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Abstract: Background and Objectives: The proximity of the popliteal vessels in the distal femur may
increase the risk of iatrogenic vascular injury during cerclage wiring. In this study, the closest
location and distance of the popliteal vessels to the femur was examined using magnetic resonance
imaging (MRI). The associations between anthropometric factors and the distance that would
guide the placement of wires safely during surgery were also identified. Materials and Methods:
We reviewed adult knee magnetic resonance images and recorded: (1) the relation and the shortest
horizontal distance (d-H) from the femoral cortex to the popliteal vessels in axial images and (2) the
vertical distance (d-V) from the adductor tubercle to the axial level of the d-H values in coronal
images. The effects of anthropometric factors (sex, age, body height, body weight, body mass
index, thigh circumference, femoral length and femoral width) on these distances were analysed.
Results: Analysis of 206 knee magnetic resonance images revealed that the closet locations of popliteal
vessels were at the posteromedial aspect of the femur. The d-H and d-V were 7.38 ± 3.22 mm
and 57.01 ± 11.14 mm, respectively, and were both shorter in women than in men (p < 0.001).
Multivariate analysis identified thigh circumference and femoral length as the most influential factors
for the d-H and d-V, respectively (p < 0.001). Linear regression demonstrated a strong positive linear
correlation between the thigh circumference and the d-H and between the femoral length and the
d-V (Pearson’s r = 0.891 and 0.806, respectively (p < 0.001)). Conclusions: The closet location and
distance of the popliteal vessels to the femur provide useful information for wire placement during
distal femoral fracture surgery while minimising the risk of vascular injury. Given that patients with
a smaller thigh circumference and a shorter femoral length are more likely to have a smaller d-H and
a shorter d-V, respectively, cautious measures should be taken in such cases.
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1. Introduction

Cerclage wiring is one of the most common and effective fixation methods for distal femur
fractures [1–3], especially in fractures with oblique-, spiral- or spiral wedge-type patterns on radiography
with or without a prosthesis. These fractures are classified according to the following systems
(Arbeitsgemeinschaft für Osteosynthesefragen (AO) Type 33-A1, AO Type 33-A2, AO Type 33-A3,
Rorabeck type II and interprosthetic fracture) [4–6]. Unfortunately, irrespective of the open or
percutaneous technique, there are as many as 7% of vascular complications associated with inadequate
use of cerclage wires [1,7]. Indeed, the occlusion of major vessels by cerclage wires could result in
severe issues, such as below-knee amputation [8].

The management of vascular injuries associated with distal femoral fracture surgery requires the
awareness of the anatomy of the popliteal vessel and the distal femur and adequate wire placement.
The superficial femoral artery (SFA) crosses from anterior-superior to posterior-inferior in the distal
third of the femur and then exits from the adductor hiatus (AH) to become the popliteal artery (PA),
which comes closely to the cortex [9].

The proximity of popliteal vessels to the distal femur may increase iatrogenic injury during the
cerclage wiring of the distal femoral fracture. Few studies focused on the vascular structure or AH in
the distal third of the femur. In two cadaveric studies, the area up to 8 cm proximal to the adductor
tubercle (AT) was reported to be safe from vascular damage during surgery, and the localisation of
the apex of the AH could be determined by a bony landmark [10]. However, the spatial resolution
of the popliteal vessels in relation to the femur has not yet been examined, and the effects of the
anthropometric factors on such measures have not been elucidated.

This study aimed to determine: (1) the closest location and distance of the popliteal vessels to the
femur in adults on magnetic resonance imaging (MRI); and (2) the significance of associations between
anthropometric factors (sex, age, body height, body weight, body mass index (BMI), thigh circumference,
femoral length and femoral width) and the distance that would guide the placement of wires to minimise
the risk of vascular injuries during distal femur fracture surgery.

2. Materials and Methods

2.1. Patients

After obtaining the institutional review board approval (CMUH109-REC3-106, date of approval:
10 August 2020), we conducted a retrospective review of consecutive knee MRI studies using our
hospital’s database.

The inclusion criteria were patients between 20 and 80 years of age who underwent knee MRI
in a 5-year interval (January 2015 to December 2019). Patients were excluded, if they had previous
knee surgery, an implant in situ around the knee, soft tissue or bone tumours around the knee,
infection around the knee or peripheral vessel disease. All studies had a written report submitted by
a musculoskeletal radiologist (HYC) at our institution. All cases were on unilateral knees. The age of
each patient at the time of the study was recorded. An electronic query and a manual review of the
medical records were completed to obtain patient anthropometric factors, including sex, body height,
body weight and thigh circumference, which was measured horizontally just distal to the gluteal
fold [11]. BMI was calculated as the weight in kilograms divided by the square of the height in metres
(kg/m2). The femoral length and width, defined as the distance from the tip of the greater trochanter
(GT) to the AT and the widest portion of the distal femur, respectively [12], were reviewed on lower
limb scanograms.
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2.2. Knee MRI

Patients were scanned with a 3 Tesla (3T) Signa MRI scanner (General Electric Medical Systems,
Milwaukee, WI, USA) in the supine position, with both lower extremities straight and knees extended.
T1-weighted images in the axial, sagittal and coronal planes with a slice thickness of 2 mm were
selected on each knee magnetic resonance image for analysis. The distances were measured using
a digital calliper tool within INFINITT’s Picture Archiving and Communications System.

In the axial images, the shortest horizontal distance (d-H) from the femoral cortex to the popliteal
vessels was measured after tracing the nearby cuts of the AH (Figure 1a). In the coronal images,
the vertical distance (d-V) from the axial cut of the AT to the “d-H” axial level was measured (Figure 1b).
The posterior condylar axis (PCA), a line connecting the most posterior border of the medial and lateral
condyle in the axial view, was used as a reference to set the sagittal plane of the femur (Figure 1c).
The posterior half of the femur was defined by a line paralleling the PCA and crossing the centre of the
femoral canal, as described by Kim et al. [13]. At each “d-H” axial level, the posterior half of the femur
was divided into eight sections labelled “A” to “H” from posteromedial to posterolateral, and the
position of the popliteal vessels was noted (Figure 1d).Medicina 2020, 56, x FOR PEER REVIEW 4 of 13 
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H and from posteromedial to posterolateral. 

One musculoskeletal radiologist (HYC) and two orthopaedic surgeons (HWC and TLL) 
recorded all measurements independently, and the mean between three physicians was used 
for data analysis. Figures 2 and 3 illustrate the examples of the measurements in MRI. 

Figure 1. Magnetic resonance images demonstrating the views used for measuring the distances from
the popliteal vessels to the femur: (a) in the axial views, the closest distance (d-H) between the popliteal
vessels and the femoral cortex; (b) in the coronal views, the distance (d-V) between the adductor
tubercle (AT) and the axial level of “d-H”; (c) in the axial views, the posterior condyles axis (PCA) in
the femur used as a reference line (0◦); (d) in the axial views, the posterior half of the femur divided
into eight sections labelled from A to H and from posteromedial to posterolateral.
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One musculoskeletal radiologist (HYC) and two orthopaedic surgeons (HWC and TLL) recorded
all measurements independently, and the mean between three physicians was used for data analysis.
Figures 2 and 3 illustrate the examples of the measurements in MRI.
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2.3. Statistical Analysis 

Power analyses [14] with G*Power 3.1 (Franz Faul, Universitat Kiel, Germany) revealed 
that a minimum sample size of 109 was necessary to detect medium effect sizes (f2 ≥ 0.15) with 
a power of 0.80 and α of 0.05, and eight predictors. Statistical analyses were performed using 
SPSS for Windows, version 21.0 (SPSS Inc., Chicago, IL, USA). The reliability of each 
measurement was examined by the intra-class correlation coefficient (ICC). Continuous data 
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for independent samples. The effects of sex, age, body height, body weight, BMI, thigh 
circumference, femoral length and femoral width on each measurement were evaluated using 
multivariate linear regression analysis. The coefficient of determination, R2, was used to check 

Figure 2. The example of the measurements in magnetic resonance images of a 28-year-old male: (a) the
closest distance (d-H) between the popliteal vessels and the femoral cortex is 1.22 mm, and the position
of the popliteal vessels adjacent to the femoral cortex is section C; (b) the distance (d-V) between the AT
and the axial level of “d-H” is 66.98 mm.
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Figure 3. The example of the measurements in magnetic resonance images of a 56-year-old female:
(a) the closest distance (d-H) between the popliteal vessels to the femoral cortex is 14.65 mm, and the
position of the popliteal vessels adjacent to femoral cortex is section C; (b) the distance (d-V) between
the AT and the axial level of “d-H” is 41.08 mm.

2.3. Statistical Analysis

Power analyses [14] with G*Power 3.1 (Franz Faul, Universitat Kiel, Germany) revealed that
a minimum sample size of 109 was necessary to detect medium effect sizes (f2

≥ 0.15) with a power
of 0.80 and α of 0.05, and eight predictors. Statistical analyses were performed using SPSS for
Windows, version 21.0 (SPSS Inc., Chicago, IL, USA). The reliability of each measurement was
examined by the intra-class correlation coefficient (ICC). Continuous data are presented in the form
of mean ± standard deviation. Groups were compared using a t-test for independent samples.
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The effects of sex, age, body height, body weight, BMI, thigh circumference, femoral length and
femoral width on each measurement were evaluated using multivariate linear regression analysis.
The coefficient of determination, R2, was used to check the goodness of fit of the statistical models,
and the original uncertainty in the data was explained by the multivariate analysis. R2 varied between
0 and 1, with 0 indicating no benefit and 1 indicating benefit gained by applying multivariate analysis.
The correlation between the most influential anatomical factor and the distance measurements was
analysed using Pearson’s correlation coefficient, and significant differences were examined with
Games-Howell post-hoc analysis. Statistical significance was set at p < 0.05.

3. Results

A total 206 consecutive MRI scans of the knee were analysed with the following diagnosis:
ligament and meniscus lesions (n = 117), osteoarthritis (n = 47), spontaneous osteonecrosis of the knee
(N = 23) and osteochondritis dissecans (n = 19).

The study group included 110 men and 96 women with a mean age of 47.55 years
(range 20–80 years), a mean height of 165.53 cm (range: 138–188 cm), a mean body weight of
69.62 kg (range: 39–140 kg), a mean BMI of 25.24 (range: 16.92–40.17), a mean thigh circumference of
479.33 mm (range: 360–649 cm), a mean femoral length of 413.85 mm (range: 330.16–479.84 mm) and
a mean femoral width of 84.17 mm (range: 64.13–100.41 mm).

The knee MRI included 113 right and 93 left sides. There was no significant difference between
the right and left sides according to sex (p > 0.05). The position of the popliteal vessels adjacent to
the femoral cortex was section C (109/206, 52.9%), followed by sections B, D and A (27.2%, 19.4%
and 0.5%, respectively). The ICCs of the d-H and the d-V were 0.915 (range: 0.883–0.947) and 0.923
(range: 0.897–0.961), respectively. The d-H was 7.38 ± 3.22 mm. The d-V was 57.01 ± 11.14 mm.
There was no significant difference in the distances between the groups of different pathologic diagnoses
of the knees (p = 0.721).

There was a significant difference between men and women in their d-H and d-V values as well
as body height, body weight, BMI, thigh circumference, femoral length and femoral width (p < 0.001,
p < 0.001, p = 0.008, p = 0.002, p < 0.001 and p < 0.001, respectively; Table 1), Because the sex difference
might account for changes in d-H and d-V, multivariate analysis was performed.

Table 1. Sex differences in anthropometric factors, d-H and d-V.

Men (n = 110) Women (n = 96) p Value

Age (years) 44.98 ± 15.72 44.84 ± 17.46 0.952
BH (cm) 172.25 ± 6.90 157.74 ± 8.44 <0.001
BW (kg) 77.47 ± 16.50 60.58 ± 11.71 <0.001

BMI (kg/m2) 25.99 ± 4.59 24.33 ± 4.24 0.008
TC (mm) 489.58 ± 55.18 467.57 ± 44.36 0.002
FL (mm) 432.16 ± 25.97 392.86 ± 28.31 <0.001
FW (mm) 88.61 ± 5.81 78.96 ± 6.25 <0.001
d-H (mm) 7.92 ± 3.42 6.76 ± 2.86 0.010
d-V (mm) 61.79 ± 9.39 51.54 ± 10.49 <0.001

Data are presented as mean ± standard deviation. BH, body height; BW, body weight; BMI, body mass index;
TC, thigh circumference; FL, femoral length; FW, femoral width; d-H, the closest horizontal distance between
popliteal vessels and the femoral cortex; d-V, the vertical distance between AT and the axial level of d-H.

The results are shown in Table 2. The total effects (R2) of these anthropometric factors on the d-H
and the d-V were 0.788 and 0.667, respectively. The d-H correlated with thigh circumference (p < 0.001)
but not with sex, body height, body weight, BMI, femoral length or femoral width. The d-V correlated
with femoral length (p < 0.001) but not with sex, body height, body weight, BMI, thigh circumference
or femoral width.
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Table 2. Multivariate analyses of the distances of the popliteal vessels to the femur.

Distance B Estimate SE p Value R2

d-H 0.788
Intercept −22.378 8.662

Sex −0.015 0.295 0.960
Age (years) 0.000 0.007 0.986

BH (cm) 0.024 0.054 0.655
BW (kg) −0.025 0.058 0.673

BMI (kg/m2) 0.061 0.163 0.711
TC (mm) 0.056 0.003 <0.001
FL (mm) −0.003 0.006 0.676
FW (mm) 0.027 0.018 0.126

d-V 0.667
Intercept −90.768 37.717

Sex −2.513 1.286 0.052
Age (years) 0.039 0.029 0.181

BH (cm) 0.395 0.234 0.094
BW (kg) −0.094 0.253 0.712

BMI (kg/m2) 0.557 0.712 0.435
TC (mm) −0.026 0.013 0.068
FL (mm) 0.210 0.028 <0.001
FW (mm) 0.147 0.077 0.057

SE, standard error.

The linear regression equations predicting d-H (Figure 4a) and d-V (Figure 4b) were as follows:

d-H (mm) = 0.056 × thigh circumference − 19.282, (1)

d-V (mm) = 0.269 × femoral length − 54.184. (2)
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Figure 4. (a) The simple linear regression model describing the relationship between thigh circumference
and d-H; (b) the simple linear regression model describing the relationship between femur length
and d-V.

Equations (1) and (2) predicted that patients with a smaller thigh circumference (especially smaller
than 399 mm) had a smaller d-H (Table 3) and those with a shorter femoral length (especially smaller
than 369 mm) had a shorter d-V (Table 4).
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Table 3. The closest horizontal distances between the popliteal vessels and femoral cortex based on
thigh circumference.

Thigh Circumference (mm) p Value

≤399 (n = 8) 400–449 (n = 55) 450–499 (n = 79) 500–549 (n = 48) ≥550 (n = 16)

d-H (mm) 2.93 ± 1.01 4.37 ± 1.31 6.95 ± 1.66 10.35 ± 1.55 13.10 ± 2.24 <0.001

Data are presented as mean ± standard deviation.

Table 4. The vertical distance between the AT and the d-H level based on femoral length.

Femoral Length (mm) p Value

≤369 (n = 26) 370–399 (n = 37) 400–429 (n = 70) 430–459 (n = 55) ≥460 (n = 18)

d-V (mm) 38.55 ± 6.40 49.76 ± 5.76 58.97 ± 57.51 64.65 ± 8.15 67.62 ± 6.63 <0.001

Data are presented as mean ± standard deviation.

There was no significant difference between the measurements and age or BMI (Tables 5 and 6).

Table 5. The closest horizontal distance between the popliteal vessels and the femoral cortex based on
age stratified analysis.

Age Stratification (Years) p Value

20–34 (n = 66) 35–49 (n = 56) 50–64 (n = 56) 65–80 (n = 28)

d-H (mm) 7.70 ± 3.11 7.70 ± 3.57 6.97 ± 3.03 6.74 ± 3.01 0.360

Data are presented as mean ± standard deviation.

Table 6. The closest horizontal distance between the popliteal vessels and the femoral cortex based on
BMI stratified analysis.

BMI Stratification p Value

<18.5 (n = 9) 18.5–24.9 (n = 94) 25.0–29.9 (n = 76) ≥30 (n = 27)

d-H (mm) 6.24 ± 3.26 7.14 ± 3.51 7.06 ± 3.68 7.37 ± 3.12 0.125

Data are presented as mean ± standard deviation.

4. Discussion

The proximity of the vascular structures traversing the AH in the distal femur may increase the
risk of iatrogenic popliteal vascular injury during cerclage wiring. In the current study, the reference
values for safe distances from the injury and the closest location of the popliteal vessels to the femur
were established using MRI in adult knees. The closest locations of the popliteal vessels were at the
posteromedial aspect of the femur. The d-H and the d-V were 7.38 ± 3.22 mm and 57.01 ± 11.14 mm,
respectively. We also assessed the effect of anthropometric factors on these distances and found
thigh circumference and femoral length to be the most important indicators for the d-H and the
d-V, respectively.

Distal femur fractures account for approximately 6% of all femoral fractures [15–17], while vascular
injuries account for approximately 2% [18]. Injuries to the SFA, deep femoral artery or PA have been
described as a result of broken sharp fragments or iatrogenic injuries such as external fixation pins,
plunging drill bits, medial plating or cerclage wiring. These types of damage could give rise to immediate
bleeding, late presented pseudoaneurysm, limb ischaemia or below-knee amputation [1,8,19–21].

Apivatthakakul et al. evaluated the computed tomography angiography (CTA) images of
80 patients, which divided the whole femur into eight equal segments (seven levels) from the tip of
the GT to the lateral tibiofemoral joint line in the coronal plane and eight equal directions from the
anterior to the posterior of the medial femur in the axial plane. They have found that when the SFA is
at levels 6 and 7, it is located between sectors F and H (posteromedial and posterior to the femur) and
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at a distance of approximately 13.63 ± 3.59 mm and 10.08 ± 3.09 mm, respectively [22]. Their result
was similar to that of the current study, which revealed the closest point of the popliteal vessels was
posteromedial and posterior to the femur. During cerclage wiring, either from the anterolateral or
posterolateral direction, surgeons should be cautious of the posteromedial and posterior aspects of
the femur. The present study demonstrated the precariousness of the popliteal vessels and that any
distance shorter than the closest one shown here between the vessels and the femur cortex could prove
more detrimental than previously thought.

To our best knowledge, this was the first study of d-H, which demonstrated a smaller d-H in
patients results in a small thigh circumference. The explanation for this association is still uncertain.
While the influence of obesity on the anatomical relationship between the PA and the tibial nerve in
the popliteal fossa was reported, no direct evidence for the relationship between the popliteal vessels
and the femur cortex was provided [23]. Chuckpaiwong et al. have found that the infrapatellar fat pad
volume is correlated with age in the osteoarthritic group by 3T MRI, but not in the control subjects [24].
Song et al. have demonstrated that the popliteal fossa fat brook has no association with age [25].
Even though we hypothesised that d-H was related to the thickness of the fatty tissue around the
popliteal fossa, no correlation between the measurement and age or BMI was noted. Therefore, body fat
percentage and regional distribution should be included for evaluation in future studies.

There is a transition zone in the hiatal area from the adductor canal to the popliteal fossa.
In comparison with the more flexible fatty tissue of the popliteal fossa, the AH region is more rigid
and fixes the junction of the SFA and the PA close to the femur cortex [10]. Kwon et al. reported the
AH level to be over 59.8 mm proximal to the superior border of the patella [26]. Cadaveric studies
with 24 and 28 thighs described the level of AH to be above 10 cm (range: 8.0–13.5 cm) and 7.4 cm
(range: 5.6–9.2 cm) from the AT, respectively [27,28]. Narulla et al. assessed 41 limbs using CTA to
describe the relationship between the SFA and the whole femoral shaft and warned of the “danger zone”
from 239.6 mm to 172.5 mm proximal to the AT [12]. In the current study, the d-V (57.01 ± 11.14 mm)
was shorter than the distance between the AT and the AH that was described in the literature [27,28].
This suggests that the closest level of the vascular bundle occurs slightly distal to the AH at the point
where the PA crosses posteriorly to the distal femur.

All studies of femoral vessels around the distal femur that have been found in the literature are
summarised in Table 7. The trend is for a higher position of the danger zone of the femoral vessels
proximal to the AT and larger distances from the FA to the femoral cortex in patients from the USA and
Australia than in patients from Korea, Thailand, Taiwan and other Asian countries. These differences
might be explained by racial variations in the anatomy of femoral vessels and femoral bones or by
different femoral lengths and thigh circumferences between the races. However, because the studies
did not record the race of the patients, and because of the variety of study designs, the racial influence,
if any, remains unclear.

Narulla et al. proposed the doubled width of the femoral condyles as an estimated safe distance
proximal to the AT for intervention [12]. They also mentioned the danger zone in which the SFA crossed
inferiorly by halving the distance between the GT and the AT. Both predictors could be measured
on a true anteroposterior (AP) radiograph preoperatively or intraoperatively. In the current study,
the surgeon could estimate d-H and d-V preoperatively based on the thigh circumference and the
femoral length, respectively, without CTA or MRI. The thigh circumference could easily be computed
directly below the gluteal fold [11]. The femoral length could be calculated from the length between the
GT and the AT on the AP view of a whole femur radiograph. The thigh circumference and the femoral
length could be used clinically by measuring the normal contralateral instead of the fractured limb.

The important clinical implications of the current study were that it found the closest location
and distance of the popliteal vessels to the femur, to provide useful information for wire placement
during distal femoral fracture surgery while minimising the risk of vascular injury. Surgeons should
strive to perform subperiosteal dissection and pass the wire passer tips as close to the bony cortex as
possible during wiring to avoid vascular injury based on the patient’s thigh circumference. The vertical
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positions of the cerclage wire should be checked intraoperatively based on the AT and the femur length
to estimate the low-risk position from the popliteal vessels. Given that patients with smaller thigh
circumferences and shorter femoral lengths are more likely to have a smaller d-H and a shorter d-V,
respectively, caution should be taken in such cases.

Table 7. Summary of published studies of femoral vessels around the distal femur.

Study Method Numbers Sex
(M/F)

Age
(Range) Country Finding

Olson et al. [27] Cadaver 24 13/11 80
(60–98) USA

The danger zone of the femoral vessels
was 80–135 mm (mean: 100 mm) proximal
to the AT. The distances from the femoral

vessels to the femoral cortex were NA.

Maslow et al. [9] CTA 30 8/7 50
(25–80) USA

The danger zone of the SFA was
142.6 ± 40.6 mm proximal to the AT.

At that level, the distances from the SFA to
the medial femoral cortex were

30.7 ± 8.7 mm.

Narulla et al. [12] CTA 41 16/6 60.5
(51–89) Australia

The danger zone of the SFA was
172.5 ± 40.9 mm proximal to the AT.

At that level, the distances from the SFA to
the femoral cortex were 23.0 mm to

26.7 mm.

Kim et al. [13] CTA 30 18/12 52.4
(24–73) Korea

The femur was divided into six levels from
the LT to the AT (1–6). The distances from

the FA to the femoral cortex were
7.5–18.3 mm (mean: 12.2 mm) at level 6.

Jiamton et al. [29] CTA of
cadaver 20 NA NA Thailand

The femur was divided from the GT to the
knee joint line into seven levels (1–7).

The distances from the SFA to the medial
femoral cortex were 8.3–32.8 mm

(mean: 18.2 mm) at level 6.

Apivatthakakul
et al. [22] CTA 80 27/13 51.6

(21–70) Thailand

The femur was divided from the GT to the
knee joint line into seven levels (1–7).

The distances from the SFA to the femoral
cortex were 13.63 ± 3.59 mm and

10.08 ± 3.09 mm at levels 6
and 7, respectively.

Chang et al.
(current study) MRI 206 110/96 47.55

(20–80) Taiwan

The danger zone of the popliteal vessels
was 57.01 ± 11.14 mm proximal to the AT.

At the level, the distance from the
popliteal vessels to the medial femoral

cortex was 7.38 ± 3.22 mm.

CTA, computed tomography angiogram; GT: greater trochanter; LT, lesser trochanter; FA: femoral artery;
SFA: superficial femoral artery; MRI, magnetic resonance imaging; NA, not available.

4.1. Limitations

This study has several limitations. First, all magnetic resonance images were performed to
diagnose the pathology. None of them were performed on a strictly defined normal population.
However, we excluded patients whose vessels were potentially affected by the pathology to minimise
the effects on the data. Second, our distances were measured on magnetic resonance images,
not intraoperatively. Third, given that the magnetic resonance images were taken with the patient
in a supine position, which was similar to most of the clinical conditions that used the supine lateral
approach, while some surgeries were performed with the patient in a lateral decubitus position in the
distal femur fracture and certain anatomical relationships may differ. Moreover, the position of vessels
could change with bending, torsion and compression in the flexed knee [30]. Further study with
different groups of lower limb positions will be needed. Fourth, instead of measuring the distances
on 2D MRI scans, it would be more reliable to make 3D reconstructions of the soft tissue of interest,
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i.e., the vessels, using software such as Mimics® (Materialise, Leuven, Belgium) and relate those
distances to the 3D bony landmarks. Last, given that all subjects presented here were of the unrelated
Han Chinese ethnicity, it would be interesting to conduct this work in populations of different races.

4.2. Strengths

Several methods of evaluating the location of the femoral artery have been utilised including
cadaveric dissection [10,28,31], ultrasonography, angiography [18,32], CTA [9,12,13,21,22,33] and
MRI [34–36]. We believe MRI provides more valuable information about relationships between soft
tissues, including the neurovascular bundle, muscles and fatty tissues. In addition, the innovation of
the noncontrast-enhanced MRI technique improved the resolution of soft tissue anatomy without the
risk of contrast-induced complication as seen in angiography or CTA [34,37]. Moreover, the sample size
in our study was large, and the analysed magnetic resonance images were used to assess structurally
pathologic knees, which was reflective of the anatomical reality in patients who underwent surgery.
All distances were independently measured by three physicians. Therefore, the results provided could
be viewed as reliable reference data for future work. Moreover, the aim of the study was to determine:
(1) the closest location and distance of the popliteal vessels to the femur on MRI and (2) the association
between anthropometric factors and the distance that would guide the placement of wires to minimise
the risk of vascular injuries during distal femur fracture surgery. MRI was not considered necessary
preoperatively, and the ultrasonography of the limb prior to surgery was encouraged because it
provided the same information more quickly than MRI, especially in vulnerable patients with smaller
thigh circumferences.

5. Conclusions

By measuring a large number of adult knee magnetic resonance images, this study found the
closest location and distance of the popliteal vessels to the femur to provide useful information for
wire placement during distal femoral fracture surgery while minimising the risk of vascular injury.
Surgeons should strive to perform subperiosteal dissection and pass the wire passer tips as close
to the bony cortex as possible during wiring to avoid vascular injury based on the patient’s thigh
circumference. The vertical positions of the cerclage wire should be checked intraoperatively based on
the AT and the femur length to estimate the low-risk position from the popliteal vessels. Given that
patients with a smaller thigh circumference and a shorter femoral length are more likely to have
a smaller d-H and a shorter d-V, respectively, caution should be taken in such cases.
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