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Abstract: Thermographic fault diagnosis of ventilation in BLDC (brushless DC) motors is described.
The following states of BLDC motors were analyzed: a healthy BLDC motor running at 1450 rpm,
a healthy BLDC motor at 2100 rpm, blocked ventilation of the BLDC motor at 1450 rpm, blocked
ventilation of the BLDC motor at 2100 rpm, healthy clipper, and blocked ventilation of the clipper.
A feature extraction method called the Common Part of Arithmetic Mean of Thermographic Images
(CPoAMoTI) was proposed. Test thermal images were analyzed successfully. The developed method,
CPoAMoTI is useful for industry and society. Electric cars, trains, fans, clippers, computers, cordless
power tools can be diagnosed using the developed method.
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1. Introduction

The global electric motor manufacturing market was worth USD 163 billion in 2020.
BLDC motors (brushless DC) are part of the market and they are used in different equip-
ment such as cars, fans, clippers, computers, cordless power tools. They are used in the
mining, computer, and car industry.

Financial losses are caused by unexpected faults in motors. Diagnosis systems can
decrease the number of unexpected faults, which highlights the need to develop new
diagnostic methods for electrical motors. Faults in electric motors can be electrical and
mechanical. Electrical faults are often due to shorted coils and broken rotor bars in electrical
circuits. Mechanical faults include ventilation, bearings, gear, and shaft faults. Faults are
detected using thermal, current, visual, acoustic, vibration signals.

Fault diagnosis based on thermal imaging has not been explored in many scientific
papers, which provides the motivation to develop thermographic fault diagnosis. This pa-
per describes thermographic fault diagnosis of the ventilation in BLDC motors. A feature
extraction method called the Common Part of Arithmetic Mean of Thermographic Images
(CPoAMoTI) is proposed.

This article consists of 7 sections: (1) the introduction, (2) analyzed states of BLDC
motors, (3) thermographic measurements for the BLDC, (4) the developed thermal fault
diagnosis method, (5) results of the analysis, (6) discussion, and (7) conclusions.

Related Work

Methods of fault diagnosis in motors has been developed by many scholars. The fault
diagnosis of electrical faults is based on different diagnostic signals including thermal,
acoustic, vibration, and electric current signals. Many proposed fault diagnosis methods
are based on feature extraction and classification. Another approach is deep learning,
for example, recursive, recurrent, and convolutional neural networks. Feature extraction,
classification, and deep learning are often used for fault detection. Recently, several new
methods of fault diagnosis have been developed, including thermal imaging, pyrometric
analysis using infrared laser pyrometer, acoustic analysis, and vibration analysis, chemical
and oil analysis [1–21].
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Acoustic analysis is used for detecting different faults in motors, engines, fans, gear-
boxes. The advantages of acoustic analysis are non-invasive measurement, a short time is
required for acoustic measurement, and good results are achieved, although a few training
and test samples of the acoustic signal are required for proper recognition. The disadvan-
tages of acoustic analysis are that some faults do not generate acoustic signals, and the
noise of other signals interferes with the acoustic signal (reflected). Acoustic-based fault
diagnosis has been developed in a number of studies in the literature [2–6].

Yao et al. presented a method for the acoustic fault diagnosis of a planetary gearbox
that used the Fourier decomposition method and the random forest classifier. The fault di-
agnosis accuracy rate was equal to 96.32% [2]. Acoustic fault diagnosis for rotary-machine
bearing faults is also presented in the literature. The proposed method was based on the
spectrogram and convolutional neural network. This method recognized degradation
levels and types of bearing faults. It achieved accuracy in the range of 93.33–98.21% [3].
An acoustic-based fault diagnosis method that uses acoustic images of bearings and a
convolutional neural network was also proposed. This approach obtained an accuracy
equal to 99.13% [4]. In another study, a fault identification method for a synchronous
hydraulic motor was investigated. Four states of the synchronous hydraulic motor were
analyzed. The authors of the paper used wavelet packet energy, the Pearson correlation
coefficient, and the nearest neighbor classifier. The recognition accuracy was equal to
100% [5]. Additionally, acoustic fault diagnosis in three-phase induction motors was stud-
ied based on the SMOFS-20-EXPANDED method and LDA, NBC, CT. The total recognition
efficiency was equal to 94.99% [6].

Vibration analysis is also used for detecting different faults in motors and gears. The
vibration signal is not noisy (lack of reflected, interfered vibration signals) and it is easy to
process. However, it is difficult to detect the localization of faults using vibration analysis.
For this reason, methods based on a fusion of vibration and acoustic signals have been
developed [7–12].

Vibration and acoustic fault diagnosis of gears are presented in the literature. In one
study, a convolutional neural network using vibration and acoustic signals was used for
the analysis. The accuracy of the proposed approach was equal to 97.7% [7]. Vibration and
acoustic fault diagnosis of a gearbox are also described in another study where wavelet
packet decomposition and wavelet denoising were used for pre-denoising. FFT and infinite
impulse response filtering were used for feature extraction. Next, classification was carried
out using a self-organizing map. This method achieved an accuracy equal to 95% for four
different features [8]. A vibration-based technique for fault diagnosis of a gearbox that
uses frequency-modulated empirical mode decomposition and support vector machine
has also been described in the literature. The obtained accuracy was equal to 90% [9].
A vibration-based method for bearing fault diagnosis using a convolutional neural network
and a deep forest model has been developed. The accuracy of the vibration-based method
was equal to 99.4% [10]. Techniques for detecting tool breakage using vibration signals
were demonstrated in [11]. Vibro-acoustic analysis of a railway disc brake based on the
amplitude and frequency domains was conducted in [12].

Thermal imaging is often used for different applications such as fault diagnosis,
medical diagnosis, security, car monitoring, plane monitoring, astronomy, and by rescue
teams. Fault diagnosis based on thermal imaging is non-contact and non-invasive. It is
a highly effective method of fault diagnosis [13–21]. However, the high cost of thermal
imaging cameras is a limitation for fault diagnosis applications.

Thermal condition monitoring of bearing faults in three-phase induction motors has
been proposed previously. Acquired thermal images were converted using the HSV model.
Segmentation of the hue component was conducted using Prewitt, Roberts, Sobel, Canny
filters. The computed results were good [13]. A convolutional neural network, K-means
clustering, and support vector machine were used for three-phase induction motors. The
accuracy was equal to 100% for real thermal images of the three-phase induction motor [14].
Thermal-based fault diagnosis of an induction motor been described in which an adaptive
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neuro-fuzzy inference system was used for faults such as air gap eccentricity, cooling
fan failure, and shaft bending. The accuracy of the classification of thermal images was
equal to 91.27% [15]. A fault diagnosis technique for an induction motor (working in
transient conditions) based on thermal images and a convolutional neural network has
been described. The accuracy of the proposed approach was equal to 100% for most
cases [16]. Morales-Perez et al. analyzed three specific regions of thermography images
to detect bearing damage. The authors measured a difference of 1.8 ◦C between the
faulty and healthy bearing of the induction motor [17]. Furthermore, bearing faults in
induction motors were analyzed using infrared thermography. This approach was based
on 2D-discrete wavelet transform, principal component analysis, support vector machine,
complex decision tree, and linear discriminant analysis. The accuracy was between 80–100%
for healthy, inner race defects, and outer race defects. The SVM classifier recognized the
test data set with high accuracy [18]. The thermal analysis of brushless direct current motor
using thermal images is also presented in the literature. The following parameters were
found for motors with corroded permanent magnets (reduction of 0.15 mm): reduced
efficiency by 8% and reduced rated speed by 70 rpm [19]. A review of the industrial
applications of infrared thermography is presented in [20,21].

2. Analyzed States of BLDC Motors

In this study, two similar fans (HB Polska Sp. z o. o., AirCoolic, model: AC 2320S,
made in China) were analyzed (Figures 1–3). Each fan consisted of a BLDC motor (25 W),
steel blades and a cage. The fan was operated at different speeds. The following states
of the BLDC motor were analyzed: healthy BLDC motor at 1450 rpm (Figure 4), blocked
ventilation of the BLDC motor at 1450 rpm (Figure 5), healthy BLDC motor at 2100 rpm
(Figure 6), and blocked ventilation of the BLDC motor at 2100 rpm (Figure 7).

The blade of the fan (Figure 3) obscured a part of the BLDC motor. Camera positioning
is very important for measurements (Figures 4–7). Thermal images of the BLDC motor
(fan) are shown in Figures 4–7.

Two similar clippers (Clipper HC5440/80) were analyzed (Figure 8). Each clipper
consisted of a BLDC motor (5.4 W). The following states of the clipper were analyzed:
healthy clipper (Figures 8 and 9), and blocked ventilation of the clipper (Figures 8 and 10).

Thermal images of the BLDC motor (Clipper HC5440/80) are shown in Figures 9 and 10.

Figure 1. Analyzed fan: (a) healthy BLDC motor, (b) blocked ventilation of the BLDC motor.
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Figure 2. Healthy BLDC motor at 2100 rpm (a) gray-scale, (b) rainbow scale (c) photo.

Figure 3. Blocked ventilation of the BLDC at 2100 rpm (a) gray-scale, (b) rainbow scale (c) photo.

Figure 4. Healthy BLDC motor at 1450 rpm (a) gray-scale, (b) iron scale, (c) rainbow scale.

Figure 5. Blocked ventilation of the BLDC motor at 1450 rpm (a) gray-scale, (b) iron scale, (c) rain-
bow scale.
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Figure 6. Healthy BLDC motor at 2100 rpm (a) gray-scale, (b) iron scale, (c) rainbow scale.

Figure 7. Blocked ventilation of the BLDC motor at 2100 rpm (a) gray-scale, (b) iron scale, (c) rain-
bow scale.

Figure 8. Analyzed clipper HC5440/80: (a) healthy clipper, (b) blocked ventilation of the clipper.

Figure 9. Healthy clipper: (a) gray-scale, (b) iron scale, (c) rainbow scale.
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Figure 10. Blocked ventilation of the clipper: (a) gray-scale, (b) iron scale, (c) rainbow scale.

3. Thermographic Measurements for the BLDC

Thermographic measurements were carried out in a room (4 m × 5 m). The BLDC
motor was at a distance of 0.2 m from the thermal imaging camera (Figures 11 and 12).
The BLDC motor of the fan has the following parameters: POBLDC1 = 25 W (power
of the BLDC), RASBLDC1 = 1450 rpm, RASBLDC1 = 2100 rpm (rotor angular speed),
VOBLDC = 230 V/50 Hz (voltage), WEFAN = 1.6 kg (weight of the fan). The BLDC motor of
the clipper has POBLDC2 = 5.4 W (power of the BLDC). The parameters of the FLIR E4
camera are as follows: temperature measuring range (−20 ◦C to +250 ◦C), resolution of
images (80 × 60), its thermal sensitivity is less than 0.15 ◦C, and the image frequency is
equal to 9 Hz. Images of 80 × 60 pixels were converted to images of 320 × 240 pixels using
FLIR software. The thermal camera was vibrating in the range of 0–0.5 m/s2. Different
measured thermal images were used. A movie was recorded for two devices (two fans, two
clippers). The thermal imaging camera was set at the highest temperature of the analyzed
state, that is, blocked ventilation of the BLDC motor at 2100 rpm. The measurements were
performed after a steady state was reached so as to avoid the negative effects of transients
in the damage detection method. Measurements were carried out for 30 s of operation
of the motor. The parameter ε (emissivity coefficient) was equal to 0.6. The parameter
ε is between 0.62–0.73 for various types of steel. Rolled sheet steel (temperature 21 ◦C)
has an emissivity coefficient equal to 0.660. Stainless steel 303, after 42 h of heating at
527 ◦C (temperature 216–527 ◦C) has an emissivity coefficient equal of 0.620−0.730 [22].
The author selected ε = 0.6 and it was good enough for measurements. Nylon covering
was used for the detection of fan faults. The nylon blocking the ventilation leads to a
temperature increase (indicative of damage for many conditions), but it does not affect
the thermal imaging equipment thanks to its transparency. Nylon covering was used to
simulate damage, thus allowing us to implement damage detection.

Figure 11. Thermographic measurements for the BLDC motor (fan).
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Figure 12. Thermographic measurements for the BLDC motor (clipper HC5440/80).

4. The Developed Thermal Fault Diagnosis Method

The developed thermal fault diagnosis technique using the Common Part of Arith-
metic Mean of Thermographic Images (CPoAMoTI) is presented in Figure 13. Measure-
ments were carried out using a thermal imaging camera FLIR E4 and a computer. The
gray-scale movie was captured and then the movie was converted into gray-scale thermal
images (format TIFF, 256 colors). Then, the CPoAMoTI method was used to compute
patterns. It was used for training and test sets (66 and 360 gray-scale thermal images—
6 classes for two BLDC motors). Next, image subtraction was carried out and differences in
the images (test and training) were computed. Next, the sum of the pixels of the computed
differences was calculated. The differences in the images determine the recognized class.

Figure 13. Block diagram of the developed thermal fault diagnosis technique using CPoAMoTI.
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4.1. Common Part of Arithmetic Mean of Thermographic Images (CPoAMoTI)

The author developed a feature extraction method—CPoAMoTI. For a better un-
derstanding, it is demonstrated for the gray-scale thermal images of the analyzed fan
(4 classes: 44 training and 240 test thermal images). The CPoAMoTI method includes the
following steps:

1. Gray-scale thermal images (256 colors, matrices 320 × 240) are grouped as training
and test sets.

2. Compute image of the arithmetic mean using thermal images of training set:

classk =

n
∑

n=1
|Xn|

n
, (1)

where Xn is the matrix of training thermal image, n is the number of training thermal
images (n = 11), classk is the arithmetic means of class with k index (matrix 320 × 240),
class1 is the image of the arithmetic mean of training thermal images of the healthy
BLDC motor at 1450 rpm, class2 is the image of the arithmetic mean of training
thermal images of the healthy BLDC motor at 2100 rpm, class3 is the image of the
arithmetic mean of the training thermal images of blocked ventilation of the BLDC
motor at 1450 rpm, class4 is the image of the arithmetic mean of the training thermal
images of blocked ventilation of the BLDC motor at 2100 rpm (4 classes for the
analyzed fan).

3. Compute differences:
diffj = |classk − classg|, (2)

where, diffj is the difference of two matrices; j is the number of computed differences
for 4 classes j = 6, diff1 = |class1 − class2|, . . . , diff6 = |class3 − class4|; k, g is the
number of classes, for 4 classes: 1, 2, 3, 4.

4. Compute the following sum:

sum_avg =
j

∑
j=1

∣∣diffj
∣∣, (3)

5. Compute the value of M:
M = max(sum_avg), (4)

where M is the maximum value of matrix sum_avg.
6. Compute the value of m:

m = p ×M, (5)

where m is the percentage of maximum value M, p is in the range of [0, 1]. The analysis
is carried out for different parameters of p.

7. For each training and test thermal image, compute

C = TI + sum_avg − G, (6)

where C is the computed image; G is the matrix of 320 × 240, each element of matrix
G has a value equal to m; TI is the training or test thermal image (matrix of 320 × 240).

8. In matrix C, set 0 for values less than zero. The computed images are as follows:
images C1, C2, . . . , C44 for the training set and C51, . . . , C290 for the test set (only
for analyzed fan).

9. Compute image subtraction:
di = |Ca − Cb|, (7)
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where, di is the matrix of differences between test and training thermal images (for
one test image and 44 training images, d1, d2, . . . , d44 are computed), Ca is the test
thermal image (C51, . . . , C290), Cb is the training thermal image (C1, C2, . . . , C44).

10. Compute sums of pixel values si for each computed matrix di,

si =
z

∑
j=z
|pvz|, (8)

where si is the sum of pixel values for di; i is the integer from 1 to 44; pvz is the pixel
value, z is the integer from 1 to 76,800 (320 × 240 = 76,800).

11. Find the lowest value of the computed sums.
12. Detect the proper class of the BLDC motor.

A flowchart of the processing of training samples using the CPoAMoTI method is
depicted in Figure 14.

Figure 14. Flowchart of processing using the CPoAMoTI method.

Images of arithmetic means of 4 analyzed classes: class1, class2, class3, class4 are
presented in Figure 15.
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Figure 15. (a) Image of arithmetic mean of thermal images of the healthy BLDC motor at 1450 rpm
(class1). (b) Image of arithmetic mean of thermal images of the healthy BLDC motor at 2100 rpm
(class2). (c) Image of arithmetic mean of thermal images of the blocked ventilation of the BLDC motor
at 1450 rpm (class3). (d) Image of arithmetic mean of thermal images of the blocked ventilation of
the BLDC motor at 2100 rpm (class4).

The computed differences diff1, . . . , diff6 are shown in Figure 16.

Figure 16. Computed difference: (a) diff1 = |class1 − class2|, (b) diff2 = |class1 − class3|, (c) diff3 = |class1 − class4|.
Computed difference: (d) diff4 = |class2 − class3|, (e) diff5 = |class2 − class4|, (f) diff6 = |class3 − class4|.

The obtained matrix sum_avg is presented in Figure 17.
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Figure 17. Computed matrix sum_avg (for the BLDC of the fan).

The value of M, the maximum of matrix sum_avg is equal to 2.8784 for the considered
training thermal images. This maximum is used for the equation m = p ×M. The author
analyzed the following p parameters: 0; 0.3; 0.5; 0.7; 0.9; 1.0. Next, step 7 was performed:
C = TI + sum_avg − G. The thermal images of the healthy BLDC motor at 2100 rpm for
different parameters p are shown in Figure 18.

Figure 18. Thermal image of the healthy BLDC motor at 2100 rpm (class2) for the parameter (a) p = 0, (b) p = 0.3, (c) p = 0.5.
Thermal image of the healthy BLDC motor at 2100 rpm (class2) for the parameter (d) p = 0.7, (e) p = 0.9, (f) p = 1.0.

Thermal images of the healthy BLDC motor at 2100 rpm for parameter p = 0.3–0.5 are
the best recognized by the human eye (Figure 18b,c). Step 9 performs image subtraction.
This step is similar to the KNN classifier [23,24]. Forty-four training thermal images were
used (for fans). For each test thermal image, there are 44 differences. Four differences (of
44 computed differences, parameter p = 0.5) are presented in Figure 19.
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Figure 19. Computed difference di: (a) |test_class2 − training_class1|, (b) |test_class2 − train-
ing_class2|. Computed difference di: (c) |test_class2 − training_class3|, (d) |test_class2 − train-
ing_class4|.

Computed sums of the pixel values for 4 differences (parameter p = 0.5) are shown
in Table 1). The class “healthy BLDC motor at 2100 rpm” is detected (sum of pixel values
equals 975.5).

Table 1. Computed sums of pixel values for 4 differences (parameter p = 0.5).

State of the BLDC (Fan) Sum of Pixel Values

healthy BLDC motor at 1450 rpm 1575.6
healthy BLDC motor at 2100 rpm 975.5

blocked ventilation of the BLDC motor at 1450 rpm 1910.9
blocked ventilation of the BLDC motor at 2100 rpm 1428.3

5. Results of the Analysis

The following states of the BLDC motor were analyzed: healthy BLDC motor at
1450 rpm, healthy BLDC motor at 2100 rpm, blocked ventilation of the BLDC motor
at 1450 rpm, blocked ventilation of the BLDC motor at 2100 rpm, healthy clipper, and
blocked ventilation of the clipper. To compute the common part of the arithmetic mean of
thermographic images, the author used 11 training samples from each class (66 training
samples in total). The author used 60 new test samples from each class (360 test samples in
total) for testing. The cross-validation method was used for validation.

The recognition efficiency of one class EBLDC is expressed as Equation (9):

EBLDC = 100%× (TTIRC)/(ATTI), (9)

where TTIRC is the test thermographic images (for one class) recognized correctly, ATTI is
all test thermographic images (for one class, 60 test images for the presented analysis).

The arithmetic mean of EBLDC (AMEBLDC) is expressed as Equation (10):

AMEBLDC = (EBLDC1 + EBLDC2 + EBLDC3 + EBLDC4)/4, (10)

where EBLDC1 is the EBLDC for the healthy BLDC motor at 1450 rpm, EBLDC2 is the EBLDC
for the healthy BLDC motor at 2100 rpm, EBLDC3 is the EBLDC for blocked ventilation of the
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BLDC motor at 1450 rpm, EBLDC4 is the EBLDC for blocked ventilation of the BLDC motor
at 2100 rpm.

AMEBLDC = (EBLDC5 + EBLDC6)/2, (11)

where EBLDC5 is the EBLDC for the healthy clipper, EBLDC6 is the EBLDC for blocked ventila-
tion of the clipper.

The results of the CPoAMoTI method for the BLDC motor (fan) are presented in
Tables 2 and 3.

Table 2. Results of recognition for CPoAMoTI method (parameter p = 1.0) for the BLDC motor (fan).

State of the BLDC EBLDC [%]

EBLDC1, healthy BLDC motor at 1450 rpm 100

EBLDC2, healthy BLDC motor at 2100 rpm 98.33

EBLDC3, blocked ventilation of the BLDC motor at 1450 rpm 100

EBLDC4, blocked ventilation of the BLDC motor at 2100 rpm 100

AMEBLDC [%]

AMEBLDC 99.58

Table 3. Results of recognition for CPoAMoTI method (parameter p = 0–0.9) for the BLDC motor (fan).

State of the BLDC EBLDC [%]

EBLDC1, healthy BLDC motor at 1450 rpm 100

EBLDC2, healthy BLDC motor at 2100 rpm 100

EBLDC3, blocked ventilation of the BLDC motor at 1450 rpm 100

EBLDC4, blocked ventilation of the BLDC motor at 2100 rpm 100

AMEBLDC [%]

AMEBLDC 100

The computed results (Tables 2 and 3) are very good for the CPoAMoTI method for
all analyzed states of the BLDC motor (fan) AMEBLDC = 100% (parameter p in the range
of 0–0.9). The thermographic images are very similar. However, the proposed method
CPoAMoTI is good enough to correctly recognize four classes.

The results of the CPoAMoTI method for the BLDC motor (Clipper HC5440/80) is
presented in Table 4.

Table 4. Results of recognition for CPoAMoTI method (parameter p = 0–1.0) for the BLDC motor
(Clipper HC5440/80).

State of the BLDC EBLDC [%]

EBLDC5, healthy clipper 100

EBLDC6, blocked ventilation of the clipper 100

AMEBLDC [%]

AMEBLDC 100

The computed results (Table 4) are very good for the CPoAMoTI method. For all
analyzed states of the BLDC motor (Clipper HC5440/80) AMEBLDC = 100% (parameter p in
the range of 0–1.0).

6. Discussion

BLDC motors are used in the mining, computer, and car industry. Thermographic
fault diagnosis is non-invasive. All objects emit thermal radiation, which can be measured
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and analyzed. This study develops a new thermographic fault diagnostic method and was
motivated by other research in this area [13–21]. Thermographic fault diagnosis of BLDC
motors can also be used for other applications (other types of motors, combustion engines).

Measurements were carried out in a room with a temperature ranging from 28.7 to
34.1 ◦C. The thermal imaging camera sets the scale itself depending on the maximum
temperature and background temperature. The proposed method CPoAMoTI has a high
recognition rate. The presented analysis is based on pattern recognition. Many experimen-
tal parameters, for example, a distance of an object to the camera or orientation can be set.
The motor can be dirty or painted and weather, ambient temperature, and humidity may
vary. Similar to the human brain, we need a proper base of patterns and many thermal
images for a variety of conditions.

Nylon covering was used for the detection of fan faults. Plastic or paper boxes can
also be used. The analyzed fan did not have housing although a BLDC motor is usually in
housing, for example, the fan of a computer or clipper.

The proposed feature extraction method CPoAMoTI is presented in Section 4.1. The
proposed fault diagnosis works for measurements with and without vibration (Sections 2–5).
The results will always be good for measurements without vibrations. The computed train-
ing and test thermal images are almost the same. However, the results can be different
for significant vibrations. In the proposed analysis, the vibrations of the thermal imag-
ing camera were in the range of 0–0.5 m/s2. The computed results were quite good
(AMEBLDC = 100%) for the CPoAMoTI method. The author considered vibrations in the
range of 0–0.5 m/s2 for the training and test sets. Both sets were different. Thresholding of
the CPoAMoTI was carried out using Equation (6). Unnecessary elements in the image
(labels, temperature, scale bar) were removed. The BLDC motor was at a distance of 0.2 m
from the thermal imaging camera. The distance between the thermal imaging camera and
the analyzed motor, and the vibration of the thermal imaging camera have an influence on
the computed results.

Previous studies have developed thermographic fault diagnosis techniques for the
three-phase induction motor (power of the motor = 550 W) [25] using the feature extraction
MoASoID method, which used thermal images. This was based on the analysis of magenta
color images (extracted from a color movie). The temperature of the analyzed thermal
images was in the range of 21 to 38.7 ◦C. The measurement was carried out using the
thermal imaging camera without vibrations. Thresholding of the MoASoID was carried
out using binarization (one time). The MoASoID method had problems with unnecessary
elements in the image (labels, temperature, scale bar). The MoASoID used the differences
between the images of training and test sets. It computed one feature—the sum of the pixels.
The method was tested for three classes: a healthy motor, a motor with two broken bars,
and a motor with a faulty ring in the squirrel-cage. The recognition rate of the MoASoID
was equal to 100% [25].

In another study, the author describes the thermographic fault diagnosis technique,
which was used for an electric impact drill (commutator motor, power of the motor = 500 W).
The feature extraction BCAoID method was presented. The BCAoID method used thermal
images. It was based on the analysis of gray-scale images (extracted from the gray-scale
movie). The temperature range of the analyzed thermal images was from 27.6 to 39 ◦C.
The measurement was carried out using the thermal imaging camera with a 0.05 m offset
between the training and test thermal images. Thresholding of the BCAoID was carried out
using binarization (two times). Unnecessary elements in the image (labels, temperature,
scale bar) were removed. The BCAoID used the differences between the images of the
training and test sets. It computed one feature—the sum of pixels. The method was tested
for 3 classes: a healthy electric impact drill (EID), EID with a faulty fan (10 broken fan
blades), EID with damaged gear train. The recognition rate of the BCAoID was in the range
of 97.91 to 100% [26].

All three methods (MoASoID, BCAoID, and CPoAMoTI) are compared in Table 5. It
can be observed that the CPoAMoTI method is more reliable than the other methods.
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Table 5. Comparison of analysis and methods: MoASoID, BCAoID and CPoAMoTI.

Analyzed Method MoASoID BCAoID CPoAMoTI

Type of motor Three-phase induction motor Commutator motor BLDC motor

Power of the analyzed motor 550 W 500 W 25 W,
5.4 W

Analyzed faults of the motor electrical mechanical mechanical

Temperature range of
analyzed thermal images 21–38.7 ◦C 27.6–39 ◦C 34.1–43.1 ◦C

28.7–41.9 ◦C

Measurement with Vibrations No 0.05 m offset Vibration
0–0.5 m/s2

Thresholding Binarization,
1 time

Binarization,
2 times

C = TI + sum_avg − G,
negative values to 0

Problems with unnecessary
elements in the image

(label, temperature, scale bar)
Yes No No

Differences Between images of training
and test sets

Between images of training
and test sets

Between arithmetic means of
training classes

Number of analyzed features 1 feature—
Sum of pixels

1 feature—
Sum of pixels Matrix 320 × 240

Number of analyzed classes 3 3 4 + 2

Recognition
Nearest Neighbor classifier,
K-means, backpropagation

neural network)

Nearest Neighbor classifier
and the backpropagation

neural network

Difference between features
(matrices C)

Scale Rainbow Gray-scale Gray-scale

Recognition Rate (%) 100 97.91–100 100

7. Conclusions

Thermographic fault diagnosis of the ventilation in BLDC motors was described
in this paper. The feature extraction method, the Common Part of Arithmetic Mean of
Thermographic Images (CPoAMoTI) was proposed. The following states of BLDC motors
were analyzed: a healthy BLDC motor at 1450 rpm, healthy BLDC motor at 2100 rpm,
blocked ventilation of the BLDC motor at 1450 rpm, blocked ventilation of the BLDC motor
at 2100 rpm, a healthy clipper, and blocked ventilation of the clipper. Test thermal images
were analyzed successfully. The recognition rate was equal to 100% for the analyzed
states of the BLDC motors. Similar faults in motors can be analyzed using the presented
CPoAMoTI method. The proposed thermographic fault diagnosis is non-invasive and the
developed CPoAMoTI method is beneficial for industry and society. Electric cars, trains,
fans, clippers, computers, cordless power tools can be diagnosed using the developed
method. The author will analyze different thermal imaging cameras, signals, and faults in
machines in future research. Different sensors such as microphones, accelerometers, and
cameras will be used for the diagnosis of various machines.
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