are highly-associated country-food pairs compared
with “Korea cheese” and “Korean cheese.” But both “French
cheese” and “Korean cheese” are combinatory adjective-noun
phrases whereas “France cheese” and “Korea cheese” are merely
word lists. This 2� 2 design (Fig. 1) enabled us to separate the
effects of association and composition during two-word compre-
hension, and to examine whether the LATL indeed supports
semantic composition or simply tracks association.

We collected 42 native English speakers’magnetoencephalog-
raphy (MEG) data while they viewed the two words successively
on a screen. We coded association and composition as binary
variables and applied a mass univariate regression analysis to
source-localized MEG data within a language network. We then
performed a searchlight-based multivariate pattern classification
analysis within the same language network. To further under-
stand the information flow between the active brain regions, we
conducted a directed connectivity analysis using the representa-
tional dissimilarity matrices (RDMs) of the MEG data within the
functional regions of interest (fROIs) derived from the regression
and the classification analyses (see Fig. 2).

With this combination of methods, we show that the LATL is
more sensitive to the contrast between high and low associative
compositional phrases, while the left middle temporal gyrus

(LMTG) is mainly driven by the distinction between low-associa-
tion compositional phrases and low-association lists. Directed
connectivity analyses suggest a continuous information flow
from the LATL to the LMTG. Taken together, our results pro-
vide novel evidence that the LATL and the left middle temporal
lobe (LMTL) are distinctly modulated by semantic composition
and semantic association.

Materials and Methods
Experimental design
We conducted two variates of experiment, both employed a 2� 2 design
with associative strength (low, high) and compositionality (Comp, List)
as factors. In the first experiment, there are 60 trials for each of the four
conditions and 60 single word controls consisted of 5 “x”s and the food
noun (e.g., “xxxxx cheese”), forming a total of 300 unique trials. In the
second experiment, each condition contains 45 trials and 45 single word
controls, forming a total of 360 unique trials. The single word trials con-
sisted of length-matched consonant strings and the food noun (e.g.,
“xjtgbv cheese”).

Participants
Participants were healthy young adults with normal hearing and normal
or corrected-to-normal vison. All strictly qualified as right-handed on
the Edinburgh handedness inventory (Oldfield, 1971). They self-identi-
fied as native English speakers and gave their written informed consent
before participation, in accordance with New York University and New
York University Abu Dhabi IRB guidelines. A total of 30 volunteers par-
ticipated in experiment 1, nine of them were removed from data analy-
sis: eight because of excessive movement or drowsiness during MEG
recording, and one because of bad performance on the behavioral task
(,75% accuracy). A total of 26 volunteers participated in experiment 2,
five of them were removed from further data analysis: four because of
excessive movement or drowsiness during MEG recording, and one
because of bad performance on the behavioral task. Therefore, a total of
21 participants (10 females, mean age = 21.6 years, SD= 4.5) in experi-
ment 1 and 21 participants (14 females, mean age = 23 years, SD= 7.7) in
experiment 2 were included in the analyses. No participant attended
both experiments. Our sample size was not determined in advance, but
it is significantly larger than the typical sample size of around 20–25 par-
ticipants in prior MEG studies on semantic composition (Bemis and
Pylkkänen, 2011; Westerlund and Pylkkänen, 2014).

Experiment 1 was conducted at the Neuroscience of Language Lab at
New York University Abu Dhabi, and experiment 2 was conducted
across research facilities of the Neuroscience of Language Lab at New
York University and New York University Abu Dhabi. Six participants’
data were collected at the New York facility.

Figure 1. Experimental design. A, Experimental design and trial structure. Our design crossed strength of association (low vs high) and compositionality (list vs comp). In each trial, partici-
pants indicated whether the target picture matched the preceding words. Half of the target pictures matched and half did not. Activities recorded from 100 ms prestimulus onset to 1200 ms
poststimulus onset were analyzed. B, Schematic diagram showing how cosine value between high-dimensional vectors represents semantic similarity. The smaller the angle is between two
vectors, the higher the cosine value and semantic similarity. The angle between “French” and “cheese” is smaller than the one between “Korean” and “cheese” because they share more contex-
tual features. The high-dimensional word embeddings were visualized on the 2D scatter using t-SNE. Extended Data Figures 1-1, 1-2, 1-3 support Figure 1.
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Stimuli
The stimuli comprised of a country adjective/noun and a food noun,
with strength of association (low, high) and compositionality (comp,
list) as factors (Fig. 1A). We quantified the strength of association
between the country and food word using the cosine similarity score
between the GloVe embeddings17 of the two words: high associative
phrases (e.g., “French/France cheese”) have a cosine similarity.0.3 and
low associative pairs (e.g., “Korean/Korea cheese”) have a cosine similar-
ity lower than 0.15 (see in Extended Data Figs. 1-1, 1-2). Note that,
although the noun-noun lists (e.g., “France cheese”) were not syntacti-
cally composable, participants may still attempt conceptual composition
during the task. To ensure that the list conditions were indeed non-com-
positional as intended, we included a single-word control condition. The
single-word condition consisted of either a “xxxxx” or a length-matched
consonant string (e.g., “xjtgbv”) and the critical noun word (i.e.,
“cheese”). Half of the participants (n=21) saw the “xxxxx” while the
other half saw the consonant strings. One ancillary aim of our study was
to examine the impact of these two different types of visual baselines,
but they patterned the same as regards our main manipulation.

Experiment procedures
Before recording, each subject’s head shape was digitized using a
Polhemus dual source handheld FastSCAN laser scanner. Participants
then completed the experiment while lying supine in a dimly lit, magnet-
ically shielded room (MSR). At the Abu Dhabi facility, MEG data were
recorded continuously using a whole-head 208 channel axial gradiome-
ter system (Kanazawa Institute of Technology, Kanazawa, Japan), at the
New York facility, MEG data were collected using a whole-head 156-
channel axial gradiometer system (Kanazawa Institute of Technology).

Stimuli were projected using PsychoPy2 (Peirce et al., 2019) onto a
screen ;80 cm away from the participants’ eyes. The two words were
presented for 300ms each, in white 30-point Courier New font, on a
gray background and subtended a vertical visual angle of 2°. Since high-
associative phrases like “French wine” might be stored either as lexical
items or as multi-word expressions (Arnon and Snider, 2010; Jacobs et
al., 2016, 2017), we presented the two words separately to encourage a
combinatory or associative process instead of retrieving the phrase as a
whole. An image appeared on screen after the target words and
remained until subjects indicated whether it was a Match or a Mismatch
to the preceding words, by pressing a button with the index finger of
their left hand for a Match and middle finger for a Mismatch. No feed-
back was provided. This same picture-matching task has been employed
in prior studies on semantic composition (Bemis and Pylkkänen, 2011,
2013). A blank screen was presented for 300ms between each word and
image. The inter-stimulus interval was normally distributed with a mean
of 400ms (SD=100ms, min= 135ms, max = 734ms). Order of stimulus
presentation was pseudo-randomized such that half of the trials were a
Match and the other half a Mismatch. Each participant received a unique
randomization. Images for the categorization task were chosen to en-
courage concentration on both country nouns/adjectives and food
nouns. For the two-word conditions, the target picture shows a food
item with a country flag, and both the country and the food words were
required to match; for the one-word condition, the picture contains only
a food item. All images were color photographs found on Google
Images. The whole recording session, including preparation time and
practice, lasted around 40min.

MEG data acquisition and preprocessing
MEG data were recorded continuously at a sampling rate of 1000Hz
with an online 0.1- to 200-Hz bandpass filter. The raw data were first
noise reduced via the continuously adjusted least-squares method
(Adachi et al., 2001) and low-pass filtered at 40Hz. Independent compo-
nent analysis (ICA) was then applied to remove artifacts such as eye
blinks, heart beats, movements, and well-characterized external noise
sources (mean ICA components= 36; min ICA components = 12; ms
ICA components = 66). The MEG data were then segmented into epochs
spanning 100 ms prestimulus onset to 1200 ms poststimulus onset.
Epochs containing amplitudes greater than an absolute threshold of
2000 fT were automatically removed. Additional artifact rejection was

performed through manual inspection of the data, removing trials that
were contaminated with movement artefacts or extraneous noise. The
whole epoch rejection procedure results in an average rejection rate of
9.4% (SD=6.5%) for each participant.

Cortically constrained minimum-norm estimates (mne; Hämäläinen
and Ilmoniemi, 1994) were computed for each epoch for each partici-
pant. Following previous literature on semantic composition (Bemis and
Pylkkänen, 2011, 2013; Westerlund et al., 2015; Lyu et al., 2019; Flick
and Pylkkänen, 2020), we used mne instead of whole-brain beamform-
ing for source reconstruction. To perform source localization, the
location of the participant’s head was coregistered with respect to
the sensor array in the MEG helmet. For participants with anatomic
MRI scans (n = 5), this involved rotating and translating the digital
scan to minimize the distance between the fiducial points of the
MRI and the head scan. For participants without anatomic scans, the
FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) “fsaverage” brain was
used, which involved first rotation and translation and then scaling the
average brain to match the size of the head scan. A source space of 2562
source points per hemisphere was generated on the cortical surface for
each participant. The boundary element method (BEM) was employed
to compute a forward solution, explaining the contribution of activity at
each source to the magnetic flux at the sensors. Channel-noise covari-
ance was estimated based on the 100-ms intervals before each artifact-
free trial. The inverse solution was computed from the forward solution
and the grand average activity across conditions. To lift the restriction
on the orientation of the dipoles, the inverse solution was computed
with “free” orientation, meaning that the inverse operator places three
orthogonal dipoles at each location defined by the source space. When
computing the source estimate, only activity from the dipoles perpendic-
ular to the cortex were included. For each trial within one condition, the
same inverse operator for that condition was applied to yield dynamic
statistical parameter maps (dSPM) units (Dale et al., 2000) using an sig-
nal-to-noise ratio (SNR) value of 3. All data preprocessing steps were
performed with MNE-python (v.0.19.2; Gramfort et al., 2014) and
Eelbrain (v.0.25.2).

Quantifying semantic associations
Semantic vectors for the country and food words were derived using the
well-known GloVe word embeddings model (Pennington et al., 2014;
freely available at https://nlp.stanford.edu/projects/glove/) trained on
Common Crawl (https://commoncrawl.org/), which contains petabytes
of raw web page data, metadata extracts and text extracts. GloVe model
embodies the “distributional hypothesis” that words with similar mean-
ing occur in similar contexts in an artificial neural network approach.
Having obtained a 300-dimensional vector for each word, we then quan-
tified how semantically associated each country word was to the food
word by calculating the cosine similarity score between the two-word
vectors. Overall, our approach generated high associative phrases (e.g.,
“French/France cheese”) with a mean cosine similarity score of 0.34
(SD= 0.1) and low associative pairs (e.g., “Korean/Korea cheese”) with a
mean cosine similarity score of 0.08 (SD= 0.05). Paired t test revealed
significant difference between the cosine similarity score of the two
groups (t=29.8, p % 0). To make the difference larger, we further
applied principal component analysis (PCA) to the word embeddings
and calculate the cosine similarity score for each word pair based on the
first 30 PCs. This resulted in a mean cosine of 0.05 (SD=0.18) for the
high-associative pairs and a mean cosine of �0.37 (SD=0.09) for the
low-associative pairs. The group difference was significant (t= 28.7, p%
0), but it did not make the two groups more different (for the cosine sim-
ilarity score for each word pair based on their 300-dimensional embed-
dings and the 30 PCs, see Extended Data Figs. 1-1, 1-2). Figure 1B
visualizes all the word embeddings on a 2D scatter plot using t-distrib-
uted stochastic neighbor embedding (t-SNE; van der Maaten, 2014).

Statistical analysis
Behavioral data analysis
Accuracy was analyzed using generalized linear mixed model (GLMM)
with binomial error distribution and “logit” link, and response times
(RTs) were analyzed using GLMM with lognormal transformation. For

6528 • J. Neurosci., July 28, 2021 • 41(30):6526–6538 Li and Pylkkänen · Semantic Composition versus Association

https://doi.org/10.1523/JNEUROSCI.2317-20.2021.f1-1
https://doi.org/10.1523/JNEUROSCI.2317-20.2021.f1-2
http://surfer.nmr.mgh.harvard.edu/
https://nlp.stanford.edu/projects/glove/
https://commoncrawl.org/
https://doi.org/10.1523/JNEUROSCI.2317-20.2021.f1-1
https://doi.org/10.1523/JNEUROSCI.2317-20.2021.f1-2


the maximal model, fixed effects included the main effects of composi-
tion, association and their interaction, as well as the differences between
the single and the average of all four two-word conditions. We included
association as either a categorical or a continuous variable with the co-
sine similarity scores (both before and after PCA). Model comparison
results showed that the optimal model including association as a cate-
gorical variable explained the behavioral data better than when asso-
ciation was included as a continuous variable. Random effects
included by-subject random intercept and slopes of all fixed effects,
as well as by-item random intercept (Barr et al., 2013). In addition,
word one and word two frequency were used as control variables,
which were calculated based on the combined word counts from the
Google Book unigrams (http://books.google.com/ngrams) and the
SUBTLEXus corpus (Brysbaert and New, 2009). The log frequency
of each word is shown in Extended Data Fig. 1-3. RTs above or
below than three standard deviations were removed under the
assumption that these represented errors or distractions rather than
task-related responses.

If the maximal model could not converge, its random effects were
orthogonalized, making the zero-correlation-parameter (ZCP) model.
PCA was applied to the ZCP model results and random effects who
explained,1% of total variances were removed from the ZCP model to
make the reduced model. The extended model was built by adding back
the correlations among random effects in the reduced model. If the
extended model still could not converge, its random effects who
explained ,1% of total variances were further removed to make the
updated extended model. This step was repeated until an extended
model converge. Then the converged extended model was compared
with the reduced model. The model, which explained the data better
(with smaller Akaike’s information criterion) and used less parameters,
was chosen as the optimal model whose results were reported (Bates et
al., 2015a).

The GLMM analyses were conducted via the “lme4” package (Bates
et al., 2015b) in R (v3.6.3) and RStudio (v1.2). Statistical significance of
fixed effects was estimated using the “lmerTest” package (Kuznetsova et
al., 2017), in which Satterthwaite’s approximation was applied to esti-
mate degrees of freedom.

Mass univariate multiple regression
We coded the composition and association factors as binary variables
and performed a two-stage multiple regression with single-trial source
estimates as dependent variables, and compositionality, strength of asso-
ciation and their interaction, and number of words as predictors (Fig.
2A). We coded association as a binary variable as the behavioral analyses
suggested that association as a categorical variable explains the response
better than association as a continuous variable. We did not perform the
same mixed-effect model for the behavioral analysis as the maximal
model usually cannot converge, and we have to trim the random effects
following Bates et al. (2015a). Since we performed the mass univariate
analysis for 755 sources � 1301 time point, which means we have to
conduct the trimming procedure for 755 � 1301= 982,255 times. This is
not practical to implement. Analyzing global field power over time by
source is not ideal either as we specifically want to know both the spatial
and the temporal extent of our effects. Therefore, we followed previous
literature to use two-stage regression analyses for MEG data (Gwilliams
et al., 2016)

Given the significant effects of word frequency on the behavioral
results, we also included frequency of the first and second word as con-
trol variables. At the first stage, we applied an ordinary least squares
regression for each subject’s single-trial source estimates for each source
within a bilateral language mask at each millisecond from 100 ms before
the onset of the first word to 1200 ms poststimulus onset. The language
mask (Fig. 4A,E, light pink region) covered regions including the whole
temporal lobe, the inferior frontal gyrus (IFG; defined as the combina-
tion of BAs 44 and 45), the ventromedial prefrontal cortex (vmPFC;
defined as BA11), the angular gyrus (AG; defined as BA39) and the
supramarginal gyrus (SMA; defined as BA 40). The left AG and vmPFC
have also been implicated in previous literature on conceptual combina-
tion (Bemis and Pylkkänen, 2011; Price et al., 2015), and the LIFG and

the LMTG have been suggested to underlie syntactic combination
(Haggort, 2005; Lyu et al., 2019; Matchin et al., 2019; Flick and
Pylkkänen, 2020; Matchin and Hickok, 2020). The first-stage regression
resulted in a b coefficient for each variable at each source and each time
point for each subject.

At the second stage, we performed a one-sample t test on the distri-
bution of the b values across subjects for each variable separately, again
at each source and each time point, to test whether their values were sig-
nificantly different from zero. We applied the threshold-free cluster
enhancement (TFCE) approach to identify significant spatiotempo-
ral point within our mask (Smith and Nichols, 2009). The TFCE
approach aims to enhance areas of signal that exhibit some spatial
and temporal contiguity without relying on hard-threshold-based
clustering. Each unthresholded t statistic for a spatiotemporal point
is passed through an algorithm which enhances the intensity within
cluster-like regions. Precisely, the TFCE output for source s at time t

is TFCE sð Þ ¼
ðhs
h¼h0

eðhÞEhHdh, where hs is the t statistic value, h0 is 0,
e(h) is the extent of the single cluster containing the point p.
Therefore, each point’s TFCE score is the sum of the scores of all
“supporting sections” underneath it, which is simply the height h
(raised to some power H) multiplied by the cluster extent e(h)
(raised to some power E). We repeated this procedure for 10,000
times. This involved randomly shuffling 0 and the b coefficient for
each participant, repeating the mass univariate one-sample t test
and calculated the TFCE value for each spatiotemporal point within
the mask and the analysis time window of 0–1200ms after the stim-
ulus onset. The observed TFCE value for each spatiotemporal point
was subsequently assigned a p value based on the proportion of ran-
dom partitions that resulted in a larger test statistic than the
observed one. Unlike the cluster-based approach, the TFCE
approach allows us to make statistical inference about individual
spatiotemporal point as each TFCE score has their own p value.

Multivariate pattern classification
To investigate more fine-grained encodings of the four conditions in the
LATL and LMTL, we conducted a searchlight multivariate pattern classi-
fication analysis within the same language mask used in the previous
regression analysis. Under the assumption that patterns of brain activa-
tion contain information that distinguishes between the experimental
conditions, we applied classification to four pairwise combinations of
our four conditions: high-association phrases versus high-association
lists, low-association phrases versus low-association lists, high-associa-
tion phrases versus low-association phrases, and high-association lists
versus low-association lists. The high-association phrases versus high-
association lists classification and the low-association phrases versus
low-association lists classification compares composition across the asso-
ciation levels, and the high-association phrases versus low-association
phrases classification and the high-association lists versus low-associa-
tion lists classification compares association across the composition
levels.

We first regressed out the word frequency effects based on the
regression analyses from the source estimate data, then we decimated
the source estimates by a factor of 5, creating a 755 sources � 260 time
point matrix for each trial. We then combined the trials in each condi-
tion to 15 pseudo-trials by randomly dividing the trials into 15 partitions
(four trials per partition for experiment 1 and three trials per partition
for experiment 2) and averaging across the trials within partitions. These
two steps were performed to decrease the computational costs and
increase the SNR, as well as keeping the trial number the same across the
two experiments (see Guggenmos et al., 2018).

We trained four linear support vector machine (SVM) classifiers,
each applied to a pairwise combination of the four conditions. The SVM
is a widely used classification method because of its favorable character-
istics of high accuracy, ability to deal with high-dimensional data and
versatility in modeling diverse sources of data (Schölkopf et al., 2004).
Linear SVM classifier was chosen as it has been shown to outperform
other classifiers on both MEG (Guggenmos et al., 2018) and fMRI data
(Misaki et al., 2010). We performed a leave-one-stimulus-pair-out cross-
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validation procedure, where one randomly selected pseudo-trial was
taken from each condition as a test sample and all remaining stimuli
were used for classifier training. Classifier performance was estimated by
averaging across the 100 permutations, and for each permutation we re-
partitioned the trials to pseudotrials. The binary classifiers were sepa-
rately applied to all spatiotemporal timepoints, with a radius of 100 sour-
ces� 5 timepoints.

The same analysis pipeline was applied to each subject. Classification
accuracy averaged over subjects at each time point minus the chance
level of 50% was submitted to a one-sample one-tailed t test with TFCE
correction for 10,000 permutations, where the sign of the t statistic for
each point was permuted. The analysis time window was between 600
and 1200ms (Fig. 2B). We used the python scikit-learn package (0.22.1)
for the SVM analyses.

Directed connectivity analysis
To further understand how LATL and LMTL exchange information dur-
ing the two-word comprehension process, we conducted a directed con-
nectivity analysis to estimate the temporal pattern of information flow
between the two regions. The underlying logic is similar to that of the
Granger causality analysis (Granger, 1969), namely, if the activity in

region A has a causal effect on the activity in region B, then activity at a
past time point of region A should contain information that helps pre-
dict current activity in region B above and beyond the previous activity
in region B alone. Here, we performed a multivariate pattern-based con-
nectivity analysis which has been applied previously to estimate informa-
tion flows between brain regions on both visual (Goddard et al., 2016)
and language processing (Lyu et al., 2019).

We first calculated the data RDMs of the two fROIs at time point D
(A, t) and D(B, t) as 1 minus the pairwise Pearson r’s correlation among
the conditions. The fROIs covered sources that are significant in either
the univariate regression or the multivariate classification analysis. These
RDMs indicate the degree to which different levels of associative
strength and compositionality evoke similar or distinct response patterns
in the neural population. To increase the signal-to-noise ratio, we
adopted the same preprocessing procedures in the MVPA analysis,
including regressing out word frequency effect, decimating the source
estimates by a factor of 5 and combining the trials in each condition to
15 pseudo-trials. We then quantified the directed activity from region A
to region B as the partial correlation coefficient between D(A, t-dt) and
D(B, t), partialling out D(B, t�dt), where dt is the time interval between
the current time point and the previous time point.

Figure 2. Schematic illustration of the analysis procedure. A, Two-stage multiple regression analyses. At the first stage, an ordinary least squares regression was applied to each participant’s
single-trial source estimates for each source within a selected region at each time point of the analysis window. At the second stage, a one-sample t test was performed on the distribution of
b values across subjects for each variable at each source and each time point, to test whether their values were significantly different from zero. Significance was determined by TFCE correc-
tion with 10,000 permutations. B, Searchlight multivariate pattern classification analyses. A linear SVM was trained on the combination of pseudo-trials from two conditions and tested on a
left-out pair with 100 permutations. The same SVM analysis was applied independently to each source and time point within a language mask. Classification accuracy averaged over subjects at
source and time point minus the chance level of 50% was submitted to a one-sample t test and significance was determined by TFCE correction with 10,000 permutations. C, Directed connec-
tivity analyses. The RDMs of the source estimates of the two fROIs derived from the regression and the classification analyses at time point t (D(A, t) and D(B, t)) were calculated as 1 minus
the correlation between the conditions. Directed activity from region A to region B was quantified as the partial correlation coefficient between D(A, t�dt) and D(B, t), partialling out D(B, tdt),
where dt is the time interval between the current time point and the previous time point. Significance of coefficients.0 was determined by 10,000 permutations with an a level of 0.05.
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To avoid bias because of the choice of directionality and any specific
previous time point, we computed the directed connectivity from region A
to region B and from region B to region A for each time points from the
onset of the second word to the following 600ms, with a dt value of 5ms
before the current time point up until 600ms (i.e., 5, 10, 15, ...600ms
before the current time point). The extended time dimension allows us to
determine the extent to which the current activity in the target region is
correlated with the source region’s activity at each time point within the
previous 600ms. The same procedure was applied to each subject to obtain
an average partial correlation coefficient matrix (Fig. 2C). We report the
results of this analysis in terms of the difference between the two directions
of the information flow (A!B – B!A). Significance of the difference was
determined by a one-sample t test with 10,000 permutations.

Data and code availability
Experimental stimuli and MEG single-trial source estimates for each
participant is available to download via Open Science Framework (OSF)
at https://osf.io/ea4s6/. All analyses were performed using custom codes
written in Python, making heavy use of mne, eelbrain, and scikit-learn.
The analysis codes can be downloaded at https://osf.io/ea4s6/.

Results
Behavioral results
Overall, participants achieved a high accuracy of 90.9%
(SD=28.2%) with a mean RT of 1.07 s (SD= 0.77 s). The mixed-
effects regression analysis revealed a significant effect of associa-
tion for accuracy and a marginally significant effect for reaction
time, where higher association between the two words increased
accuracy (t= 2.43, Cohen’s d= 0.38, p=0.015) and reduced reac-
tion time (t = �1.8, Cohen’s d=0.21, p= 0.08). Composition was
not significant for either accuracy (t= 0.71, Cohen’s d= 0.11,
p=0.48) or reaction time (t = �0.72, Cohen’s d=0.11, p=0.48;
see Fig. 3A). We also observed a highly significant word frequency
effect on both accuracy and RTs, such that more frequent first
word reduced reaction time (t = �4.07, Cohen’s d=0.63, p % 0),
and more frequent second word both increased accuracy (t=6.19,
Cohen’s d=0.95, p % 0) and reduced reaction time (t = �8.3,
Cohen’s d=1.28, p % 0). This typical slowdown in responses for
less frequent words indicates that the stimuli are being perceived
as intended. Number of words is also significant for reaction time,
such that single word conditions are faster than two-word condi-
tions (t=6.55, Cohen’s d=1.01, p = 0; see Fig. 3B).

Spatiotemporal clusters for association and composition
We identified one significant cluster for the interaction effect
between association and composition from 637 to 759ms
(t=3.27, Cohen’s d=0.51, p= 0.03), which is 37ms after the

onset of the second word until 159ms afterward. The cluster
mainly covered the ATL (Fig. 4A). The direction of the interac-
tion is positive, which means that high-association compositional
phrases elicited higher activity compared with other conditions
(Fig. 4B). We then calculated the mean fitted activation for the
four conditions after controlling for the word frequency effect.
The results showed that high-associative compositional phrases
and low-associative lists were correlated with increased activity
compared with low-associative compositional phrases and high-
associative lists (Fig. 4C,D).

The effect of composition was associated with one significant
cluster in the MTL from 689 to 882ms (t = �4.05, Cohen’s
d=0.63, p= 0.001) after the onset of the first word (i.e., 89–
282ms after the onset of the second word). The cluster covered
regions including the middle to posterior parts of the inferior,
middle and superior temporal gyrus (Fig. 4E). The sign of the b
coefficient is negative, such that compositional phrase induced
more activity with negative polarity (Fig. 4F–H). No significant
cluster was found for any of the effects in the right hemisphere
within the mask, suggesting a highly left-lateralized neural activ-
ity for association and composition.

No significant cluster was found for the number of word pre-
dictor, suggesting that the two-word list and phrase conditions
do not pattern together. We further conducted post hoc pair-wise
t tests within the LATL and the LMTL clusters. We expected that
the activation time courses of the list conditions pattern with
that of the single-word condition and this prediction was borne
out: no significant temporal clusters were observed for the con-
trast between the two list conditions and the single word condi-
tion in either fROI. On the contrary, the two composition
conditions were significantly different from the single-word con-
dition in both the fROIs (see Fig. 7).

Lexical frequency was significant in the middle temporal
cortex from 202–294ms (t = �4.11, Cohen’s d = 0.64,
p = 0.034) for the first word and from 870–950ms (i.e., 270–
350ms after the onset of the second word) for the second
word (t = �4.72, Cohen’s d = 0.74, p = 0.046; see Fig. 8).
Here, higher word frequency decreased activation, consist-
ent with most findings on the effect of frequency (Embick et
al., 2001; Simon et al., 2012).

Searchlight multivariate pattern classification
The classification results are shown in Figure 5. We observed
one cluster in the LATL where classification accuracy for high-
association composition versus low-association composition was

Figure 3. Behavioral results. A, Mean predicted accuracy and reaction time for the four conditions, regressing out the effect of word frequency. Association is significant for accuracy (p =
0.049) and marginally significant for reaction time (p= 0.08). Error bars indicate 1 SE. B, Fitted coefficients for all predictors for accuracy and log reaction time. Error bars show 95% confidence
intervals. Black point denotes significant coefficients at the level of p, 0.05 and gray point denotes marginally significance at the level of p, 0.1. p p, 0.05; 0p, 0.1.
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significantly higher than chance from
740 to 775ms, that is, 140–175ms after
the onset of the second word (t = 4.29,
Cohen’s d = 0.92, p = 0.022). Accuracy
of other classifiers was not significantly
higher than chance. Compared with the
multiple regression results, we observed
the same distinction between high-
association and low-association com-
positional phrases.

The classifier for the low-associa-
tion composition versus low-associa-
tion lists was significant in the LMTL
at around 835–895ms, i.e., 235–295ms
after the onset of the second word
(t = 5.55, Cohen’s d = 0.87, p = 0.016).
Other classifiers did not perform sig-
nificantly better than chance. This indi-
cate that the effect of composition in the
LMTL might be driven by the distinction
between composition and list at the low-
association level.

Information flow between the active
brain regions
Both out univariate regression analysis
and the multivariate pattern classification
have highlighted the LATL and the
LMTL for high-association and low-asso-
ciation compositional phrases, respec-
tively. We further conducted a pattern-
based directed connectivity analyses to
disentangle the two effects at the tempo-
ral dimension. Comparison between the
connectivity measures of the two direc-
tions revealed significant partial corre-
lations from LATL to LMTL at around
0–250ms after the onset of the second
word. The significant time interval
before the current time point ranged
from the time intervals between 150
and 450ms (t = 6.26, Cohen’s d = 0.98,
p = 0.03; see Fig. 6A). Although the cor-
relation value of ;0.09 seems quite
small, it is bigger than previous study
using the same measures (Lyu et al.,
2019). No significant partial correla-
tions from LMTL to LATL was found
by the contrast measure (Fig. 6B). This
suggests that information about associa-
tive strength and compositionality of
the two words generated in the LATL
within the previous 150–450ms is con-
tinuously delivered to the adjacent
LMTL from the onset of the second
word to around 250ms poststimulus
onset.

Although the LATL and LMTL func-
tional ROIs in our directed connectivity
analysis are selected based on the regression results, this
method is still largely data-driven as the connectivity
strength is quantified by the partial correlations between
the data RDMs. To investigate whether the connectivity

results were specific to semantic association and composi-
tion or simply reflect intrinsic interactions between two ad-
jacent regions, we conducted a supplementary control
analysis with the primary somatosensory cortex (SMA,
defined as BA1-3) and the primary motor cortex (M1;

Figure 4. Multiple regression results. A, Location of the significant cluster sensitive to the interaction effect between asso-
ciation and composition. Light red regions mark the language network within which the analysis was conducted. Color bar
indicates t statistics. B, Time courses of b coefficients averaged over the significant cluster. Shaded region denotes the sig-
nificant time window from 637 to 759 ms (p= 0.03). C, Fitted responses for each condition averaged over the significant
cluster and time window. D, Time courses of fitted response for each condition averaged over the significant cluster. Word
frequency effects were regressed out of the responses. E, Location of the significant cluster sensitive to the composition
effect. F, Time courses of b coefficients averaged over the significant cluster. Shaded region indicates the significant time
window from 689 to 882 ms (p= 0.001). G, Fitted responses for each condition averaged over the significant cluster and
time window. H, Time courses of fitted response for each condition averaged over the cluster. Word frequency effects were
regressed out of the responses. STG, superior temporal gyrus; MTG, middle temporal gyrus; ITG, inferior temporal gyrus; ATL,
anterior temporal lobe. p p, 0.05.
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defined as BA4) in the left hemisphere as the two ROIs.
Since the SMA and M1 were not related to either associa-
tion or composition effect, the patterning of data RDMs in
the two regions should bear no relation to our stimulus

manipulation. Therefore, we expect no connectivity
between the data RDMs of the two regions. The results sup-
ported our prediction: we did not find directed connectivity
from SMA1 to M1 nor from M1 to SMA (see Fig. 9).

Figure 5. Searchlight multivariate pattern classification results. A, Color-coded curves report classification time courses for the four linear SVM classifiers averaged over the significant cluster
in the LATL. Horizontal lines above the curves mark a statistically significant time window from 740 to 775 ms for the high-association composition versus low-association composition classifier
(p= 0.022). B, Classification time courses for the four linear SVM classifiers within the functional ROI for the composition effect identified by the regression analysis. Horizontal line above the
curves marks a significant time window from 835 to 895 ms for the low-association composition versus low-association list classifier (p= 0.016). Significance over the chance level of 50% was
assessed by a permutation t test with TFCE correction within the mask (light red region) and the analysis time window of 600–1200ms. p p, 0.05.

Figure 6. Directed connectivity between the LATL and the LMTL. A, Contrast between the two directed connectivity measures show significant correlations from LATL to LMTL from;0 to
250 ms after the onset of the second word, with a delay from;150 to 450 ms (p= 0.03). B, No significant partial correlation coefficients matrix from LMTL to LATL.
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Discussion
Prior work has identified similar brain regions for both seman-
tic composition and associative encoding. Since combining
meanings is intuitively different from simple association, this
is somewhat surprising. Semantic compositionality allows
human language to express an infinite number of complex
expressions from their constituent meanings (Frege, 1980).
This productive combinatory process is not dependent on the
semantic relatedness of the constituent meanings. It engages
even for totally novel combinations, such as “Cuban pho.”
However, according to the distributional hypothesis of seman-
tic theory, words that occur together are usually semantically
related (for review, see Boleda, 2020). As famously put in Firth
(1957): “a word is characterized by the company it keeps,”
thus a common complex expression like “French cheese”
involves both combinatory and associative processes. This
raises the possibility that the two processes may have some
type of common, neurally implemented core. We explored
this possibility in the current work.

By orthogonalizing semantic composition and semantic asso-
ciation in our experimental design, we show that high-associa-
tion compositional phrases elicited higher activity in the LATL
than low-association compositional phrases. Searchlight multi-
variate pattern classification also shows distinctive activity pat-
terns between the two conditions in the LATL. Thus, there
appears to be an early LATL process that reflects composition in
a highly association-sensitive way. Note that it is possible that
participants were thinking of adjective-noun phrases (e.g.,
“French cheese”) while seeing the noun-noun lists (e.g., “France
cheese”) or construing the noun-noun lists as grammatical

errors. These possibilities, however, could not explain the differ-
ent activity patterns between the adjective-noun and noun-noun
pairs at different association levels. If participants are more likely
to think “French cheese” after seeing “France cheese” as com-
pared with thinking “Korean cheese” after seeing “Korea cheese,”
then we would argue that this is exactly because “France” and
“cheese” are highly associated. Therefore, we think that our inter-
action effect in the LATL is best explained by the composition
and association factors during the two-word comprehension.

Martin and Doumas (2020) suggested that meaning composi-
tion cannot be achieved in an association-only way such as the
tensor product of constituent word embeddings, because human
similarity judgements on “fuzzy cactus” and “fuzzy penguin” are
not determined by the similarity between “cactus” and “pen-
guin.” Martin and Doumas (2017) proposed a dynamic binding
model (i.e., the symbolic-connectionist computational model
DORA) that uses time to encode composition (see also Baggio,
2018; Martin, 2020), yet it is unclear how such a model incorpo-
rates association between constituent words while interpreting
compositional meanings. Given the interaction effect of associa-
tion and composition in the LATL, we suggest that a cognitive
model for meaning composition should include both association
and composition factors.

The LATL’s sensitivity to both composition and associa-
tion supports the role of both compositional and distribu-
tional semantics, which has been the subject of much
discussion in Natural Language Processing and cognitive
science. Distributional semantic models work by building
co-occurrence vectors for every word in a corpus based on
its context. They provide concrete information of word

Figure 7. Pair-wise t test results between each of the two-word conditions and the single word condition within the LATL and the LMTL fROIs. A, The LATL fROI. B, Time course of responses
for each condition averaged over the cluster. Shaded region indicates the marginally significant time windows of 634–657 ms (p= 0.06) and significant time window of 1087–1171ms for
high-association composition . single (p= 0.03). C, Fitted responses for each condition averaged over the cluster and the time windows. D, The LMTL fROI. E, Time course of responses for
each condition averaged over the cluster. Shaded region indicates the marginally significant time windows of 739–784 ms for low-association composition , single (p= 0.08). F, Fitted
responses for each condition averaged over the cluster and the time window. Significance was determined by TFCE correction with 10,000 permutation. The testing time window is 600–
1200ms; *p, 0.05, 9p, 0.1.
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meaning but do not scale up to larger constituents of text,
such as phrases or sentences. Compositional formal seman-
tics complements this approach and various models have
been proposed to combine the two paradigms (Mitchell and
Lapata, 2008; Baroni et al., 2014). These models typically
use one algebraic compositional function such as addition or
multiplication over constituent word embeddings to achieve
composition. Alternatively, recent deep neural networks have
been shown to capture grammar-dependent composition without
clear-cut, algebraic rules (see Baroni, 2020). Here, we show that the
LATL responded differently to high-association and low-association

compositional phrases, suggesting that the
neural mechanism of composition may
indeed not rely on systematic composi-
tional rules.

At the temporal dimension, the regres-
sion analysis showed an early LATL activ-
ity for the interaction effect of association
and composition after the onset of the sec-
ond word. This effect even shows up
before the onset of the second word (544–
846ms) under a cluster-based permuta-
tion test (Maris and Oostenveld, 2007).
However, in the cluster-based permuta-
tion test, the spatiotemporal cluster is
formed before the permutation test, thus
we cannot claim statistical significance for
individual spatiotemporal points in the
cluster. We therefore used the TFCE
approach which allows us to infer the sig-
nificance of each spatial and temporal
point. The TFCE results showed a nar-
rower spatiotemporal cluster in extent,
where the significant time window is from
637 to 759ms (i.e., 37–159ms after the
onset of the second word). This early
onset likely reflects the high predictability
of the high-associative stimuli, that is,
some of the noun-meanings may be pre-
activated during the processing of the first
word. For instance, when seeing “France/
French,” participants might automatically
think of French-related food, although the
second word could be “kimchi.”

In the LMTL, the regression analysis
and the multivariate pattern classifica-
tion results indicated that this region is
mainly sensitive to the composition at
the low-association level, i.e., the distinc-
tion between “Korean cheese” and
“Korea cheese.” Compared with high-
association compositional phrases, low-
association compositional phrases form
a newly-encountered meaning, hence
likely involve more syntactic processing
for a successful parsing. There is ample
evidence that the LMTL supports syn-
tactic combination (Lyu et al., 2019;
Matchin et al., 2019; Flick and
Pylkkänen, 2020; Matchin and Hickok,
2020). For example, the left posterior
MTG (pMTG) in verb-noun combina-
tion shows the strongest model fit in the
left MTG (Lyu et al., 2019), and both

noun and verb phrases (e.g., “the frightened boy” and “frightened
the boy”) induced greater activity in the superior temporal sulcus
compared with word lists (Matchin et al., 2019). Moreover, post-
nominal adjective-noun composition elicited activity in the left
medial to posterior temporal lobe when semantics is held con-
stant (Flick and Pylkkänen, 2020). Our composition effect in the
LMTL might be attributed to the effect of word type (adjective vs
noun; see Mollo et al., 2018 for distinction of noun and verb
context in the LMTL). However, word type cannot explain the
difference between the high-associative and low-associative

Figure 8. Effect of lexical frequency. A, The significant cluster for the first word frequency. B, Time course of b coefficient
of first word frequency averaged over the cluster. Shaded region indicates the significant time windows from 202 to 294 ms
(p= 0.034, TFCE corrected with 10,000 permutation). The analysis time window is 0–600 ms. C, The significant cluster for the
second word frequency. D, Time course of b coefficient of second word frequency averaged over the cluster. Shaded region
indicates the significant time windows from 870 to 950 ms (p= 0.045, TFCE corrected with 10,000 permutation). The analysis
time window is 600–1200ms. *p, 0.05

Figure 9. Directed connectivity between the left SMA and the left M1. A, Partial correlation coefficients matrix from SMA to
M1. B, Partial correlation coefficients matrix from M1 to SMA.
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compositional phrases in the LATL, since both “French cheese”
and “Korean cheese” are grammatical. Note that we are not sug-
gesting that the LMTL is only involved in syntactic processing.
As shown in Figure 8, lexical frequency of both the first and sec-
ond word was significantly correlated with the LMTL activity,
such that higher frequency led to decreased activation at around
200–350ms after the word onset. This spatiotemporal cluster is
consistent with previous findings on the effect of frequency
(Embick et al., 2001; Simon et al., 2012). By adding the first and
second word frequencies as control variables in our regression
model, we revealed the effect of composition in the LMTL in
addition to the word frequency effect.

Our findings align with the controlled semantic cognition
(CSC) framework (Jefferies, 2013; Lambon Ralph et al., 2017),
which proposes a functional dissociation of the anterior and
middle temporal regions as well. Under this framework, the ATL
integrates information from different sources into a coherent
concept, whereas the pMTG retrieves and manipulates semantic
knowledge, such as retrieving infrequent semantic associations.
Previous studies using a similar two-word MEG paradigm,
showed that the ATL responded strongly to semantically coher-
ent word pairs, whereas the pMTG was more sensitive to weak
associations (Teige et al., 2018, 2019). Additionally, studies on
semantic disorders also showed different patterns of impairment:
patients with focal ATL atrophy exhibit symptoms of SD, with
performance strongly influenced by concept familiarity (Ding et
al., 2020). In contrast, patients with temporoparietal damage are
usually diagnosed with semantic aphasia (SA), characterized by
their deficits in controlled semantic retrieval (Jefferies and
Lambon Ralph, 2006; Hoffman et al., 2018; Jefferies et al., 2020).
Mirroring Teige et al.’s (2018, 2019) findings and the SD/SA
patients’ profiles, we also observed the LATL activation for
semantically related word pairs, and the LMTL response to infre-
quent semantic associations. However, we added one important
element to the converging story about the role of the LATL in
semantic processing: syntactic knowledge. Unlike Teige and col-
leagues’ experiments which used only noun-noun word lists as
stimuli, we also included meaning-controlled adjective-noun
phrases. We showed that both composition and association con-
tributed to semantic processing in the LATL, in line with a differ-
ent stream of literature that has shown evidence for the LATL’s
role in conceptual composition (Bemis and Pylkkänen, 2011;
Pylkkänen, 2019). Compared with Teige et al.’s (2018, 2019)
findings that association effect starts from around 200–400ms
after the onset of the target word, our interaction effect between
association and composition began within 100ms after the onset
of the second word. This earlier interaction effect suggests that
syntactic knowledge further facilitates efficient retrieval of highly
coherent semantic information in the ATL under the CSC
framework.

To directly probe the information flow between the two
regions, we further conducted pattern-based directed analysis
and showed that activity originated in the LATL 150–450ms
before it was continuously delivered to the LMTL within 250ms
after the stimulus onset. Prior studies have also suggested func-
tional connectivity between the LATL and the LMTL in semantic
association judgements (Jackson et al., 2016), and the LATL and
the LMTL are also part of the default mode network, which has
been shown to respond strongly when the probe and target items
were highly overlapping conceptually (Lanzoni et al., 2020;
Wang et al., 2020). Our results provide novel evidence on the
direction of the functional connection between the LATL and
the LMTL. Since our regression and decoding analyses showed

that the LATL is more sensitive to the high-association composi-
tional phrases while the LMTL is responding to the low-associa-
tion compositional phrases, we therefore infer that the
information flow from the LATL to the LMTL suggests that
high-association composition precedes low-association composi-
tion. We interpreted these results as reflecting a functional disso-
ciation where the LATL supports “shallow” meaning
composition of common phrases, while the LMTL is engaged to
interpret novel phrases via syntactic composition. At the tempo-
ral dimension, “shallow”meaning formation occurs earlier in the
LATL, and triggers syntactic composition in the LMTL when the
complex meaning is unfamiliar. Note that the anterior temporal
region might be a “higher” cognitive region than the posterior
temporal region since under the dual-stream model of language
processing (Hickok and Poeppel, 2007), the posterior temporal
regions precede the anterior temporal regions in the ventral
pathway, and the posterior temporal regions correspond to the
lexical interface which links phonological and semantic informa-
tion, whereas the more anterior locations correspond to the
“higher level” combinatorial network. In addition, the ATL is
also considered a “hub” that integrates information from modal-
ity-specific regions under the “hub-and-spoke” model of seman-
tic knowledge (Patterson et al., 2007). Thus, the direction of flow
from the LATL to the LMTL in our directed connectivity analysis
likely reflects the flow-back of information from the higher to
the lower cognitive regions.

In summary, we show evidence for distinct profiles in the left
temporal lobe where the LATL is mostly sensitive to high-associ-
ation compositional phrases, while the LMTL responds more to
low-association compositional phrases. We also observed a
prominent information flow from the LATL to the LMTL, sug-
gesting that the integration of adjective and noun properties ori-
ginated earlier in the LATL is consistently delivered to the LMTL
when the complex meaning is newly encountered.
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