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Abstract

Purpose: Cone beam computed tomography (CBCT) offers advantages such as high

ray utilization rate, the same spatial resolution within and between slices, and high

precision. It is one of the most actively studied topics in international computed

tomography (CT) research. However, its application is hindered owing to scatter arti-

facts. This paper proposes a novel scatter artifact removal algorithm that is based

on a convolutional neural network (CNN), where contextual loss is employed as the

loss function.

Methods: In the proposed method, contextual loss is added to a simple CNN net-

work to correct the CBCT artifacts in the pelvic region. The algorithm aims to learn

the mapping from CBCT images to planning CT images. The 627 CBCT-CT pairs of

11 patients were used to train the network, and the proposed algorithm was evalu-

ated in terms of the mean absolute error (MAE), average peak signal-to-noise ratio

(PSNR) and so on. The proposed method was compared with other methods to illus-

trate its effectiveness.

Results: The proposed method can remove artifacts (including streaking, shadowing,

and cupping) in the CBCT image. Furthermore, key details such as the internal con-

tours and texture information of the pelvic region are well preserved. Analysis of

the average CT number, average MAE, and average PSNR indicated that the pro-

posed method improved the image quality. The test results obtained with the chest

data also indicated that the proposed method could be applied to other anatomies.

Conclusions: Although the CBCT-CT image pairs are not completely matched at the

pixel level, the method proposed in this paper can effectively correct the artifacts in

the CBCT slices and improve the image quality. The average CT number of the

regions of interest (including bones, skin) also exhibited a significant improvement.

Furthermore, the proposed method can be applied to enhance the performance on

such applications as dose estimation and segmentation.
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1 | INTRODUCTION

Although cone beam CT has great potential in clinical applications,

the challenge of scattered radiation decreases the image quality,

leading to many artifacts in the images.1-3 Artifacts (including streak-

ing, shadowing, ringing, and cupping artifacts, etc.) are generally

defined as the difference between the reconstructed value of the CT

image and the true distribution of attenuation coefficient of the

object. In the published literature, the main correction methods can

be divided into two types based on their different processing meth-

ods.4 One is a hardware processing method, which prevents the

scattered rays generated during the attenuation process from reach-

ing the detector to the greatest extent possible. Common methods

include the air-gap method, collimator method, filter method, antis-

cattering grating method, and the method employing a modulator.5,6

However, the increase in hardware equipment introduces operational

difficulties in the CBCT system and increases the cost of the entire

process.7 The second type of correction method is digital image pro-

cessing technology, which mainly estimates the scattering distribu-

tion via experiments, and then adopts postprocessing methods to

suppress or eliminate scattering. Common methods include Monte

Carlo simulation, scattering estimation-based methods, and convolu-

tion model-based methods.

The principle of the Monte Carlo simulation method is to find

the scattering distribution by simulating the photon trajectory of the

scattering event. For example, the method in 8 uses the precise

physical model of PENELOPE to simulate photon transmission in a

voxelized geometry. The method in 9 combines GPU-based Monte

Carlo (MC) simulation with patient CT images to present an ultrafast

scattering correction framework, thereby achieving scattering correc-

tion and image reconstruction. The fast Monte Carlo simulation

method proposed by Saucier et al10 and the optimized Monte Carlo

simulation method proposed by Xun et al11 also achieved good arti-

fact correction effects. However, Monte Carlo simulations caused

huge time consumption and limited their clinical application,12,13 so

it needs to trade-off between accuracy and simulation time. Informa-

tion such as x-ray spectral characteristics, object geometry and

attenuation coefficient are critical for methods based on scattering

estimation. Based on the above information, Yao et al. obtained an

approximate estimate of the artifacts,14 Yang et al. could estimate

the additional scattering from the shadow region,1 and Stankovic

et al. used the hybrid scattering estimation model to generate the

scattergram.15 Satisfactory results were also obtained using the level

set16 and moving block17 methods. People have started paying

attention to convolution-based methods. For example, Zhao et al.

introduced free parameters in the convolution kernel to identify the

optimal parameters, so that the model of the scattering potential

and the convolution kernel could best fit the approximate estimate

of the scattering profile of the previously known image objects.18

Baer et al. incorporated physical scatter correction method in a con-

volution-based scatter correction algorithm.19

Deep learning has become a popular method in the field of com-

puter vision with the advantage of learning complex models end-to-

end. Li et al20 proposed an encoder–decoder 2D U-Net neural net-

work for the CBCT correction. Its main idea is to use deep convolu-

tional neural network (DCNN) to generate synthetic CT images. Xie

et al. proposed the use of artifact-free CNN (AFCNN) to correct

scattering artifacts,21 where the mean squared error (MSE) was used

as the loss function. This method combined a deep CNN and a resid-

ual learning framework (RLF) to train a mapping function from an

uncorrected image to a corrected image. The CBCT image blocks

were used as the input, whereas the CT image blocks were used as

the label. The results showed that this method could effectively sup-

press artifacts in the CBCT images.

Generative adversarial networks (GANs) are widely used in image

reconstruction. Kida et al22 developed a comprehensive method

based on CycleGAN to generate synthetic CT images from CBCT

images, which defined the content of bad mapping in a quantitative

way in terms of a loss function, thereby finding an approximate map

that minimizes the loss function. On the basis of CycleGAN model,

Liang et al. integrated the adversarial loss, cycle consistency loss and

identity mapping loss to convert CBCT into CT-like images, and

achieved a MAE of approximately 40 HU in the head and neck

patient test cases.23 Kurz et al24 successfully trained a periodical

generation adversarial network using unpaired training data to per-

form CBCT to CT image conversion, thereby correcting the CBCT

intensity. Harms et al. introduced the concept of residual blocks into

the cycle-consistent adversarial network (CycleGAN) framework to

understand the mapping between CBCT images and paired planned

CT images.25

Inspired by the method proposed by Merchez et al,26 we added

contextual loss to a simple five-layer CNN network to correct the

CBCT artifacts in the pelvic region. The loss function consists of two

parts, LtCX and LsCX . L
t
CX measures the loss of the generated image and

label image, while LsCX measures the loss of the generated image and

input image. Contextual loss plays a key role in the optimization of the

CNN network performance. We chose to conduct this feasibility study

in the context of pelvic CBCT images. We provide training data and

ground truth data to the network for supervised machine learning.

The remainder of this paper is organized as follows. In Section II,

we describe the method used. The experimental results are pre-

sented in Section III. Finally, the discussion and conclusions are

reported in Section IV.

2 | MATERIALS AND METHODS

The experimental method in this paper can be briefly summarized as

shown in Fig. 1. Next, we will introduce each part of Fig. 1 in detail.

2.A | Registration

According to Fig. 1, the registration is first performed after obtaining

the original data. Image registration involves aligning an analysis

image with a reference image using a geometric transformation that

correlates these two images. Medical image registration methods can
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be broadly categorized into rigid and nonrigid registrations. Nonrigid

registration is widely applied to deal with large motion and interfrac-

tion variability in chest and abdomen. In this study, we used the

nonrigid grid registration method.

Organ movements might be obvious in IGRT. For example, pelvic

anatomy, which includes the prostate and rectum, could change dur-

ing IGRT.27,28 To prevent the significant difference between the

CBCT-CT training pairs from affecting the experimental results, we

referred to the method detailed in 29 to perform deformable image

registration (DIR) on the pelvic region and subsequently generated

the CBCT-CT training pairs required for the experiment. The CBCT

image is static and the CT image is moving during DIR. The struc-

tural differences between the CBCT-CT training pairs can be

reduced via deformable registration.

It should be noted that the number of CBCT slices and CT slices

and slice thickness in the original data are different. Although the

algorithm proposed in this paper can be applied to misaligned data,

it is also crucial for the medical images to retain quantitative image

values. Therefore, a certain registration is necessary to match the

patient’s data before the data are input to the network. In this step,

we mainly introduced DIR technology to correspond to the slices

and adjusted the parameters, and there was no large deformation.

However, mismatches still exist between the CBCT-CT training pairs

following registration.

2.B | Data set

As the training of the convolutional networks is inseparable from

data set, the generation of datasets is related to whether the

trained model can sufficiently represent all the sample spaces. We

used the patient pelvis data for training in the proposed clinical

application method. Specifically, patients were required to undergo

a CT scan of the pelvic region before the start of IGRT. In the sub-

sequent radiotherapy, the patients underwent a CBCT scan so that

the pelvic area could be monitored in real time. Therefore, our data

were CBCT images and CT images that were obtained from an

IGRT system.

The original data came from 11 patients. The size of the CT

images is 512 × 512, while CBCT data are composed of six groups

of 384 × 384 and five groups of 512 × 512. Considering the small

sample size, we used data expansion techniques in the experiment,

such as image rotation, and obtained 2179 CBCT slices and 2036

CT slices. For CBCT, the slice thickness is usually 3.0 mm, and the

pixel size is 0:8789�0:8789mm2. However, for CT, the slice thick-

ness is displayed as 2.5mm or 3.0mm, and the pixel size is

0:9766�0:9766mm2.

The above original images were preprocessed by DIR to gener-

ate 627 CBCT-CT pairs, which was the data set used in our experi-

ment. It should be pointed out that the data set is a 2D data set.

During the training process, we randomly selected 499 pairs of

CBCT and CT images as the training set, 64 pairs as the validation

set and 64 pairs as the test set. The size of each image was

512 × 512. Among them, the CBCT images were used as the input

images, whereas the CT images were used as the label images.

However, a complete correspondence between the registered

CBCT-CT pairs was still not achieved, and the slightly misplaced

input-tag image pairs rendered the pixel wise loss function unsuit-

able for training.

F I G . 1 . Experimental process.
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2.C | Contextual loss

The contextual loss function has excellent application prospects with

respect to the slight misalignment of data. The main idea behind this

function is that it assumes the image as a collection of features, and

then determines the similarity between the images by measuring the

similarity between the features. This loss function allows the local

deformation of the image to a certain extent, therefore the requirement

for the data to be aligned at the pixel level is moderate. In addition, the

loss function used in this study constrains the local features, which

enables it to operate on the region with similar semantics. Specifically,

it first finds similar features in these regions with similar semantic

meanings and forms a match between these features. The context of

the entire image is then integrated, and the similarity between the

images is represented by the similarities between the matching fea-

tures. Therefore, we can categorize this process into the following:

2.C.1 | Feature extraction

As shown in Fig. 1, the input image (CBCT image) was sent to the

CNN network to obtain a preliminary generated image. Next, the

input image, generated image, and label image (three-dimensional)

were sent to the VGG19 network (proposed by Oxford’s Visual

Geometry Group) for feature extraction.

In this study, we used the VGG19 network that was pretrained

on ImageNet30 as the extractor. The pretrained VGG network takes

three channels images as the input, while the CT images are grays-

cale images. Therefore, we duplicated the CT images into three

channels before feed them into the VGG network. The VGG-19

network contains 16 convolutional layers, followed by 3 fully con-

nected layers. The features of the corresponding convolutional layers

that were used to calculate the loss function will be described later.

The VGG19 network structure used in this study is shown in Fig. 2.

Let the source image s and target image t be the two images to

be compared, and si and tj are the features obtained after the source

image s and target image t are passed through VGG19, respectively.

Then, we can represent each image as a set of features, namely

S ={si} and T = {tj}. Furthermore, we assume |S| = |T| = N, and when |

S| ≠ |T|, N-sampling is performed from a larger set. N represents the

number of high-dimensional points (features).

2.C.2 | Similarity between features

Next, we present a detailed introduction from a mathematical per-

spective to define the similarities between the features. Contextual

loss is a loss function related to the cosine distance. Let dij denote

the cosine distance between features, expressed as follows:

dij ¼ 1� si�μtð Þ � tj�μt
� �

k si�μt k2k tj�μt k2

� �
where;μt ¼

1
N
∑ jtj (1)

when dij<<dik , 8k≠j, we assume that features si and features tj have

similar contexts. To simplify the calculation, the cosine distance is

normalized as follows:

d∼
ij ¼ dij

minkdikþ ɛ
(2)

Here, we fixed ɛ¼1e�5. Using an exponential operation, we

transformed the distance into similarity. The definition can be

expressed as follows:

F I G . 2 . Network structure of VGG19.
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wij ¼ exp
1� ~dij
h

 !
(3)

where, h>0 is a bandwidth parameter. Here, we fixed h¼0:5.

Finally, we used a scale-invariant version of the normalized similarity

to define the contextual similarity between the features:

CXij ¼ wij

∑
k
wik

(4)

2.C.3 | Similarity between images

We find the features si that is most similar to features tj to form a

match between the features, as shown by the arrows in Fig. 3, and

the contextual loss can be regarded as the weighted sum of the

arrows. The ratio of the above-defined methods to the distance is

robust. If si is not similar to tj, CXij will be low regardless of the dis-

tance between si and tj. However, if the features si and tj are similar,

CXij will be high even if they are not in the corresponding positions.

We consider a pair of images to be similar when most features of

one image can find similar features in another image.

We can mathematically define the contextual similarity between

the images as follows:

CXðs,tÞ¼CXðS,TÞ¼ 1
N
∑
j
max

i
CXij (5)

where, CXij represents the similarity of the features si and tj. When

an image is compared with itself, the feature similarity value is

CXii ¼1, which indicates that CXðS,SÞ¼1. In contrast, when the fea-

ture set in one image differs completely from that in the other

image, the feature similarity value is CXij ¼ 1
N 8i, j, indicating that

CXðS,TÞ≈ 1
N!0.

2.C.4 | CX loss function

In summary, the loss function can be expressed as follows:

LCXðs,t, lÞ¼�logðCXðφlðsÞ,φlðtÞÞÞ (6)

where φ represents the VGG19 network, and φlðsÞ,φlðtÞ represent

the feature maps of the images s and t extracted from the layer l of

network φ, respectively.

2.D | The proposed loss function

We trained a network G to map the given source image s to the out-

put image GðsÞ. Here, for network G, we used a five-layer CNN net-

work with adaptive dimensions. When the input image width≥128,

the dimension was set to dim¼512, else the dimension was

dim¼1024. In this experiment, the input image size was 512 × 512,

so the initial width¼¼512. Then the width was down-sampled by

width==2 until width¼¼4, and the input image is loaded. The loss

LCXðGðsÞ,t, lÞ represented the degree of similarity between the gener-

ated and target images, whereas the loss LCXðGðsÞ,s, lÞ was used to

measure the similarity between the generated and source images.

The loss function used in the experiment can be defined as follows:

LðGÞ¼ LCXðGðsÞ,s, lsÞþλ �LCXðGðsÞ,t, ltÞ (7)

where, ls ¼ conv4 2 yields the content feature, and lt ¼ convk 2ð Þð Þ4k¼2

yields the style feature. In the experiment, we randomly sampled the

layer conv2_2 into 80 × 80 features to obtain better results, while

reducing the required computational memory. We discovered that

the difference in the number of randomly sampled features may be

critical to the experiment. The specific analysis will be provided later.

Here, λ is a constant that controls the ratio of the two loss func-

tions. We set λ¼5 in the experiments. It is noteworthy that the

parameters above were obtained through multiple experiments and

were found suitable for the experiments discussed in this study.

2.E | Network training

The purpose of the training network was to obtain a mapping from

the CBCT images to the planning CT images, which can improve the

quality of the input CBCT images. First, a five-layer CNN network

was used to obtain the generated image GðsÞ. When training the

network, the loss was calculated according to the characteristics of

the corresponding convolutional layer, and the image value of the

reconstructed image GðsÞ was updated according to the change of

the loss function. During the experimental process, image recon-

struction was performed by iterative optimization. Changes in the

loss function value and convergence during model training can

objectively reflect the overall training effect of the model. The rela-

tionship between training loss and epoch is shown in Fig. 4. Based

on the situations, the network parameters, feature sample size, and

ratios of the two loss functions LtCX and LsCX were adjusted accord-

ingly, and the training was repeated until the artifacts were effec-

tively corrected.

We used the TensorFlow library in the Python environment on a

GeForce GTX 1080 Ti processor. Adam optimizers and the nonlinear

activation function ReLU were used in the experiment. Following the

normal practice adopted in the deep learning community,31 each

convolutional layer employed a small 3 × 3 kernel. We set the learn-

ing rate to 1e�4 during the experiment. The number of epochs was

set to 300, and the input–output image sizes were set to 512 × 512.

The step size was set to 2 to achieve an accurate convergence.F I G . 3 . Feature matching.
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2.F | Evaluation

The main difference between the method proposed in this paper

and the method in 21 is that we introduced contextual loss, but

method in 21 chose MSE loss. Perceptual loss can be applied to net-

works with mismatched data, Kupyn et al32 presented DeblurGAN

network to reconstruct the image, which is based on conditional

GAN and perceptual loss. We compared the proposed method with

the above two methods. In the results section, we use pelvic data

for statistical and visual analysis.

We also used other loss functions for comparison, such as L2

loss and perceptual loss. The formula is expressed as follows.

L2ðx,yÞ¼ k x�y k2 (8)

Lpðx,y, lpÞ¼ kφlp ðxÞ�φlp ðyÞ k1 (9)

where φ represents the VGG19 network, and φlðxÞ,φlðyÞ represent

the feature maps of the images x and y extracted from the layer l of

network φ, respectively.

In this study, we calculated the mean absolute error (MAE), peak

signal-to-noise ratio (PSNR), structural similarity (SSIM), and average

CT number to quantify the results.

MAE is defined as the difference between the evaluation image

and the CT image. The formula is expressed as follows:

MAE¼ 1
m�n

∑
m�n

i, j
yði, jÞ� y

Λ ði, jÞ
��� ��� (10)

where, m × n is the total number of pixels. y(i, j) is the value of the

CT image with pixels (i, j), and y
Λ ði, jÞ is the value of the evaluation

image with pixels (i, j).

The input of PSNR was t,GðsÞð Þ, where t and GðsÞ are the target

and predicted images, respectively. The PSNR formula can be

expressed as follows:

PSNR¼10 � log10
ð2n�1Þ2
MSE

 !
(11)

where n is the number of sampling points. The number of sampling

points in the natural image is 8, and the maximum pixel value is 255.

The pixel range of the medical image is larger, and the corresponding

n value needs to be adjusted for calculation.

Structural similarity (SSIM) is an index to measure the similarity

of two images. The formula is expressed as follows.

SSIM x,yð Þ¼ 2μxμyþc1
� �

2σxyþc2ð Þ
μ2x þμ2y þc1
� �

σ2x þσ2y þc2
� � (12)

where µx is the average of x and µy is the average of y. σ2x is the

variance of x, σ2y is the variance of y, and σxy is the covariance of x

and y. c1¼ðk1LÞ2, c2¼ðk2LÞ2 are constants used to maintain stabil-

ity. L is the dynamic range of pixel values. k1 ¼0:01 and k2 ¼0:03.

The standard deviation represents the dispersion degree of pixel

gray values relative to the mean. The larger the standard deviation,

the more scattered the gray level distribution and the better the

image quality.

std¼ 1
m�n

∑
m

i¼1
∑
n

j¼1
yði, jÞ�uð Þ

2

(13)

where, m�n is the total number of pixels. y(i, j) is the value of the

evaluation image with pixels (i, j) and u stands for mean.

The average CT number can be obtained using the analysis mea-

surement function of ImageJ software. Using the cursor to accu-

rately select the area of interest, the system will give the CT number

corresponding to that area.

3 | RESULTS

In this study, we not only compared the artifact removal perfor-

mance with other methods but also showed the process of finding

the best performing network and parameters.

3.A | Experimental results

CBCT slices may be heavily contaminated with streak artifacts during

the scanning process, which means that some detailed information

may be destroyed. The proposed method effectively suppressed

scattering artifacts in the CBCT slices, as indicated by the results

shown in Fig. 5. For a clear comparison, the last column contains the

corresponding CT images with few artifacts (RCT). Comparing Fig. 5a

and Fig. 5b, it can be seen that the proposed method can correct

artifacts in CBCT slices (including streaking, shadowing, ringing, cup-

ping artifacts, etc.), which significantly improves the image quality.

Observe the last line of Fig. 5b and Fig. 5c, although the CBCT slices

processed by the method detailed in 21 also improved the quality of

the slices, it introduced blurring during the smoothing correction

process, making some details in the image lost. For example, it can

be clearly seen that the reconstruction effect of the air cavity part

was unsatisfactory. As shown in Fig. 5d, the method in 32 corrected

the CBCT slice with poor performance. For example, the pubic bone

on third row of d almost disappeared. In contrast, the proposed

method preserved key details such as the internal contour and

F I G . 4 . Change in training loss for different epochs.
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texture information of the pelvic region. Moreover, it is evident from

Fig. 5b that the body contour of the CBCT image corrected using

the method proposed herein was similar to that in the original CBCT

image rather than that in the planning CT. This is a critical aspect in

the IGRT workflow, as the body outline shows the patient’s true

position on the treatment table.

To objectively illustrate the effectiveness of our method in

removing artifacts, a quantitative analysis (including CT number,

MAE, PSNR, SSIM, std) of the pelvic region is presented in Table 1.

Each of these analyses was derived from the mean values calculated

over the test dataset. We calculated the CT numbers (in HU) of

areas such as the bone marrow and skin; subsequently, we

F I G . 5 . Artifact removal results obtained
with the pelvis data. (a) CBCT, (b)
proposed correction, (c) method in 21, (d)
method in 32, and (e) RCT. Display
window [−360, 628].

TAB L E 1 Quantitative analysis of the pelvis

Measurement CBCT CT Proposed method Method in 21 Method in 32

Mean CT numbers

(HU)

Bone marrow 220.2080 232.3675 226.8863 222.4910 85.4

Skin −186.091 −140.134 −148.373 −185.189 −160.9

MAE (HU) 51.0124 / 46.0143 48.3359 75.8857

Standard Deviation of MAE (HU) 5.3769 / 5.2783 5.3164 5.4567

Average Standard deviation of images (HU)

Whole image 468.6564 485.0308 483.3145 470.2253 395.7188

Bone marrow 170.7348 189.6158 182.0563 173.0177 117.5446

Skin 324.6481 382.8895 346.1466 310.6993 331.8619

Average PSNR 22.6595 / 23.0696 19.5833 11.4084

Average SSIM 0.8749 / 0.8873 0.8667 0.7493
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compared these values with the CT numbers in the original CT slices.

It can be seen from Table 1 that compared with the methods in 21

and 32, the CT numbers of the slices corrected with the proposed

method in the regions of interest above were closer to those of the

original CT images. MAE dropped from 51.0124 to 46.0143 and

standard deviation rose from 468.6564 to 483.3145 over the entire

image. From Table 1, the standard deviation of skin is 346.1466 and

the standard deviation of bone marrow is 182.0563. The PSNR val-

ues of the CBCT images may exceed 23.0696 dB and the SSIM val-

ues reached 0.8873. These indicate that our method improved the

image quality and the artifacts were effectively suppressed by the

well-trained CNN.

Fig. 6 shows the experimental results of using different loss

functions to remove artifacts. Table 2 and Table 3, respectively,

show the MAE and SSIM values of several different slices. The

results show that the proposed loss function improves the network

performance.

Images of the transverse, coronal, and sagittal planes are shown

in Fig. 7. As can be seen from Fig. 7, the three cut planes of the

input image exhibited clear streak and cupping artifacts, which signif-

icantly reduced the image quality. Our method effectively retained

the edge information of the image, while removing numerous arti-

facts in the image. According to Fig. 7, the quality of the resulting

image obtained by our method was similar to that of a planning CT

image.

Breathing and other movements were more significant in the

chest region than they were in the pelvic region. To verify that our

method is applicable to other anatomies, thoracic data were input to

F I G . 6 . Artifact removal results with
different loss function. (a) CBCT, (b)
Contextual loss, (c) L2 loss, (d)Perceptual
loss, and (e) RCT. Display window [−502,
528].

TAB L E 2 MAE (HU) values of different slices and loss functions

L2 loss Perceptual loss Contextual loss

Case 1 45.2318 68.5743 41.5959

Case 2 40.8850 63.3398 37.4898

Case 3 34.4598 60.6695 32.1762

TAB L E 3 SSIM values of different slices and loss functions

L2 loss Perceptual loss Contextual loss

Case 1 0.9030 0.6820 0.9048

Case 2 0.9046 0.7367 0.9083

Case 3 0.9048 0.7667 0.9073

F I G . 7 . (1) CBCT image with scatter artifact, (2) Artifacts removal
image obtained by the proposed method, (3)Artifacts removal image
obtained by the method in 21, (4) RCT. Display window is [−160, 240].
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the network for training. Specifically, we obtained 1,225 CT images

and 1,093 CBCT images from the hospital. In these original data, CT

images are all 512 × 512, while CBCT data are composed of 12

groups of 384 × 384 and 8 groups of 512 × 512. After these origi-

nal images are preprocessed by the 3D registration system, 1225

CT-CBCT pairs are generated. Randomly select 64 pairs as the verifi-

cation set and 64 pairs as the test set for the experiment. Fig. 8

shows that good results were achieved even with the chest data.

Here, we only selected three slices for display.

3.B | Optimization

We take different experiment to find the best parameters of our

method, which are simply expressed in Table 4. The experimental

results obtained are shown in Fig. 9.

Step 1: The results show that the image quality improved to

some extent, but obvious streaking artifacts were still present, as

shown in Fig. 9b.

Step 2: The uneven grayscale (cupping artifacts) in the image sig-

nificantly reduced; however, the stripe artifacts were not removed

(Fig. 9c).

Step 3: These changes did not produce the desired results.

Fig. 9d shows the results obtained when the L2 constraint was intro-

duced in equation (7).

Step 4: Fig. 9) shows that the streak artifacts were well cor-

rected, and compared with the method used in 21, image details

were well preserved with no blurring.

Step 5: Comparing Fig. 9e and Fig. 9f, we can be observed that

the five-layer network achieved better artifact correction in the same

training time.

F I G . 8 . Artifact removal results obtained
with the chest data. (a) CBCT, (b) proposed
correction, and (c) RCT. Display window
[−401, 526].

TAB L E 4 Parameter optimization process

Convolutional layers Dimension Feature sampling Loss function

Step 1 17 64 65 × 65 LðGÞ¼ LsCX þLtCX

Step 2 2 adaptive 65 × 65 LðGÞ¼ LsCX þLtCX

Step 3 2 adaptive 65 × 65 LðGÞ¼ LsCX þLtCX þkGðsÞ� t k2
Step 4 2 adaptive 80 × 80 LðGÞ¼ LsCX þ5LtCX

Step 5 5 adaptive 80 × 80 LðGÞ¼ LsCX þ5LtCX
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The quantitative analysis of the above improvement steps is

shown in Table 5 and Table 6.

Table 5 shows that after continuous testing, not only can the

artifacts be visually suppressed, but also the MAE index can be more

intuitively estimated as the picture quality is significantly improved.

Table 6 also shows that the image quality of the CBCT slices pro-

cessed by the proposed method is closer to the reference CT image.

4 | DISCUSSION AND CONCLUSION

CBCT images differ from CT images, and some of the differences

remain even after registration. First, the CBCT and CT images of the

patients will have different temporal resolutions. Next, slight

misalignments and movements can cause differences between the

two sets of images. The loss function detailed herein is robust to

slight intrinsic differences in the anatomical structure between the

CBCT and CT images, which solves the problem of misalignment

between the training pairs and yields improved results.

Contextual loss is a loss function based on cosine similarity,

which is applied to the feature layer extracted by VGG. The most

significant difference from the previously proposed loss functions

L1 or L2 loss33 is that it does not require the image to be per-

fectly aligned, thereby allowing local deformation. Perceptual loss34

and Gram loss35 constrain the similarity of the global high-fre-

quency features, and these constraints are not very reasonable

because the similarity between the images is typically local. The

loss function proposed herein can constrain the local features.

Furthermore, the loss function is based on semantics and evalu-

ates image similarity based on feature similarity, as opposed to

distance. Therefore, the loss function is robust to slight data

movements and can address data mismatch problems more

effectively.

Furthermore, in this paper, we used the CNN as a feedforward

network for scatter artifact correction. This method effectively sup-

presses the scattering artifacts produced by actual CBCT systems.

Moreover, the proposed method can be generalized and applied to

different anatomies. In this study, we used the pelvic and thoracic

data for testing. Good artifact removal can be achieved, provided

F I G . 9 . Artifact removal results obtained
in optimization process. (a) CBCT, (b) Step
1, (c) Step 2, (d) Step 3, (e) Step 4, and (f)
Step 5. Display window [−502, 528].

TAB L E 5 MAE (HU) values of different slices during optimization

MAE CBCT CT Step 1 Step 2 Step 3 Step 4 Step 5

Case 1 48.5691 / 49.6123 53.2220 45.9375 41.7456 41.5959

Case 2 43.9188 / 46.6951 48.5677 42.0149 37.5786 37.4898

Case 3 37.0584 / 40.5596 41.5314 35.9510 32.0957 32.1762

TAB L E 6 SSIM values of different slices during optimization

SSIM CBCT CT Step 1 Step 2 Step 3 Step 4 Step 5

Case 1 0.8918 / 0.9008 0.8890 0.9012 0.9033 0.9030

Case 2 0.8938 / 0.9032 0.8925 0.9032 0.9062 0.9068

Case 3 0.8893 / 0.8975 0.8897 0.8982 0.9010 0.9028
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that the CBCT images of the anatomies being investigated are col-

lected as training data. We found that method in 21 blurred the

detailed texture of the image when we repeated the experiment.

The method in 32 is used for deblurring of 2D images. CT is a

tomography technique, and the traditional photography technique is

a 2D single projection technique. The effect of motion on these two

images is different. Therefore, we found that CBCT slices did not

obtain satisfactory results using this method, resulting in the loss of

some structures. The method in 25 shows good performance in

removing artifacts, but the correction on the air cavity needs to be

improved. In contrast, it can be seen from Fig. 5b that the proposed

method obtained relatively good correction effect on the air cavity.

The proposed method preserved the details of the evaluated site,

such as textures in the inner contours of the pelvis and chest

regions. Moreover, no blurring was introduced into the CBCT slices

during artifact removal. The results of the pelvic and thoracic data

showed that the proposed method may be useful for removing arti-

facts in CBCT slices, with a significant improvement in the CT value

of the regions of interest. Therefore, the incorporation of our

method can effectively reduce the artifacts of CBCT in IGRT and

improve the accuracy of dose calculation.

Our proposed method can be further improved using more com-

plex generation networks. Future studies will focus on further inves-

tigating and improving our experimental results.
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