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Abstract
Mendelian randomization (MR) uses genetic variants as instrumental variables to investigate the causal effect of a risk factor 
on an outcome. A collider is a variable influenced by two or more other variables. Naive calculation of MR estimates in strata 
of the population defined by a collider, such as a variable affected by the risk factor, can result in collider bias. We propose 
an approach that allows MR estimation in strata of the population while avoiding collider bias. This approach constructs a 
new variable, the residual collider, as the residual from regression of the collider on the genetic instrument, and then calcu-
lates causal estimates in strata defined by quantiles of the residual collider. Estimates stratified on the residual collider will 
typically have an equivalent interpretation to estimates stratified on the collider, but they are not subject to collider bias. We 
apply the approach in several simulation scenarios considering different characteristics of the collider variable and strengths 
of the instrument. We then apply the proposed approach to investigate the causal effect of smoking on bladder cancer in strata 
of the population defined by bodyweight. The new approach generated unbiased estimates in all the simulation settings. In 
the applied example, we observed a trend in the stratum-specific MR estimates at different bodyweight levels that suggested 
stronger effects of smoking on bladder cancer among individuals with lower bodyweight. The proposed approach can be 
used to perform MR studying heterogeneity among subgroups of the population while avoiding collider bias.

Keywords Mendelian randomization · Collider bias · Stratification · Bladder cancer · Smoking · Bodyweight

Introduction

Mendelian randomization (MR) is the use of genetic variants 
as instrumental variables to assess the causal relationship 
between a risk factor and an outcome [1, 2]. A valid instru-
mental variable (IV), or genetic instrument, must meet the 
following assumptions [3]: IV1, the instrument is associated 
with the risk factor; IV2, the instrument cannot affect the 
outcome directly, only potentially indirectly via the risk fac-
tor; and IV3, the instrument is not associated with any meas-
ured or unmeasured confounders (Fig. 1A). If these assump-
tions are satisfied, an association of the instrument with the 
outcome is indicative of a causal effect of the risk factor on 
the outcome [1, 4]. For point estimation of a causal effect, a 
further parametric assumption (known as IV4) is required. 
Two common assumptions are (1) monotonicity: the effect 
of the IV on the exposure is in the same direction (either 
an increase or a decrease) for all individuals in the popula-
tion; or (2) homogeneity: a sufficient assumption is that the 
causal effect of the exposure on the outcome is constant for 
all individuals in the population [4]. Under monotonicity, 
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the IV estimate can be interpreted as a local average causal 
effect; under homogeneity, it can be interpreted as an aver-
age causal effect [5]. If either the IV2 or IV3 assumption is 
not satisfied, then the instrument could be associated with 
the outcome in the absence of a causal effect of the risk fac-
tor. However, only the IV1 assumption can be verified based 
on measured data [6]. 

Collider bias can occur when conditioning on a collider, 
defined as a variable that is a common effect of two or more 
variables [7–10]. The existence of a collider can be recog-
nized in a causal diagram when there are two arrows pointing 
at the same variable; the node at which the arrowheads “col-
lide” together is a collider. For example, in the standard MR 
diagram, the risk factor is a collider as it is affected by both 
the instrument and the confounders. Moreover, any variable 
that is a causal descendent of collider is also affected by the 
same variables and so is itself a collider; hence in MR any 
variable influenced by the risk factor is a collider (Fig. 1B). 
Even if the variables influencing a collider are independent, 
they will typically become dependent when conditioning on 
the collider. Hence conditioning on a variable affected by 
the risk factor will typically generate a conditional associa-
tion between the instrument and the confounders, violating 
the IV3 assumption, and biasing Mendelian randomization 
estimates of the risk factor on the outcome.

Selection bias is a form of collider bias that occurs when 
selection of individuals into a dataset is dependent on a col-
lider. For example, when disease progression is considered 
as an outcome, only patients who have already developed 
the disease would be recruited into the study [7]. If risk of 
developing the disease is influenced by the risk factor, then 
it is a collider when considering disease progression as the 
outcome, and selection of the study sample would result in 
collider bias. Several papers related to selection bias in the 
context of IV analysis and MR have been already published 
[11–15]. Inverse probability weighting on the probability of 
selection has been proposed as a method to avoid selection 
bias [11, 13].

Collider bias could also occur when stratifying the popu-
lation based on a collider. As an example, we consider inves-
tigating the causal effect of the risk factor on the outcome 
for individuals with specific levels of a stratifying variable. 
Stratification is important for identifying whether there are 
subgroups of the population for which causal effects of 
the risk factor are different, and so the outcome would be 
affected more strongly by an intervention on the risk factor. 
However, if the stratifying variable is a collider, an asso-
ciation between the instrument and the outcome in strata 
of the population could arise due to collider bias, invali-
dating the results. In particular, collider bias could affect 

Fig. 1  Directed Acyclic Graphs (DAGs) illustrating relationships 
between the variables. (A) Mendelian Randomization causal diagram 
with the instrumental variable assumptions. The dashed lines between 
G and Y and between G and U, represent violations of the IV2 and 
IV3 assumptions respectively. (B) DAG considering a collider vari-
able C, being a common child of genetic instrument G and confound-
ers U. When conditioning on C (indicated by the square box on C), G 

and U become correlated (dashed line between G and U) and a viola-
tion of the IV3 assumption occurs. (C) DAG considering a collider 
variable C, being a common child of risk factor X and outcome Y. 
(D) DAG illustrating the variables and parameters used for the simu-
lation study. Dashed line from Y to C correspond to simulation sce-
narios B1 to B3
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some estimates more than others, leading to heterogeneity in 
the stratum-specific causal estimates even if the true causal 
effect is the same across strata. Although several previous 
papers have considered collider bias arising due to differen-
tial selection into the study sample [11, 13, 16], including 
when selection is driven by differential survival (a specific 
example of collider bias known as survival bias) [17–19], 
we are not aware of previous work considering the impact 
of stratification on a collider variable.

The aim of this paper is to present an MR approach that 
obtains estimates in strata of the population that do not suffer 
from collider bias. The structure of this paper is as follows: 
first, we demonstrate the bias that arises from conditioning 
on a collider; second, we propose an approach to calculate 
MR estimates in strata of the population and evaluate het-
erogeneity between estimates in the different strata; third, 
we illustrate this new technique in simulation studies and an 
applied example using the UK Biobank resource; and finally, 
we discuss the interpretation of estimates and limitations of 
the approach.

Methods

Illustration of collider bias

The simplest MR method to estimate the causal effect of a 
risk factor X on outcome Y with a genetic instrument G is 
the ratio method [2]. With a single instrument, a continuous 
risk factor and outcome, and under assumptions of linearity 
and no effect modification, the ratio estimate is defined as: 
�̂ =

�̂
YG

�̂
XG

 , where �̂
YG

 is the coefficient from regressing Y on G, 
and �̂

XG
 is the coefficient from regressing X on G [2]. If data 

on G, X, and Y are available in the same individuals (known 
as “one-sample MR”), the same estimate with a single IV 
can be obtained using the two-stage-least-squares method.

Collider bias will occur when adjusting for a collider vari-
able C in the regression models for the ratio estimate, since 
an association between the instrument and the outcome will 
occur through conditioning on the collider. To demonstrate 
the impact and magnitude of collider bias, we performed a 
simulation study in which we compared estimates when no 
adjustment on C is made versus when the outcome regres-
sion is adjusted for C. It is also possible to adjust the risk 
factor regression for C; however, while this will distort esti-
mates, this adjustment alone will not bias causal estimates 
when the true causal effect is null. Under the causal null, the 
genetic association with the outcome will tend towards zero, 
and so the expectation of the IV estimate will be zero even if 
the genetic association with the risk factor is misestimated.

In Pearl’s language of d-separation (open and closed 
paths), conditions for a valid instrument are: (1) there must 

be an open pathway from the instrument to the exposure, 
and (2) all pathways between the instrument and outcome 
must be closed in a modified graph where all edges out of 
exposure are removed [20]. A path is blocked if it contains 
a node in a chain (that is, M in the graph A → M → B ) or 
a fork (that is, M in the graph A ← M → B ) that is condi-
tioned on, or a collider (that is, M in the graph A → M ← B ) 
such that we neither condition on the collider nor a descend-
ent of the collider [10]. In this case, if we stratify on the 
exposure or a descendent of the exposure, then the path-
way G → X ← U → Y  in Fig. 1B is now open. As this is a 
pathway between the instrument and outcome that does not 
contain an edge out of the exposure, this path being open 
invalidates the instrumental variable assumptions.

Stratification in Mendelian randomization

To further illustrate the impact of collider bias, we per-
formed a simulation study in which we calculated causal 
estimates using the ratio method within strata of the popula-
tion defined using a variable that is influenced by the risk 
factor, and hence is a collider. We compared two approaches: 
first, we stratified directly on the collider C, and second, we 
stratified on a new variable C0, referred to as the “residual 
collider”. The residual collider was generated as the residual 
from regression of the collider on the genetic instruments:

C0 = C − Ĉ , where Ĉ are the fitted values from regression 
of C on G.

The residual collider C0 is not associated with the instru-
ment, and hence it is not itself a collider. It is influenced by 
the component of the risk factor that is not a function of G 
(defined as X0), but not by the component that is a func-
tion of G, as shown in Fig. 2, which displays an augmented 
graph demonstrating that conditioning on C0 does not lead to 
invalidity of the instrumental variable assumptions. Moreo-
ver, provided that the genetic instrument does not explain 
much of the variance in the risk factor (as is typical in a MR 
application), it is likely not to explain much of the variance 
in the collider, and so the residual collider will be highly 
correlated with the collider. Hence, while stratifying on the 
residual collider is important to avoid bias, the strata defined 
by stratifying on the collider or residual collider are likely to 
be similar and so any difference in the interpretation of stra-
tum-specific estimates is minimal. If the genetic instrument 
explains a substantial portion of variance in the risk factor, 
then the residual collider will not be as highly correlated 
with the collider, and so differences in the strata explained 
by the residual collider and collider would be more substan-
tial. Even so, stratum-specific estimates represent Mendelian 
randomization estimates in strata of the population with dif-
ferent average levels of the collider, which can be meaning-
fully compared.
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Here we considered estimates in four strata of the popu-
lation defined by quartiles of the distribution of the col-
lider or residual collider; however, in practice any number 
of strata could be considered. We estimated genetic asso-
ciations with the outcome in each stratum separately. We 
estimated genetic associations with the risk factor in the 
full dataset, although if it is believed that these associa-
tions vary between strata, it would be possible to estimate 
these within each stratum as well. The stratum-specific 
estimate is calculated as the ratio of the stratum-specific 
genetic association with the outcome divided by the 
genetic association with the risk factor. The interpreta-
tion of stratum-specific estimates is equivalent to that of 
IV estimates obtained in the whole population; depending 
on the version of the IV4 assumption, they either target 
an average or a local average causal effect [4]. We also 
investigated heterogeneity between the stratum-specific 
estimates using Cochran’s Q statistic [21], and (in the 
applied example) we examined the presence of a trend in 
the estimates by meta-regression of the stratum-specific 
estimates on the median value of the collider in each stra-
tum [22].

Simulation set‑up

To investigate the impact of collider bias in realistic sce-
narios, we generated simulated data using the following 
data-generating model:

G, U, �X, �Y, �C ∼ N(0, 1) independently

We simulated the instrument G, the confounder U, and 
the error terms for X, Y and C,εX , εY and εC , as independent 
normally distributed variables. The risk factor X is defined 
as a linear combination of the instrument, the confounder, 
and the error term εX. The outcome Y and the collider C are 
both linear combinations of the risk factor, confounder, and 
their error terms. In each simulated dataset, we also gener-
ated the residual collider C0 as the residual from regression 
of C on G as previously described.

The causal estimate of interest is �1 , while �2 and �2 repre-
sent the effects of U on X and Y respectively; �1 is the effect 
of G on X; and �1 and �2 are the effects of X and U on C, 
respectively.

We considered three scenarios based on the parameter 
�1 : Scenario A1, where there is a null causal effect of X on Y 
( β1 = 0 ); Scenario A2, where the effect is constant and posi-
tive ( β1 = 0.5 ); and Scenario A3, where the effect depends 
on C ( β1 = 0.5 + 0.2C ). In Scenario A1, we considered esti-
mates from the ratio method with and without adjustment for 
the collider. In Scenarios A2 and A3, we consider stratum-
specific estimates from stratification on the collider C or the 
residual collider C0.

We varied the other parameters to consider the impact 
of different settings on collider bias: i) α1 = (0.05, 0.1, 
and 0.3), in order to study the impact of the strength 
of the instrument on estimates; ii) positive confound-
ing (α2 = 0.8, β2 = 0.8) negative (α2 = −0.8, β2 = −0.8) 
and mixed ( α2 = 0.8, β2 = −0.8) , to study how the 
direction of confounding affects the estimates and, iii) 
μ1 and μ2 = (−1,−0.5, 0, 0.5, 1) to study how the strength of 
the collider effects influence bias.

We also considered scenarios where the collider is a com-
mon effect of X and Y (Fig. 1C). In these scenarios, the col-
lider is generated as C = μ0 + μ1X + μ2U + μ3Y + εC , where 
μ2 = 0.3 and μ3 = (−1,−0.5, 0, 0.5, 1) . In Scenario B1, the 
causal effect of X on Y is null ( β1 = 0 ), in Scenario B2, the 
causal effect is constant and positive ( β1 = 0.5 ), and in Sce-
nario B3, the causal effect depends on U ( β1 = 0.5 + 0.2U ), 
as it is not possible for the causal effect to depend on C 
when C is a function of Y. Finally, we investigated additional 

X = �0 + �1G + �2U + �X

Y = �0 + �1X + �2U + �Y

C = �0 + �1X + �2U + �C

Fig. 2  Augmented Directed Acyclic Graph (DAG) to demonstrate the 
validity of the IV assumptions conditional on the residual collider. 
Augmented DAG where G: genetic instrument, X: risk factor,  X0: 
residual risk factor, Y: outcome, U: measured and unmeasured con-
founders, C: collider,  C0: residual collider. Using the rules of d-sep-
aration, the instrumental variable G is independent of the outcome Y 
conditional on the exposure X, confounders U, and residual collider 
 C0 (assumption IV2), and is independent of the confounders U condi-
tional on  C0 (assumption IV3), and so is still a valid instrument con-
ditional on  C0
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scenarios with a binary outcome Y. We generate Y from a 
Binomial distribution where the probability is obtained from 
a logit transformation as: logit(P(Y = 1)) = β0 + β1X + β2U , 
where β0 = 0.5 . In Scenario C1, the causal effect of X on Y 
is null ( β1 = 0 ), in Scenario C2, the causal effect is constant 
and positive ( β1 = 0.5 ) and in Scenario C3, the causal effect 
depends on C ( β1 = 0.5 + 0.2C ). In the binary outcome sce-
narios, genetic associations with the outcome were estimated 
by logistic regression. For these additional scenarios, we 
only consider α1 = 0.1 and the positive confounding val-
ues; otherwise, we consider all parameters as in scenarios 
A1–A3.

We considered a sample size of n = 10,000 and m = 500 
replications for each set of parameter values. A directed acy-
clic graph illustrating the simulation parameters is shown 
in Fig. 1D.

Applied example: effect of tobacco smoking 
on bladder cancer risk across bodyweight strata

We applied the proposed MR stratification approach to 
investigate the causal effect of tobacco smoking on blad-
der cancer across strata of the population defined by body-
weight. Tobacco smoking is one of the strongest risk factors 
for cancer, and it has already been reported to be causally 
associated with bladder cancer risk in a previous Mendelian 
randomization study [23]. With our current example, the 
objective was to investigate whether the effect of smoking 
on the risk of developing bladder cancer is homogeneous 
across the bodyweight distribution of the population, while 
avoiding potential collider bias by applying our new strati-
fication approach.

We performed analyses in the UK Biobank study, a pop-
ulation-based cohort of more than 500,000 United Kingdom 
residents recruited between 2006 and 2010 [24]. For our 
analysis, we restricted to unrelated European ancestry partic-
ipants, resulting in a final sample size of 367,643 individuals 
following sample selection and quality control procedures as 
described previously [23]. The risk factor is a binary vari-
able representing the smoking behaviour, defined as being a 
current smoker versus a former or never smoker; the stratify-
ing variable is bodyweight, measured in kg; and the binary 
outcome is bladder cancer status, defined based on the data 
from national registries (International Classification of Dis-
eases 9th edition codes: 188, 189.1, 189.2, V10.51, V10.53; 
or International Classification of Diseases  10th edition codes: 
C67, C65, C66, Z85.51, Z85.54, Z85.53), and self-reported 
information from an interview with a nurse practitioner. The 
instrument for smoking was a weighted genetic risk score 
comprising 378 conditionally independent SNPs obtained 
from a genome-wide association study (GWAS) assessing 
associations with smoking initiation (i.e., probability of ever 
smoked regularly), and weighted by the associations with 

smoking initiation [25]. Genetic associations with the risk 
factor and outcome were obtained by logistic regression in 
UK Biobank with adjustment for age, sex, and 10 genomic 
principal components. While age, sex, and principal com-
ponents cannot logically be colliders as they are not affected 
by the risk factor or outcome, bodyweight is likely to be a 
collider, as it is influenced by smoking status [26].

Results

Illustration of collider bias

Results from Scenario A1 ( β1 = 0 , null causal effect) 
are presented in Table 1 for α1 = 0.1 (corresponding to 
 R2 = 0.006 for the mean proportion of variance in the risk 
factor explained by the instrument and a mean F statistic of 
60.8) and Supplementary Tables 1 and 2 for α1 = 0.3 (cor-
responding to  R2 = 0.051, mean F statistic of 548.6) and 
α1 = 0.05 (corresponding to  R2 = 0.001, mean F statistic 
of 15.3). In each case, we report the median estimate of 
β1 across simulations, and the empirical type I error rate, 
representing the proportion of simulated datasets where the 
95% confidence interval for the ratio estimate excludes zero. 
With no adjustment for the collider, median estimates were 
close to zero and empirical type I error rate was close to the 
expected value of 5%. When adjusting for the collider in the 
regression of Y on G, estimates were biased, and type I error 
rates were substantially above 5%. The only exception was 
for μ1 = 0 ; in this case, the variable C is not a function of the 
risk factor, and so does not act as a collider. Bias and type I 
error rates generally increased for more extreme values of μ1 
and μ2 (both positive and negative values). The direction of 
bias depended on μ1 and μ2 and the direction of confounding.

Stratification in Mendelian randomization

Results from Scenario A2 ( β1 = 0.5, constant positive effect) 
are presented in Table 2 for α1 = 0.1 with positive con-
founding. Supplementary Table 3 shows results for α1 = 0.1 
with negative and mixed confounding, and Supplementary 
Tables 4 and 5 for α1 = 0.3 and α1 = 0.05 . We report the 
median estimate of β1 in four strata of the sample defined 
by quartiles of the collider C or residual collider C0, and 
the proportion of simulated datasets for which the heteroge-
neity test statistic is rejected. When stratifying on the col-
lider, median estimates were somewhat variable between 
the strata, although the proportion of datasets in which the 
heterogeneity test rejects the null hypothesis of homoge-
neity was not much above 5% in any scenario, reaching a 
maximum of 11% when α1 = 0.3 . However, if we considered 
stronger instruments or larger sample sizes, we would see 
this proportion considerably exceed 5% (see Supplementary 
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Table 6 where we first set α1 = 0.5 and n = 10,000, and then 
set α1 = 0.1 and n = 50,000, and the type I error rate reached 
16% in each case). This was due to increased precision of 
estimates; the magnitude of bias did not depend strongly on 
instrument strength. While increasing the effect of the IV 
on the exposure increases the strength of the conditional 
association of the IV with the confounder conditional on the 
collider, and hence increases the coefficient for the associa-
tion of the IV with the outcome conditional on the collider 
(the numerator in the ratio estimate), it also increases the 
coefficient for the association of the IV with the exposure 
conditional on the collider (the denominator in the ratio 
estimate). These increases cancel out, and the result is that 
the bias in the ratio estimate is independent of the strength 
of the IV. Median estimates differed substantially from the 
true value of 0.5 across strata, especially when the collider 
was strongly affected by the risk factor. In contrast, when 
stratifying on the residual collider, median estimates of β1 
were close to 0.5 throughout, and there was no suggestion in 
any case that the heterogeneity test rejected the null above 
the expected 5% rate.

Results from Scenario A3 (variable effect) are presented 
in Table 3 for α1 = 0.1 with positive confounding. Supple-
mentary Table 7 shows results for α1 = 0.1 with negative 
and mixed confounding, and Supplementary Tables 8 and 
9 for α1 = 0.3 and α1 = 0.05 . Estimates differed somewhat 
when stratifying on the collider versus the residual collider, 
although in both cases median estimates increased across 
the four strata. The proportion of datasets in which the het-
erogeneity test was rejected, which in this case represents 
the empirical power to detect heterogeneity in the stratum-
specific estimates, was consistently higher when stratifying 
on the residual collider, indicating that true differences in 
the stratum-specific estimates were better detected when 
stratifying on the residual collider.

Additional scenarios

In Scenarios B1 ( β1 = 0) , B2 ( β1 = 0.5) and B3 
(β1 = 0.5 + 0.2U) , where the collider was a function of both 
the risk factor and outcome, similar results were observed, 
with collider bias evident when conditioning on the collider 
(Supplementary Table 10) and when stratifying on the col-
lider (Supplementary Table 11). Collider bias in Scenar-
ios B1 and B2 was greater compared with Scenarios A1 
and A2 where the collider was a function of the risk factor 
only. Similarly, bias was not observed when stratifying on 
the residual collider (Supplementary Table 11). For Sce-
nario B3, the power of the homogeneity test was lower in 
comparison to Scenario A3 (Supplementary Table 11), as 
the dependence of effect heterogeneity on the collider was 
weaker; however, heterogeneity was detected more often 
when stratifying on the residual collider than on the collider.

For Scenarios C1 ( β1 = 0) , C2 ( β1 = 0.5) and C3 
( β1 = 0.5 + 0.2C) , where the outcome was binary, again 
similar results were observed, with collider bias evident 
when conditioning on the collider in Scenario C1 (Supple-
mentary Table 12) and when stratifying on the collider in 
Scenarios C2 and C3 (Supplementary Table 13). Bias was 
smaller than in cases with a continuous outcome, although 
direct comparison is somewhat unfair as estimates with a 
binary outcome were obtained from logistic regression and 
so represent log odds ratios. Estimates when stratifying on 
the residual collider were slightly attenuated from 0.5 due 
to the non-collapsibility of the odds ratio [27, 28]. Despite 
this, in Scenario C2 we observed similar estimates across 
the different strata of C0 for each set of parameter values. 
Similarly, in Scenario C3 we observed that median stratum-
specific estimates increased across the four strata when strat-
ifying on either the collider or residual collider. Power to 
detect heterogeneity was lower compared with Scenario A3 
as the stratum-specific estimates are less precise, although 
again power was consistently higher when stratifying on the 
residual collider.

Applied example: effect of tobacco smoking 
on bladder cancer risk across bodyweight strata

Estimates for the causal effect of smoking on bladder cancer 
in strata of bodyweight and residual bodyweight are shown 
in Table 4. Estimates represent the odds ratio for bladder 
cancer per one unit increase in the log odds of being a cur-
rent smoker. Estimates were positive in all strata, although 
larger in strata 1 and 2 for both bodyweight and residual 
bodyweight, and 95% confidence intervals excluded the 
null in these strata only. Although the homogeneity test was 
not rejected for either collider variable (p value = 0.151 and 
p value = 0.084 for bodyweight and residual bodyweight, 
respectively), there was evidence of trend in the stratum-
specific estimates for residual bodyweight from meta-
regression on the mean value of bodyweight in each stratum 
(p value = 0.019). These results suggest that the effect of 
smoking on bladder cancer is stronger for subgroups of the 
population with lower bodyweight.

Discussion

In this paper, we have demonstrated that conditioning or 
stratifying on a variable that is a collider can have a seri-
ous impact on MR estimates. We have introduced a simple 
approach that constructs a new variable, the residual col-
lider, which is typically highly correlated with the collider, 
but is independent of the instrument. Estimates obtained 
from stratification on the residual collider did not suffer from 
bias in a range of simulation studies. Stratification on the 
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residual collider allows investigators to explore causal esti-
mation in relevant subgroups of the population. We applied 
our new approach to demonstrate that MR estimates for the 
effect of smoking on bladder cancer differ within strata of 
bodyweight, suggesting that the effect of smoking is stronger 
for subgroups of the population with lower bodyweight.

The approach of stratifying on the residual collider fol-
lows the same logic as a previously proposed method for 
non-linear MR, in which causal estimates are obtained in 
strata of the population defined by the “residual risk factor” 
or “IV-free exposure” [29, 30]. This variable is defined simi-
larly to the residual collider, except the collider variable is 
the risk factor itself. This method has been used previously 
to estimate the causal effect of blood pressure on coronary 
heart disease risk within strata of blood pressure, resulting 
in a curve that represents the shape of the causal relationship 
between the risk factor and the outcome [31]. This paper 
extends on that method, showing that the same idea can 
be used to provide causal estimates stratified on a separate 
variable even if that variable is a collider. A strength of this 
method is that its implementation does not depend on the 
causal structure of the data, in particular the relationships 
between the collider and other variables in the model.

There are some limitations to this approach. First, while 
the independence of the residual collider from the instru-
ment is theoretically justified, we demonstrated the valid-
ity of our approach through simulation studies. Although 
we considered a range of different scenarios and parameter 
values, it is not possible to consider every possible data-
generating mechanism by which that a collider could arise. 
Second, in practice, the relationships between variables are 
unknown, and so it may be unclear whether a proposed strat-
ifying variable is a collider. However, even if the variable 
is not a collider, it is unlikely stratification on the residual 
variable will lead to invalid estimates, suggesting that this 
approach would be valid for stratifying on variables that are 
not colliders. This was demonstrated in the simulation study 
when the effect of the risk factor on the “collider” was zero 
( μ1 = 0 ), and so the stratifying variable was not a collider. 

One exception is if the stratifying variable is on the causal 
pathway from the risk factor to the outcome. Stratification on 
such a variable (a “mediator”) will lead to biased estimates 
even in the proposed approach. Third, the degree of col-
lider bias depends on the strength of the effects of the risk 
factor and confounder on the collider, and the direction of 
confounding. Previous work provides an analytical solution 
to estimate the magnitude of selection bias [32]. It is pos-
sible that collider bias may not be substantial in practice, 
as observed in the applied example, where estimates were 
broadly similar when stratifying on bodyweight or residual 
bodyweight. However, the power to detect heterogeneity 
in stratum-specific estimates in the simulation study was 
greater when stratifying on the residual collider, especially 
when the proportion of variance of the risk factor explained 
by the instrument was higher. This was also observed in the 
applied example, where a lower p-value was observed in 
both the heterogeneity test and the trend test when stratify-
ing on residual bodyweight. Fourthly, the residual collider 
differs from the collider. While strata defined based on the 
residual collider will typically be similar to those defined 
based on the collider, there may be some differences, par-
ticularly if the genetic variants explain a substantial pro-
portion of variance in the collider. This means the strata 
that estimates are obtained in are not so clearly defined, as 
stratum membership for an individual near to the boundary 
between two strata would only be evident if their genotype 
were known. Values of the residual collider can only be cal-
culated when data on the relevant genetic variants are avail-
able. Finally, we assumed that the IV assumptions hold; if 
they do not, estimates will typically be biased. However, 
several estimation methods that are robust to IV violations 
are available that allow for consistent estimation under a 
weaker set of assumptions [33].

The finding that the effect of smoking on bladder can-
cer is greater in lower bodyweight subgroups is plausible, 
because for any given level of cigarette consumption smaller 
individuals will tend to be exposed to greater concentrations 
of carcinogens [34]. An alternative explanation is that the 

Table 4  Applied example using UK Biobank to investigate the effect of smoking status on bladder cancer risk in different bodyweight strata

Bodyweight  Q1,  Q2,  Q3,  Q4, represent the four quartiles for both collider and residual collider in which the causal effect of smoking on bladder 
cancer risk is estimated
Odds ratios (OR) and 95% confidence intervals (95% CI) for bladder cancer are represent estimates per one unit increase in the log odds of being 
a current smoker

Bodyweight  Q1
OR [95%CI]

Bodyweight  Q2
OR [95%CI]

Bodyweight  Q3
OR [95%CI]

Bodyweight  Q4
OR [95%CI]

Heterogeneity 
test p-value

Trend test p value

Stratifying on 
bodyweight

1.59 [1.08; 2.33] 1.58 [1.16; 2.14] 1.13 [0.87; 1.45] 1.11 [0.88; 1.41] 0.151 0.051

Stratifying 
on residual 
bodyweight

1.61 [1.09; 2.37] 1.73 [1.28; 2.34] 1.25 [0.97; 1.62] 1.10 [0.87; 1.39] 0.084 0.019
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genetic variants could associate more strongly with smoking 
intensity in individuals of lower bodyweight. However, we 
would be cautious not to interpret estimates in the higher 
bodyweight quartiles as implying an absence of a causal 
effect in heavier individuals; it is possible that the null esti-
mates reflect limited power. Another possible explanation 
for the results observed is differential survival bias induced 
by the age of UK Biobank participants. However, as UK 
Biobank participants were recruited at a relatively young 
age (40–65 years), substantial survival bias is unlikely. A 
limitation of the applied example is overlap between the dis-
covery dataset for the genetic variants, and the dataset used 
in the MR analysis, which can lead to winner’s curse, and the 
one-sample setting, which can lead to weak instrument bias.

In conclusion, we recommend that researchers perform-
ing MR to investigate causal effects in strata of a population 
defined by a collider stratify on residual values of the col-
lider rather than stratifying on the collider directly.
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