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a b s t r a c t

The objective of this review is to identify the shortfalls of wheat-based, crude protein (CP)-reduced diets
for broiler chickens as wheat is inferior to maize in this context but to inconsistent extents. Inherent
factors in wheat may be compromising gut integrity; these include soluble non-starch polysaccharides
(NSP), amylase trypsin inhibitors (ATI) and gluten. Soluble NSP in wheat induce increased gut viscosities,
which can lead to compromised gut integrity, which is not entirely ameliorated by NSP-degrading feed
enzymes. Wheat ATI probably compromise gut integrity and may also have the capacity to increase
endogenous amino acid flows and decrease apparent starch and protein digestibilities. Gluten inclusions
of 20 g/kg in a maize-soy diet depressed weight gain and feed intake and higher gluten inclusions have
been shown to activate inflammatory cytokine-related genes in broiler chickens. Further research is
required, perhaps particularly in relation to wheat ATI. The protein content of wheat is typically higher
than maize; importantly, this results in higher inclusions of non-bound amino acids in CP-reduced
broiler diets. These higher inclusions could trigger post-enteral amino acid imbalances, leading to the
deamination of surplus amino acids and the generation of ammonia (NH3) which, if not adequately
detoxified, results in compromised growth performance from NH3 overload. Thus, alternatives to non-
bound amino acids to meet amino acid requirements in birds offered CP-reduced, wheat-based diets
merit evaluation. The digestion of wheat starch is more rapid than that of maize starch which may be a
disadvantage as the provision of some slowly digestible starch in broiler diets may enhance performance.
Alternatively, slowly digestible starch may result in more de novo lipogenesis. Therefore, it may prove
instructive to evaluate CP-reduced diets based on maize-wheat and/or sorghumewheat blends rather
than entirely wheat. This would reduce non-bound amino acid inclusions by lowering dietary CP derived
from feed grains and may enhance starch digestive dynamics by retarding starch digestion rates. Also, the
use of biomarkers to monitor gut integrity in broiler chickens is examined where calprotectin, ovo-
transferrin and possibly citrulline appear to hold promise, but their validation requires further research.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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1. Introduction

There is an active quest to develop crude protein (CP)-reduced
diets that will meet practical acceptance as this, in many countries
of the world, would reduce the chicken-meat industry's depen-
dence on imported soybean meal. CP-reduced diets have the po-
tential to halve the industry's dependence on imported soybean
meal; thereby, enhancing its sustainability. However, the idea of
reducing dietary CP is certainly not new; perhaps unwittingly, it has
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been practiced for decades following the introduction of synthetic
D,L-methionine more than 60 years ago. The inclusion of 4.3 g/kg
non-bound amino acids (lysine$HCl, methionine, threonine) was
shown to reduce the CP content of a maize-soy diet from 356 to
200 g/kg with a radical reduction in the dietary soybean meal from
709 to 293 g/kg as demonstrated by Pesti (2009).

Moreover, CP-reduced broiler diets have the potential to provide
additional advantages extending to the environment with reduced
nitrogen and ammonia emissions, litter quality, bird welfare and
flock health (Greenhalgh et al., 2020a) and may extend to food
safety. The impacts of reducing dietary CP levels from 225 to 205
and 185 g/kg in diets on faecal microflora were investigated by
Laudadio et al. (2012). Faecal concentrations of Escherichia coliwere
reduced by 23.7% (2.97 versus 3.89 log10 colony forming units
[CFU]/g) at 42 d postehatch, which is advantageous from the
standpoint of food safety.

Broiler diets are frequently based on maize or wheat; however,
wheat is less suitable thanmaize as the basis of reduced CP (Chrystal
et al., 2021), which complicates the tangible challenges to their
further development (Chrystal et al., 2020a; Liu et al., 2021a). Thus,
this review is an attempt to identify the factors underlying the
shortfalls of wheat-based diets in relation to broiler growth perfor-
mance following reductions indietaryCPconcentrations, so that they
may be addressed. Importantly, the effects of any shortfalls inwheat
will be only amplified in CP-reduced diets because of increased di-
etary wheat and starch inclusions.

2. Background: maize versus wheat

Maize and wheat are the 2 commonly used feed grains in global
chicken-meat production. However, wheat has a higher CP content
(118 versus 91 g/kg) than maize and their amino acid profiles differ.
Relative to lysine (100), wheat grown in Australia contains more
glutamic acid (145) and glycine (117), but less aspartic acid (79),
methionine (75), leucine (51) and alanine (47) than maize (Fickler
et al., 2016). As a consequence of these differences, wheat-based,
CP-reduced diets contain more non-bound amino acids with
greater proportions relative to protein-bound amino acids, which is
probably disadvantageous (Selle et al., 2022).

The impact of dietary CP concentrations in maize-based versus
wheat-based diets have been directly compared in 2 studies
(Chrystal et al., 2021; Greenhalgh et al., 2022a). In both studies,
wheat supported better weight gain and FCR in standard CP diets,
but this position was reversed following dietary CP-reductions, as
shown in Table 1, although the reductions differed in magnitude.
Maize was clearly superior to wheat in terms of growth perfor-
mance, but not fat deposition, in Chrystal et al. (2021) following
dietary CP reductions and the same pattern was evident, but to far
less pronounced extents, in Greenhalgh et al. (2022). The dietary CP
reduction in wheat-based diets from 222 to 165 g/kg compromised
weight gain by 35.5% (1,549 versus 2,403 g/kg) and FCR by 26.6%
(1.840 versus 1.453) in Chrystal et al. (2021). In contrast, the dietary
CP reduction from 220 to 180 g/kg in wheat-based diets depressed
weight gain by 7.72% (2,510 versus 2,720 g/bird) and FCR by 9.82%
(1.443 versus 1.314) in Greenhalgh et al. (2022a). A non-starch
polysaccharides (NSP)-degrading enzyme was included across all
diets in the Greenhalgh et al. (2022a) study, which was not the case
in the Chrystal et al. (2021) study, and this may have contributed to
the differences in responses observed.

Again, remarkably different outcomeswere recorded in 2 similar
studies when broiler chickens were offered CP-reduced diets based
on wheat, as shown in Table 2. However, it is relevant that both
exogenous phytase and xylanase were included across all dietary
treatments in the 2 studies. In Yin et al. (2020), the dietary CP
reduction from215 to 165 g/kg fractionally increasedweight gain by
182
0.48% (2,106 versus 2,096 g/bird), compromised FCR by 4.74% (1.546
versus 1.476) and increased relative fat-pad weights by 21.2% (8.87
versus 7.32 g/kg). In contrast, the dietary CP reduction from 197.5 to
162.5 g/kg depressed weight gain by 48.4% (1,010 versus 1,958 g/
bird), negatively impacted FCR by 44.1% (2.426 versus 1.684) and
decreased relative fat-pad weights by 18.9% (6.79 versus 8.37 g/kg)
in Greenhalgh et al. (submitted for publication). It may be deduced
from 3 of the above studies that a CP reduction from 210 to 160 g/kg
would trigger a 33.8% increase in dietary wheat inclusions from 568
to 760 g/kg on the basis of least-cost formulations, so the high and
low CP diets have substantially different compositions.

The immensely different outcomes in the 2 sets of feeding
studies are intriguing and an explanation should prove instructive. It
was proposed that ‘ammonia (NH3) overload’may have contributed
to the extraordinarily poor performance in birds offered 180.0 and
162.5 g/kg CP, wheat-based diets in the Greenhalgh et al. (2020b)
study. The superiority of maize versus wheat in the Chrystal et al.
(2021) study may have also been due partially to ‘NH3 overload’,
triggered by the higher inclusions of non-bound amino acids in
reduced-CP,wheat-based diets. As discussed later, this proposalwas
validated to some extent by Selle et al. (2021a), with retrospective
analyses of uric acid concentrations in excreta from the Chrystal
et al. (2021) study. The more modest advantages held by maize
over wheat in Greenhalgh et al. (2022) and the quite reasonable
performance of birds offered 165 g/kg CP, wheat-based diets in Yin
et al. (2020) suggest that NH3 overload may not have been
involved and that other factors may have been engaged in relatively
moderately depressed growth performance.

The inclusion of antibiotic growth promoters (AGP) in poultry
diets is declining, whichwas initiated by the banning of the practice
in Europe in 2006. The declining global usage of AGP represents a
challenge to the sustainability of chicken-meat production
(Cervantes, 2015). This situation has prompted a search for viable
alternatives to AGP and has increased the focus on ‘gut integrity’ in
broiler chickens. Indeed, Adedokun and Olojede (2019) contended
that maintaining gut integrity in broiler chickens would continue to
be a challenge for the foreseeable future. It is possible that wheat-
based, CP-reduced diets compromise gut integrity to greater ex-
tents than maize. Therefore, in this review, initial consideration is
given to the inherent factors inwheat which may be compromising
gut integrity, which include soluble NSP, amylase trypsin inhibitors
(ATI) and gluten. Therefore, the feasibility of using biomarkers to
monitor gut integrity in broiler chickens is examined. This is fol-
lowed by a consideration of the relatively high protein content of
wheat and its implications, including NH3 overload, and starch
digestive dynamics.

3. Influential factors and biomarkers for gut integrity

Since the AGP ban in Europe, the chicken-meat industry has
experienced a rise in gut integrity problems under the rather
nebulous collective description of ‘dysbacteriosis’. Dysbacteriosis
has been defined as the presence of abnormal microbiota in the
proximal small intestine, capable of reducing nutrient digestibility,
impairing intestinal barrier function and increasing the risk of in-
flammatory responses (Teirlynck et al., 2011). Interestingly, NSP
were given priority as a feed component that triggers gut inflam-
mation in poultry by Dal Pont et al. (2020), the genesis of which
appears to stem mainly from increases in gut viscosity. In this sec-
tion the focus is on soluble NSP, ATI and gluten contents in wheat.

3.1. Soluble non-starch polysaccharides

Soluble NSP are hydrocolloids that strongly interact with water
and effectively act as a thickening agent (Karaman et al., 2014). In



Table 1
Impact of dietary crude protein (CP) concentrations in maize-based diets relative to wheat-based diets on weight gain, FCR and relative abdominal fat-pad weight from d 7 to
35 postehatch.

CP, g/kg Weight gain, g/bird FCR Relative fat-pad weight, g/kg

Maize Wheat Response Maize Wheat Response Maize Wheat Response

2221 2,214 2,403 �7.87% 1.453 1.453 0.00% 6.40 6.40 0.00%
193 2,396 2,386 þ0.42% 1.415 1.471 �3.81% 11.10 8.50 þ30.60%
165 2,370 1,549 þ53.00% 1.473 1.840 �19.90% 12.80 7.50 þ70.70%
2202 2,690 2,720 �1.10% 1.338 1.314 þ1.83% 8.02 6.19 þ29.60%
180 2,598 2,510 þ3.51% 1.385 1.443 �4.02% 10.16 7.78 þ30.60%

1 From Chrystal et al. (2021).
2 From Greenhalgh et al. (2022a).

Table 2
Impact of dietary crude protein concentrations inwheat-based diets onweight gain,
FCR and relative abdominal fat-pad weight from d 14 to 35 postehatch.

CP, g/kg Weight gain FCR Fat-pad weight

g/bird Response FCR Response g/kg Response

215.01 2,096 1.476 7.32
165.0 2,106 þ0.48% 1.546 þ4.74% 8.87 þ21.20%
197.52 1,958 1.684 8.37
180.0 1,451 �25.90% 1.878 þ11.50% 8.14 �2.75%
162.5 1,010 �48.40% 2.426 þ44.10% 6.79 �18.90%

1 From Yin et al. (2020).
2 From Greenhalgh et al. (2020b).
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broiler chickens this water holding capacity increases digesta vis-
cosity along the gastrointestinal tract. Decades ago, b-glucan, a
soluble NSP in barley, was shown to increase digesta viscosity and
compromise broiler performance but this could be counteracted by
exogenous enzymes as demonstrated by Burnett (1966). Wheat,
rye, barley and oats have high soluble NSP levels which increase
digesta viscosity, decrease digesta passage depress digestive
enzymatic activities and nutrient digestibility and compromise
growth performance (Yegani and Korver, 2008). Increased digesta
retention time facilitates bacterial colonisation and activity in the
small intestine (Vahjen et al., 1998).

Importantly, wheat contains higher levels of soluble NSP than
maize by a 2.8-fold factor of (25 versus 9 g/kg) on a dry matter basis
(Bach Knudsen, 1997) and this is a critical difference between the 2
feed grains. Extraordinary efforts have been devoted to the anti-
nutritive effects of soluble NSP in wheat in broiler chickens and,
ostensibly, their anti-nutritive effects can be counteracted by in-
clusions of NSP-degrading feed enzymes, which is routinely prac-
ticed. The capacity of soluble NSP to increase ileal viscosity linearly
(P¼ 0.011) was recently reported by Nguyen et al. (2021). However,
it is noteworthy that Munyaka et al. (2016) found that wheat-based
diets generated higher average gut viscosities by 61.3% (3.08 versus
1.91 mPa$s) thanmaize-based diets in broiler chickens, irrespective
of NSP-degrading enzyme inclusions. Therefore, while the routine
inclusions of NSP-degrading enzymes in reduced-CP, wheat-based
diets will attenuate the anti-nutritive properties of soluble NSP and
reduce gut viscosity, the likelihood is that corresponding maize-
based diets will retain an advantage in this respect.

Both the morphology of the gastrointestinal tract and the gut
microbiota in boiler chickens are impacted by dietary NSP (Nguyen
et al., 2022). The inclusion of an NSP-degrading enzyme in wheat-
based diets offered to broiler chickens significantly increased in-
testinal villus height by 22.6% (1,668 versus 1,360 mm) and
decreased crypt depth by 6.09% (108 versus 115 mm) as reported by
Yaghobfar and Kalantar (2017). Enzyme inclusion significantly
reduced digesta viscosity by 26.3% (1.60 versus 2.17 cP; 1 cP¼ 0.001
Pa$s), significantly increased feed intake by 2.14% (4,253 versus
4,164 g/bird) and numerically improved weight gain and FCR from
183
1 to 42 d postehatch in this study. Thus, soluble NSP have the ca-
pacity to alter gut morphometry, presumably by increased gut
viscosity. Elevating dietary soluble NSP levels increased ileal vis-
cosity in broilers by 24.3% (3.493 versus 4.343 cP) in Nguyen et al.
(2021), which was associated with an increase (7.541 versus
7.247 log10 genomic data commons DNA copies/g; 1 cP ¼ 0.001
Pa$s) in Lactobacillus in ileal digesta. Interestingly, Lactobacilli
constituted 84.2% of total anaerobic bacteria in the ileum in this
study. A similar Lactobacilli majority in ileal digesta was in birds
offered wheat-based diets was reported by Munyaka et al. (2016).

The likelihood is that increased gut viscosities are associated
with increases in gut microbiota and in the small intestine where
Lactobacilli are dominant. Broilers offered rye-based diets, a more
‘viscous’ cereal grain than maize, had greater ileal anaerobe counts
than maize-based diets by 2 or 3 logarithmic cycles in Wagner and
Thomas (1977). Accordingly, Hübener et al. (2002) found that a
wheat/rye diet supported more CFU of mucosa associated bacteria
in comparison to a maize diet with notable increases in enter-
obacteria and enterococci CFU. These researchers concluded that
dietary cereals producing high intestinal viscosities lead to
increased overall bacterial activity in the small intestine. Rye in-
clusions of 50 and 100 g/kg in maize-based broiler diets were
investigated by Van Krimpen et al. (2017). The study reported that
ileal gut morphology, microbiota composition of jejunal digesta,
and jejunal gene expression profiles were impacted by rye in-
clusions. Also, Choct et al. (1996) found that there was extensive
small intestinal fermentation in birds offered NSP-enriched diets
from microscopic examinations and considered that this is partly
responsible for the anti-nutritive effects soluble NSP.

That soluble NSP in wheat-based diets increase gut viscosities
and, in turn, increase gut microbiota, which has important impli-
cations for the apparent digestibility coefficients of amino acids.
Importantly, CP-reduced diets generate perturbations in apparent
amino acid digestibility coefficients (Liu et al., 2021a) and any in-
creases in microbial amino acids in distal ileal digesta, relative to
dietary and endogenous amino acids, would compromise apparent
digestibility coefficients. In Greenhalgh et al. (2022), where 180 g/
kg CP maize-based diets outperformed wheat, maize supported
higher apparent amino acid digestibilities than wheat. This
appeared to be related to estimated increases microbial amino acid
proportions in distal ileal digesta in birds offeredwheat-based diets
as deduced by the Duvaux et al. (1990) model. Significant, negative
Pearson correlations between microbial amino acid proportions in
distal ileal digesta and apparent ileal digestibility coefficients of all
16 amino acids assessed were detected. Pearson correlations
ranged from proline (r ¼�0.421; P¼ 0.001) to alanine (r¼�0.833;
P < 0.001) in the Greenhalgh et al. (2022) study in which both
phytate- and NSP-degrading enzymes were included across all di-
etary treatments. Thus, it appears that soluble NSP in wheat-based,
CP-reduced diets, despite NSP-degrading enzyme inclusions,
remain a threat to gut integrity and may have a negative impact on



Table 3
Amino acid concentrations of wheat gluten, glutelin and gliadin, and amino acid
profile relative to lysine (100).1

Amino acid, mmol/g Gluten Glutelin Gliadin Gluten profile

Arginine 245 240 215 223
Histidine 130 135 125 118
Isoleucine 315 305 345 286
Leucine 550 550 580 500
Lysine 110 155 45 100
Methionine 100 105 90 91
Phenylalanine 335 310 380 305
Threonine 215 255 170 196
Valine 415 425 395 377
Alanine 270 315 225 245
Aspartate/asparagine 215 250 170 196
Cysteine 170 150 180 155
Glutamate/glutamine 2450 2180 2510 2227
Glycine 420 560 215 382
Proline 1080 965 1275 982
Serine 440 620 320 400
Tyrosine 220 235 195 200

1 From Rombouts et al. (2009).
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amino acid digestibilities. Soluble NSP can compromise amino acid
digestibilities directly because increased digesta viscosity in the
small intestine impedes the digestion of protein and absorption of
amino acids and indirectly from increases in microbial amino acids
in distal ileal digesta (Ravindran et al., 1999; Selle et al., 2009).
Nevertheless, the use of NSP-degrading enzyme should remain
routine and the most appropriate inclusion rates should be given
consideration.

3.2. Amylase trypsin inhibitors

The capacity of wheat ATI to inhibit mammalian digestive en-
zymes, specifically a-amylase and trypsin, under in vitro conditions
has been reported by Cuccioloni et al. (2016). Amylase trypsin in-
hibitors were detected and quantified in a wide range of wheat
cultivars via discovery proteomics and data mining by Bose et al.
(2020) and the synthesis and accumulation of amylase-trypsin in-
hibitors during grain development of bread wheat has been
documented by Call et al. (2021). Amylase trypsin inhibitors are
low-molecular-weight proteins (12,000 to 15,000 Da) and make up
about 4% of the wheat proteome. Wheat ATI were reported to drive
intestinal inflammation via activation of toll-like receptor 4 (TLR4)
in human and murine cells by Junker et al. (2012). Similarly,
Zevallos et al. (2017) found that wheat ATI activate TLR4 and in-
crease intestinal inflammation by activating gut and mesenteric
lymph node myeloid cells in mice. These researchers also reported
that gluten-containing cereals have by far the highest concentra-
tions of ATI and orally ingested ATI are largely resistant to
proteases.

In theory, wheat ATI could cause compensatory increases in
pancreatic secretions of amylase and trypsin which would in-
crease endogenous amino acid flows and may even depress starch
and protein digestibility. Soy trypsin inhibitor activity has been
shown to depress digestibilities of all essential and non-essential
amino acids assessed in a linear manner in broiler chickens
(Kuenz et al., 2022). The inherent phytase activity of wheat is
denatured by pepsin in the acidic conditions of the proventriculus
(Phillippy, 1999), but it appear that this does not apply to wheat
ATI and soy trypsin inhibitors. It appears that wheat ATI are
resistant to both thermal processing and proteolysis (Call et al.,
2019). It is likely that wheat ATI trigger gut inflammation in
poultry and it is possible that ATI depress starch and protein di-
gestibility given sufficient concentrations inwheat. Arguably, both
aspects merit further investigations.

3.3. Gluten

Gluten is an insoluble storage protein, or prolamin, inwheat and
is subdivided into gliadins and glutenins. Gluten comprises 80% to
85% of the wheat proteome (Van Der Borght et al., 2005), so wheat
would typically contain in the order of 100 g/kg glutelin. The amino
acid composition of gluten, glutenin and gliadin have been deter-
mined by Rumbouts et al. (2009), as shown in Table 3, where it is
evident that gluten contains a paucity of lysine. Gluten contains
relatively high levels of glutamate, glutamine, serine, proline and
phenylalanine in respect of amino acid requirements for broiler
chickens.

Ingestion of wheat gluten elicits an immune response and small
intestinal inflammation in genetically predisposed human subjects
(Schuppan et al., 2009), which has been the subject of considerable
research. However, more specifically, gliadin has the capacity to
compromise the integrity of small intestinal tight junctions by
inducing inflammation and increasing intestinal permeability (De
Punder and Pruimboom, 2013). Gliadin, a component of gluten,
has been demonstrated to increase permeability in human Caco-2
184
intestinal epithelial cells to small molecules (4 kDa) by reorganiz-
ing actin filaments and altering expression of junctional complex
proteins in humans with Coeliac disease (Sander et al., 2005).

In broiler chickens, dietary additions of 50 and 75 g/kg gluten
have been shown to depress growth performance (Afshar and
Moslehi, 2006). In this study, 75 g/kg gluten depressed weight
gain by 38.2% (1,373 versus 2,220 g/bird) to 49 d postehatch. The
addition of 20 g/kg gluten to a maize-soy broiler diet was investi-
gated by Fang et al. (2017). Gluten significantly depressed feed
intake by 6.21% (3,656 versus 3,898 g/bird) and numerically
depressed weight gain by 8.37% (1,882 versus 2,054 g/bird) and FCR
by 2.65% (1.94 versus 1.89) from 1 to 42 d postehatch. In the
Chrystal et al. (2021) study, the stepwise reduction of dietary CP
from 222 to 193 and 165 g/kg CP increased wheat inclusions from
525 to 637 and 751 g/kg. This would correspond to approximate
increases of 21% and 43% glutelin in the 2 reduced-CP diets; thus,
the Fang et al. (2017) assessment of 20 g/kg gluten is relevant.
Substantially higher gluten inclusions in broiler diets of 0, 250 and
500 g/kg were investigated by Kang et al. (2019) from d 1 to 7 and
from d 21 to 28 postehatch. Growth performance was seriously
compromised and was accompanied by increased mRNA expres-
sion of genes related to inflammation including interleukins and
tumour necrosis factor-a (TNF-a). This infers that gluten may have
the capacity to trigger gut inflammation and compromise growth
performance in poultry.

3.4. Biomarkers for gut integrity

The identification of biomarkers to monitor gut integrity in
broiler chickens would be a distinct advantage (Ducatelle et al.,
2018). This probably particularly applies when gut integrity is
challenged by the inherent contents of soluble NSP, ATI and gluten
in wheat. However, Banerjee (2014) argued that a void still exists
for a robust gastrointestinal damage marker in poultry, despite the
very real need for such agents, and Niewold (2015) suggested that a
greater research effort needs to be invested in this field. Biomarkers
of gastrointestinal functionality in poultry and livestock were
considered by Celi et al. (2019). Their contentionwas that the use of
a single biomarker might not be feasible because of the complexity
of the interactions between the key components of gastrointestinal
functionality. Therefore, the development of a suite of biomarkers
of may be required to monitor the functionality and health of the
gastrointestinal tract, but also of animal performance, health and
welfare.



P.H. Selle, S.P. Macelline, S. Greenhalgh et al. Animal Nutrition 11 (2022) 181e189
The capacity of enteric pathogens to disrupt the intestinal bar-
rier via the alteration of tight junctions in chickens has been
reviewed by Awad et al. (2017). De Meyer et al. (2019) sought to
identify intestinal biomarkers in a gut leakage model in broilers.
Twelve candidate protein biomarkers were identified in ileal con-
tents and ten candidates in colonic contents. Serum endotoxin and
a1-acid glycoprotein may be potential biomarkers for gut barrier
health (Chen et al., 2015). Fibronectin, intestinal alkaline phos-
phatase and lipocalin-2 were reported to show promise by
Barekatain et al. (2020) as biomarkers in this context and are non-
invasive and quantifiable in excreta by ELISA kits. Inflammatory
metabolites in excreta that could be potential biomarkers nomi-
nated by Shini and Bryden (2021) include ovotransferrin, cloacal
immunoglobulin A, fibronectin, intestinal alkaline phosphatase and
lipocalin-2.

Ovotransferrin is an acute phase, hepatic protein in chickens
(Xie et al., 2002a) and serum ovotransferrin levels in chickens have
been shown to respond to experimentally induced inflammation
(Xie et al., 2002b). A subsequent study by Rath et al. (2009) showed
that when chickens were infected with E. coli, or Eimeria maxima
and Eimeria tenella, there were significant increases in ovo-
transferrin serum concentrations. The researchers concluded that
ovotransferrin could be used as a diagnostic marker of infection and
inflammation in chickens. More recently, Goossens et al. (2018)
proposed that elevated ovotransferrin levels in excreta are indica-
tive of intestinal barrier failure in broiler chickens. In this study,
faecal ovotransferrin concentrations were correlated to the severity
of intestinal barrier failure induced by either Coccidiosis or Necrotic
Enteritis.

The potential role of citrulline as a gastrointestinal biomarker in
human medicine has attracted substantial interest (Crenn et al.,
2000, 2003; Kaore and Kaore, 2014; Fragkos and Forbes, 2018).
Initial research into the source and fate of circulating citrulline was
completed by Windmueller and Spaeth (1981) and citrulline has
been reviewed in considerable detail by Maric et al. (2021).
Citrulline is a non-proteinogenic amino acid which is released into
the circulation from duodenal and jejunal enterocytes where it is
synthesised de novo from glutamine derived from the gut lumen
and/or the arterial blood supply to the gut mucosa (Curis et al.,
2007). The kidneys take up the circulating citrulline and convert
it into arginine and it is recognised that citrulline has an arginine
sparing effect in poultry (Dao and Swick, 2021). Maric et al. (2021)
concluded that citrulline is a suitable functional biomarker for se-
vere intestinal disease and intestinal function in human patients.
Physiological increases in citrulline were associated with improved
intestinal absorption capacity and any condition associated with
reduced absorptive intestinal capacities was associated with
reduced citrulline levels.

In broiler chickens, citrulline was 1 of 3 candidates considered
indicative of intestinal inflammation by Baxter et al. (2019) in an
investigation into plasma biomarkers for intestinal integrity in a
malabsorption model. Birds were offered diets based on maize, rye
or maizeerye combinations where maize supported superior 20 d
weight gains to rye by 81.7% (716 versus 394 g/bird); however,
plasma citrulline levels in maize-based (0.09 ng/mL) and rye-based
birds (6.67 ng/mL) were remarkably different. These researchers
attributed the higher citrulline plasma concentrations observed to
a higher epithelial turnover and an increase in villus height to
compensate for poor digestibility of the rye-based diet. However,
Niewold (2015) expressed reservations about the use of citrulline as
a biomarker in poultry, which stemmed from work completed by
Wu et al. (1995). These researchers found that glutamine was
metabolised to glutamate, alanine and aspartate in chick enter-
ocytes, but not to citrulline, arginine, proline and ornithine. The
lack of citrulline synthesis from glutamine in avian enterocytes was
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attributed to the absence pyrroline-5-carboxylase synthase in these
cells. This raises the obvious question as to the source of the
elevated plasma citrulline levels in the Baxter et al. (2019) study.

Calprotectin was identified by Dal Pont et al. (2021) as a po-
tential biomarker for chronic intestinal inflammation in poultry and
calprotectin has been used for the same purpose in human subjects
(Canani et al., 2008; Bjarnason, 2017). Calprotectin is a soluble
protein that originates from neutrophil activation in an acute in-
flammatory response and calprotectin has a regulatory role in in-
flammatory processes. Following inflammatory damage to the
intestinal mucosa, calprotectin levels increase and it is released into
the intestinal lumen. Therefore, calprotectin may have potential as
a non-invasive biomarker of intestinal inflammation as it is stable
in faeces (Chang et al., 2014). St�rí�z and Trebichavský (2004) sug-
gested that calprotectin plasma concentrations may be a very
sensitive non-specific inflammatory marker. In the Dal Pont et al.
(2021) study, broiler chickens were subject to intestinal chal-
lenges including dextran sodium sulphate (DSS) to induce intesti-
nal inflammation and NSP derived from rice bran. At 14
d postehatch, DSS significantly increased plasma calprotectin
concentrations by 135% (39.68 versus 16.86 ng/mL) and NSP
resulted in a numerical increase of 60.9% (27.13 versus 16.86 ng/mL)
in calprotectin concentrations.

Thus, the quest to find an appropriate biomarker for gut integ-
rity in poultry is complicated and may prove elusive. However,
calprotectin and ovotransferrin do appear to merit further inves-
tigation as confirmation of their validity is required. Also, despite
the reservations expressed, citrulline remains of interest as citrul-
line could be synthesised from glutamine within enterocytes.
Glutamine is an important energy substrate in avian enterocytes
(Watford et al., 1979; Porteous, 1980) and it may be that increased
glutamine plasma concentrations are indicative of the extent of
amino acid catabolism within enterocytes to generate energy for
gut function. Therefore, citrulline could possibly serve as a marker
for this key parameter because amino acid that are catabolised by
the gut mucosa are denied entry to the portal and systemic
circulations.

4. Protein content of wheat and its consequences

As mentioned, the protein content of wheat typically exceeds
that of maize. As a result, there are higher concentrations of non-
bound amino acids and lower concentrations of ‘intact’ soy pro-
tein in wheat-based diets than in corresponding maize-based dies
pursuant to dietary CP reductions. For example, in Chrystal et al.
(2021) wheat and maize contained 107 and 81 g/kg CP, respec-
tively. The transition from 222 to 165 g/kg CP in maize-based diets
resulted in an increase in non-bound amino acid inclusions from 7.2
to 38.5 g/kg and a decrease in soybean meal inclusions from 334 to
113 g/kg. In wheat-based diets the same transition resulted in
corresponding increases from 7.5 to 49.4 g/kg and decreases from
300 to 48 g/kg. Thus, the CP-reduced, wheat-based diet contained
57.5% less soybean meal, and 28.3% more non-bound amino acids,
than the nutritionally-equivalent maize-based diet. The different
ratios of non-bound to protein-bound amino acids would not be an
issue if both forms were bioequivalent, but this is probably unlikely
(Selle et al., 2022). It may be argued that just the more rapid in-
testinal uptakes of non-bound amino acids effectively preclude
bioequivalence. In broilers fed on a once daily basis, Zamani et al.
(2021) found that utilisation of protein-bound methionine was
better than either non-bound methionine or a methionine dipep-
tide, which indicates that the 3 forms of methionine were not
bioequivalent in restricted fed birds. Thus, rather ironically, the
relatively high protein content of wheat could be seen as a shortfall
in the context of CP-reduced diets as the higher inclusion levels of



P.H. Selle, S.P. Macelline, S. Greenhalgh et al. Animal Nutrition 11 (2022) 181e189
non-bound amino acids may ultimately lead to NH3 overload, as
discussed in the next section.

Wheat and sorghum were compared as the feed grain basis of
187.5 g/kg CP diets with standard and elevated branch-chained
amino acid (BCAA) levels by Greenhalgh et al. (submitted for
publication). Relative to lysine (100), isoleucine was increased
from 65 to 75, leucine from 105 to 150 and valine from 75 to 85.
Elevated BCAA levels in sorghum-based diets significantly
increased weight gain by 9.26% (1,451 versus 1,328 g/bird) and
numerically improved FCR by 0.86% (1.378 versus 1.390) from 7 to
28 d postehatch. In contrast, elevated BCAA additions to wheat-
based diets significantly compromised both weight gain by 9.49%
(1,288 versus 1,423 g/bird) and FCR by 8.33% (1.665 versus 1.537).
There was noticeably higher non-bound BCAA inclusions in the
elevated wheat-based diet than the sorghum-based diet (17.84
versus 11.09 g/kg), which may have contributed to these marked
differences in growth performance in response to elevated BCAA
inclusions because of a lack of bioequivalence. It is noteworthy in
the Greenhalgh et al. (submitted for publication) study that wheat-
based diets generated lighter relative fat-pad weights by 57.9%
(5.68 versus 13.48 g/kg) than in birds offered sorghum-based diets.
It is then relevant that sorghum is more similar to maize than
wheat in respect of protein concentration, amino acid profile,
starch digestion rate and soluble NSP content.

The ratio of non-bound to protein-bound amino acids will be
higher inwheat-based, CP-reduced diets than those based onmaize
or sorghum and this probably impacts on starch and protein
digestive dynamics. The likelihood is that the higher ratios in
wheat-based diets may place wheat at a disadvantage. The higher
inclusions of non-bound amino acids in wheat-based diets may
become a problem as their inclusions may become excessive (Liu
et al., 2021b). An equilateral triangular response surface design
was used byMacelline et al. (2022) to evaluate 3 wheat-based diets
offered to broiler from 14 to 35 d postehatch. Different protein
sources and non-bound amino acid inclusions, which ranged from
6.75 to 19.43 and 66.84 g/kg, were incorporated into the formula-
tions of the 3 apical diets which all had true protein concentrations
of 203 g/kg. Maximum weight gain and minimal FCR were sup-
ported by the diet containing 13.41 g/kg non-bound amino acids.
While not conclusive, this relatively moderate level suggests that
there may be a ‘ceiling’ on non-bound amino acid inclusions in CP-
reduced, wheat-based diets above which growth performance is
compromised. One implication is that non-bound and protein-
bound amino acids are not fully bioequivalent and that high in-
clusions of non-bound amino acids generate post-enteral imbal-
ances to the detriment of broiler performance.

4.1. Consequences: ‘ammonia overload’

The higher non-bound amino acid inclusions in wheat-based,
reduced-CP diets, because of wheat's higher protein content, are
probably pivotal in triggering NH3 overload, which is more likely to
be declared in birds offered wheat-based diets. Importantly, the
intravenous 50% lethal dose of ammonium acetate in broiler
chickens is half that of mice (2.72 versus 5.64 mmol/kg), as recor-
ded by Wilson et al. (1968), which suggests that poultry may be
more susceptible to NH3 overload than mammalian species.

From first principles, intestinal uptakes of non-bound amino
acids are more rapid than their protein-bound counterparts (Wu,
2009) and this was demonstrated in broilers offered sorghum-
based diets by Liu et al. (2013). Non-bound amino acids are more
likely to be subject to postprandial oxidation because of their rapid
intestinal uptakes and post-enteral amino acid imbalances
(Schreurs et al., 1997; Bujko et al., 2007; Nolles et al., 2009), which
involves either deamination or decarboxylation. Deamination
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generates NH3, which is inherently toxic (Stern and Mozdziak,
2019); however, NH3 is detoxified and ultimately NH3eN is
excreted in urine as uric acid-N. Initially, NH3 and glutamic acid are
condensed by glutamine synthetase to generate glutamine (Minet
et al., 1997) and then glutamine enters the Krebs uric acid cycle,
in which glycine is a prerequisite, and uric acid is excreted (Salway,
2018). Instructively, the need to fortify CP-reduced diets with
glycine or glycine equivalents is established (Siegert and
Rodehutscord, 2019).

Plasma NH3 concentrations have been determined in 3 broiler
studies with maize-based diets (Namroud et al., 2008; Ospina-
Rojas et al., 2013, 2014) where increasing NH3 concentrations
were associated with compromised growth performance. The
transition from 220 to 190 g/kg CP diets in Ospina-Rojas et al.
(2014) increased plasma NH3 concentrations from 4.56 to
7.27 mg/dL, which was associated with a depressed weight gain
(781 versus 909 g/bird) and compromised FCR (1.57 versus 1.43)
from 1 to 21 d postehatch. Namroud et al. (2008) concluded that
high inclusions of non-bound essential amino acids in reduced-CP
diets increased plasma NH3 concentrations, which, due to the
negative effects of NH3 on tissue metabolism, contributed to
retarded growth and depressed feed intake in diets containing less
than 190 g/kg CP. It was suggested in both the Greenhalgh et al.
(2020b) and Chrystal et al. (2021) studies that NH3 overload
contributed to the highly unsatisfactory growth performance
observed. As discussed, this proposal was supported by Selle et al.
(2021a) in which retrospective determinations of uric acid con-
centrations in excreta from the Chrystal et al. (2021) study were
completed. In Selle et al. (2021a) linear relationships between
proportions of uric acid-N to total N in excreta in birds offered the
three 165 g/kg CP diets were detected for weight gain (r ¼ 0.587;
P ¼ 0.010), feed intake (r ¼ 0.526; P ¼ 0.025) and feed conversion
ratios (r ¼ 0.635; P ¼ 0.005). It was suggested that increasing uric
acid-N proportions in excreta were indicative of excessive systemic
NH3 levels compromising growth performance. The three 165 g/kg
CP diets in question contained 38.5 g/kg non-bound amino acids
when based on maize but 49.4 g/kg non-bound amino acids when
based on either all ground wheat or diets with 150 g/kg whole
wheat. It is likely that the higher non-bound amino acid inclusions
in reduced-CP wheat-based triggered more deamination and
higher NH3 levels. The proportion of uric acid N of total excreta N in
standard, 165 g/kg CP, ground-wheat diets was significantly higher
by a factor of 1.39 (38.0% versus 27.4%) than in the corresponding
maize-based diet.

Indirect support for the NH3 overload proposal is provided in the
review by Visek (1978) of the mode of action of APG. This
researcher argued that AGP suppress the generation of NH3 in the
gut lumen bymicrobiota and that this is fundamental to their mode
of action. Thus, the identification of a biomarker that is indicative of
NH3 intoxication would be advantageous. This is because taking
blood samples for accurate determinations of plasma NH3 con-
centrations require special care. Blood samples should be chilled
immediately they are taken, centrifuged as quickly as possible and
plasma samples held at �80 �C prior to analysis, otherwise NH3
concentrations will increase spontaneously at room temperature
(Da Fonseca-Wollheim, 1990) and confound the results.

5. Starch digestive dynamics

The starch digestion rates for several feed grains are presented
in Table 4 where rates in unprocessed grains were determined
in vitro (Giuberti et al., 2012) or in vivo after incorporation into
standard diets offered to broiler chickens (Selle et al., 2021b). As can
be gleaned from Table 4, wheat starch was more rapidly digested
than maize starch by 106% in vitro and by 36.0% in broilers offered



Table 4
Starch digestion rates (per minute) recorded for several feed grains under in vitro
and in vivo conditions in poultry.

Feed grain In vitro1 In vivo2

Digestion
rate

Number of
samples

Digestion
rate

Number of
samples

Maize 0.017 14 0.086 2
Barley 0.024 14 0.104 3
Wheat 0.035 12 0.117 4
Triticale 0.036 11 0.093 2
Sorghum 0.018 11 0.075 7

1 Form Giuberti et al. (2012).
2 From Selle et al. (2021b).
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standard diets. That the digestion rate of wheat starch is more rapid
than maize starch is an important distinction as there is evidence
that the dietary provision of some slowly digestible starch is ad-
vantageous (Weurding et al., 2003a; Herwig et al., 2019). Moreover,
starch digestive dynamics inevitably impact starch-protein diges-
tive dynamics that are critical to broiler growth performance (Liu
and Selle, 2015, 2017).

There are indications that slowly digestible starch spares amino
acids from catabolism in the gut mucosa in broiler chickens
(Weurding et al., 2003b; Enting et al., 2005). In rats, glucose and
glutamine provide similar proportions of energy to the gut mucosa
(Fleming et al., 1997); thus, the inference is that the sites of glucose
absorption along the small intestine impact on the catabolism of
glucose relative to amino acids for energy provision. Slowly
digestible maize starch may spare amino acids from catabolism in
the posterior small intestine which would increase their post-
enteral availability and the likelihood is that glucose is a more
efficiently utilised energy source (Fleming et al., 1997). Conse-
quently, the relatively rapid wheat starch digestion rate is probably
disadvantageous in this respect.

There is the distinct possibility that glucose and amino acids
compete for intestinal uptakes via their respective Naþ-dependent
transport systems. In maize-based, CP-reduced diets with high
starch levels, Moss et al. (2018) detected numerous negative re-
lationships between apparent digestibility coefficients of glucose
and amino acids along the small intestine. For example, starch di-
gestibility coefficients were negatively correlated with digestibility
coefficients of twelve amino acids to significant extents in the
proximal ileum. In this study it was also suggested that non-bound
amino acids may be less prone to undergo catabolism in the gut
mucosa. The extent to which the findings of the Moss et al. (2018)
study apply to CP-reduced broiler diets with more typical starch
concentrations is problematic.

Curiously, wheat enjoys an advantage over maize in the context
of CP-reduced diets in that it generates less fat deposition, as is
evident in Table 1. For example, the transition from 210 to 165 g/kg
CP in maize-based diets prompted an increase of 69.2% (14.62
versus 8.64 g/kg) in relative abdominal fat-pad weights in Chrystal
et al. (2020b), which were quadratically (r ¼ 0.606; P ¼ 0.003)
associated with compromised FCR. The likelihood is that slowly
digestible maize starch increases fat deposition via de novo lipo-
genesis to greater extents than rapidly digestible wheat starch.
Essentially, starch is digested in the gut lumen and absorbed as
glucose. The metabolic disposal of glucose involves direct oxida-
tion, glycogen synthesis and hepatic de novo lipogenesis (J�equier,
1994). Glucose can be stored as glycogen but carbohydrate over-
feeding in humans has been shown to trigger de novo lipogenesis
once glycogen stores in liver and skeletal muscle have been satu-
rated (Acheson et al., 1988). In hepatic de novo lipogenesis glucose
187
is catabolised to acetyl-CoA which is converted into fatty acids and
cholesterol. Cholesterol and triacylglycerol are incorporated into
very low-density lipoproteins and transported to adipose via the
circulation (Wang et al., 2017). Thus, excess carbohydrate is con-
verted into fatty acids that are then esterified to storage tri-
acylglycerols (Ameer et al., 2014). It seems possible that the more
sustained glucose and insulin blood levels generated by maize-
based diets is promoting more de novo lipogenesis than in birds
offered wheat-based diets containing more rapidly digestible
starch. Glucose derived from rapidly digestible starch may be
directly catabolised for energy provision; whereas, glucose from
slowly digestible starch is being converted to glycogen and then fat
via de novo lipogenesis to greater extents. However, any consid-
eration of starch digestive dynamics is frustrated by an imperfect
comprehension of the starcheglucoseeinsulin axis in poultry
relative to mammalian species (Tesseraud et al., 2007).
6. Conclusions

The successful development of CP-reduced diets is a tangible
challenge, which is only complicated by the selection of the feed
grain on which these diets are based. There is certainly a real need
to identify the shortfalls of wheat in the context of CP-reduced diets
for countries inwhichwheat is the dominant feed grain. However, a
substantial research effort is clearly required if this objective is to
be realised. It appears that the presence of soluble NSP, even with
NSP-degrading enzyme inclusions, wheat ATI and gluten may all
constitute shortfalls by compromising gut integrity inwheat-based,
CP-reduced diets. There is also the possibility wheat ATI may in-
crease endogenous flows of amino acids and compromise starch
and protein digestibility. The recognition of viable biomarkers to
monitor gut integrity would be ideal and calprotectin, ovo-
transferrin and citrulline appear to be among the candidates that
merit further investigations. Relatively high non-bound amino acid
inclusions in CP-reduced, wheat-based diets appear to be another
shortfall as, inworse case scenarios, theymay trigger NH3 overload,
thereby compromising broiler growth performance. Therefore, al-
ternatives to non-bound amino acids to meet amino acid re-
quirements in birds offered CP-reduced, wheat-based diets merit
evaluation and such alternatives include protein isolates or con-
centrates and oligopeptides. Carnosine, a histidineealanine
dipeptide, is one example of an oligopeptide that deserves evalu-
ation. One advantage reduced-CP, wheat-based diets hold is that
they generate less fat deposition than corresponding diets based on
maize and sorghum. Consequently, it may prove fruitful to evaluate
CP-reduced diets based on maize-wheat and/or sorghumewheat
blends.
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