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Abstract: HCV-induced CAPN activation and its effects on virus-infected cells in a  

host-immune system have been studied recently. It has been shown that the HCV-nonstructural 

5A protein acts as both an inducer and a substrate for host CAPN protease; it participates 

in suppressing the TNF-α-induced apoptosis response and downstream IFN-induced 

antiviral processes. However, little is known regarding the disturbance of antiviral 

responses generated by bovine CAPN activation by BVDV, which is a surrogate model of 

HCV and is one of the most destructive diseases leading to great economic losses in cattle 

herds worldwide. This is also thought to be associated with the effects of either small 

CAPN inhibitors or the natural inhibitor CAST. They mainly bind to the binding site of 

CAPN substrate proteins and competitively inhibit the binding of the enzyme substrates to 

possibly defend against the two viruses (HCV and BVDV) for anti-viral immunity. To 

devise a new stratagem to discover lead candidates for an anti-BVDV drug, we first 

attempted to understand the bovine CAPN-CAST interaction sites and the interaction 

constraints of local binding architectures, were well reflected in the geometry between the 

pharmacophore features and its shape constraints identified using our modeled bovine 

CAPN1/CAST4 complex structures. We propose a computer-aided molecular design of an 

anti-BVDV drug as a mimetic CAST inhibitor to develop a rule-based screening function 

for adjusting the puzzle of relationship between bovine CAPN1 and the BVDV 

nonstructural proteins from all of the data obtained in the study. 
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1. Introduction 

Calpains (CAPNs) are types of proteinases, which represent almost 2% of all gene products [1], and 

they belong to Ca2+-dependent cysteine-endoproteinases, which hydrolyze the internal α-peptide bonds 

between the amino acids of substrate proteins in the presence of Ca2+ ions for enzyme activation. The 

physiological functions of CAPNs themselves and their endogenous inhibitor calpastatin (CAST) have 

been major targets in medicine and biotechnology due to their multi-faceted virtual roles. On the other 

hand, functional disturbances in the coding-level constraints of the CAPN isoforms, their activity 

states and pathological conditions, are associated with various diseases, and imbalance in their 

functions is thought to cause many diseases, including Alzheimer’s disease, stroke, and brain trauma 

with plaque formation by CAPN1, and in the eye, cataract formation caused by CAPN2, and a lens-specific 

variant of CAPN3 under their over-activation [2–10]. Many disease-associated cellular processes lead 

to protease destabilization and aggregation (amyloid diseases, limb-girdle muscular dystrophy caused 

by defects in CAPN3). Protease aggregation may also lead to a decrease in its activity and may elicit 

an inordinate immunological response against inflammation sites [11–13]. This suggests that the 

physiological importance of CAPN is not addressed enough, when viewed in light of the cause-and-effect 

relationships of calpainopathies. Effectors or executors of Ca2+-overload have been targeted for the 

development of therapeutic reagents to regulate or stabilize of the CAPN system. 

Bovine CAPN1 has been a focus of our work. We have taken a strong interest in bovine CAPN1 

due to the strong anti-Bovine Viral Diarrhea Virus (BVDV) capability of CAPN small inhibitors. 

BVDV is a major bovine pathogen. It is a member of the well-characterized Pestivirus as a surrogate 

model virus for the hepatitis C virus in the same Flaviviridae family of viruses. BVDV infection is one 

of the most destructive diseases, leading to major economic losses in cattle herds worldwide. In the 

United States alone, there is an average loss of $10 to $40 per calving [14]. Nevertheless, there are no 

the direct BVDV infection remedies. Recent studies [15–18] have suggested that the nonstructural 5A 

(NS5A, a serine phosphoprotein) protein of the hepatitis C virus (HCV) acts as both an inducer and a 

substrate for the host CAPN by activating the cysteine protease by the perturbation of intracellular 

Ca2+ ions, which stimulate its protease activity producing the NS5A protein in the HCV-infected cell. 

The common ability of nonstructural proteins of the BVDV and HCV to avoid the antiviral response 

generated by the host innate immune system results from their multi-functional biological role in 

mediating essential steps of the viral life cycle and modulating virus-induced immunosuppression. In 

other words, a dramatic activation of the natural CAPN has been known to be responsible for the 

activation of NF-κB (nuclear factor-κ light chain enhancer of activation B cells) transcription factor 

with the NF-κB-dependent expression of pro-inflammatory cytokines and adhesion molecules in 

addition to calcineurin/NFAT pathways in T-cell activation [9,10,19]. In contrast, CAPN activation by 

the HCV-NS5A protein, which suppresses apoptosis of the infected cell, inhibits TNF-α (tumor 
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necrosis factor-α) induced apoptosis; however, pharmacological inhibition of CAPN reactivates the 

apoptosis response of the NS5A expresses [20]. If looks upside down, the cleavage of the NS5A 

protein by the host CAPN may be likely to a modulator as a posttranslational modification on the 

NS5A processing, are supported by the HCV infection experiments [15–20], where completely blocked 

tyrosine phosphorylation of IκBα (nuclear factor of κ-light polypeptide gene enhancer in B-cells 

inhibitor, α) induced by the HCV-NS5A protein and the subgenomic replicons in subsequent NF-κB 

activation, were regulated by the small CAPN inhibitors (ALLM, ALLN, and MDL-28170). 

Furthermore, the NS5A protein directly constrains the activity of the host antiviral protein PKR (an 

interferon-induced double-stranded RNA-activated protein kinase that brings about the NF-κB 

activation process) via association with an IFN sensitivity-determining region (ISDR) located at the 

center of the NS5A molecules, resulting in IFN-resistances and downstream IFN-induced antiviral 

processes. The effects of small CAPN inhibitors against the BVDV-NS5A protein can be indirectly 

inferred from the characteristics of BVDV and HCV; they share similar viral life cycles and host immune 

responses [21,22] to their infections; therefore, BVDV has been considered a good model virus for 

HCV. However, some similarities and differences in the prototypic representation between the BVDV 

and HCV have not been considered. The facts of both the surrogate virus model for HCV infection and 

the relationship between the NS5A and NS5B (the nonstructural 5B protein has RNA-dependent RNA 

polymerase activity) of BVDV proteins that correlate with the NS5A activates transcription factors of 

NF-κB and STAT-3 (Signal transducer and activator of transcription-3) as well as host CAPN. Thus 

the STAT-3 binds to the NS5B protein and thus, targets the IFN-α JAK/STAT signaling for anti-viral 

immunity. This led us to investigate the link between the BVDV-NS5B protein and the host CAPN 

protease. Recently, we characterized the impact of basic aromatic analogues on anti-BVDV activity 

that have been targeted for the NS5B polymerase by the complementary 2D-QSAR and MFA models [23]. 

In a previous study, we suggested that the polarity and the polarizability of a series of arylazoenamine 

derivatives were very important for optimal inhibitory activity of the BVDV- NS5B polymerase and 

would be further optimized for prevention of HCV, and other single-strand RNA viruses in the 

Falviviridae family. The bovine CAPN/CAST complex system should give priority to the potential 

host factor target as a stratagem against BVDV infection to enhance the bovine response to control 

BVDV owing to its high pathway redundancy for the host in wide expression in infected tissues. More 

importantly, these facts motivated us to apply the CAPN inhibitors in the virtual screening of new lead 

candidates for the design of an anti-BVDV drug to improve the efficiency of immune-mediated 

inhibition of BVDV-infected cells. As a result, there has been substantial interest in the action site of 

the BVDV-induced CAPN enzyme in modulation of the virus-infected cell apoptosis in the evasion of 

innate immune response [24] by the BVDV pathogen. 

To develop a new stratagem for the bovine BVDV pathogen/host CAPN environment, we first 

attempted to understand the target molecular characteristics, such as the activation and inactivation of 

CAPN as well as, the regulation of CAPN activity by its natural inhibitor CAST with a focus on 

CAPN1 member specificities. If CAPN-CAST interaction sites can be determined, antibodies  

specific to those sites and small inhibitors for the specific substrate proteolysis [4,5] (in particular, the 

BVDV-NS5A protein) can be screened in silico to irreversibly block increase in the viral 

immunological evasion mediated by the host CAPN protease. The CAPN activity in the virus-infected 

cell should be tightly controlled by the inhibitor CAST, which has a high affinity for the activated form 
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of CAPN. The CAST inhibition modes are far more specific than the substrate-competitive processes 

present in most cell types. The binding sites and modes of the human CAPN-CAST action mechanism 

are used as a model from the design to the development of therapeutic protein drugs. There are more 

than 50 currently known endogenous and exogenous inhibitors of CAPN. These can be divided into 

two groups: peptidomimetics at the active site (the protease core cleft) that mimic fragments of its 

natural CAST inhibitor (peptidyl epoxides, aldehyde, and α-ketoamides) and non-peptide inhibitors at 

other allosteric sites of domain DIV or DVI [6,25–34]. Unfortunately, the active site inhibitors (target 

the CAPN protease core) are generally nonspecific for CAPN family members or other cysteine 

proteases. Indeed, peptide-based inhibitors exhibit poor pharmacokinetics in contrast to allosteric 

inhibitors, and have limitations for inclusion in the classical CAPN subgroup (the CAPNs: 1, 2, 3, 8, 9, 

11, 12, 13 and 14). The limitations are due to differences in the structural architectures of the whole 

enzyme between members of the classical and non-classical CAPN subgroups. Therefore, there is a 

high potential to repurpose these small CAPN inhibitors like the CAST inhibitor’s imitations for the 

development of BVDV antiviral treatments. In addition, interaction constraint predictions of the 

binding sites of the CAST inhibitor to the CAPNs proteases will warrant further investigation into their 

potential for anti-BVDV applications such as mimic CAST analog and therapeutic targets of anti-BVDV 

to the host CAPNs proteases. 

Our previous study [35] involving the structure prediction of bovine CAPN1/CAST complex 

contributed towards understanding how the fourth CAST inhibitory domain (CAST4) interacts with 

CAPN1 to inhibit its protease activity using the predicted complex model by focusing on the 

interaction patterns with the bovine CAPN1 trace residues, which were concentrated in both conserved 

and class-specific residues across the CAPN1 and CAPN2 subgroups of mammal species. In the 

current study, further insights into the interaction properties under constraints essential for the key 

interactions with the CAST4 based on the CAPN1 trace residues, were gained by analyzing the virtual 

alanine scanning mutation effects captured by the free energy difference of the protein stability and the 

binding affinity with the CAST4 inhibitor for either the CAPN1 itself or the CAPN1/CAST4 complex 

model structures. The targeting of key interaction residues for the CAPN1 against the CAST inhibitor 

was done for the purpose of identifying the aggregation characteristics and the pharmacophore factors 

as well as the geometry between the factors in the key interaction sites that can affect both the protease 

stability and activity. 

2. Results and Discussion 

On the basis of this complex model structure, it has been possible to explain these particular 

interaction preferences that may be the result of interaction with additional domains of the bovine 

CAPN1 by the trace residues (class or species-specific and conserved residues across mammalian 

CAPN group) in terms of a key residue’s point mutations. The mutant effects support the idea that the 

major specificity of the regulation system appears to be widely distributed across multiple domains 

along with the exposed surface groove, and not only around the catalytic center of Cys115 residue 

within the protease core. We embarked on a study that would predict the interaction effects of a single 

key substitution of a residue in bovine CAPN1 by evaluating the free energy difference based on 

changes in the enzyme itself and in the complex’s structure stability, in its of binding affinity with the 



Molecules 2014, 19 14320 

 

CAST inhibitor, and its aggregation from the wild-type model structure. To investigate the importance 

of either the side chain or peptide bond of trace residues located on the interaction interface for the 

bovine CAPN1/CAST complex, we performed virtual alanine scanning by mutating each key residue 

to alanine. 

2.1. Predicting Mutation Effects on the Relationship between Structure and Function of the Bovine 

CAPN1/CAST Complex Using Virtual Residue Scanning 

In the first approach, this mutation was designed to predict the relative interaction preferences of 

the trace residues on the conserved inhibition motifs (residues 639–652 of LDDALDQLSDSLGQ 

motif of subdomain A, and residues 678–691 of KLGERDDTIPPKYQ motif of subdomain B) at each 

position within subdomains A and B of CAST4 to the overall CAPN1 binding affinity. In the same 

pocket, the mutated subdomain B of CAST4 had few conformer changes (from the wild-type form) 

due to this single mutation effect do little consider the conformational properties of the polypeptide 

backbone than the interaction of both side chains in the bovine CAPN1/CAST4 complex. However, 

regarding the mutation energy function, the conformer change derived from alanine scanning was 

reflected to a side chain and backbone entropy term of the polypeptide dependent on temperature. 

2.1.1. Predicting Mutation Effects on the KLGERDDTIPPKYQ Motif in Subdomain B of  

Bovine CAST4 

Dramatic effects of these alanine replacements were observed; the Leu679 and Ile686 mutants of 

CAST4 (Leu679Ala and Ile686Ala of the subdomain B) permitted the peptide backbone to be more 

flexible and significantly reduced the hydrophobic interactions with the complementary binding sites 

(Cys115, Gly208, Gly271 and Ala273 of CAPN1). Each wild-type of the two key residues (Leu679, 

Ile686) was buried in two hydrophobic pockets (key hydrophobic contact residues; Gly271, Ala273 for 

Leu679 and Ala111, Leu112 for Ile686) to provide further stabilization via van der Waals contacts 

with the interface formed from domains DI and DII of the bovine CAPN1 enzyme (Figure 1b). 

Regarding interaction preferences, these mutants do not even show two H-bonding interactions with 

the backbone of two glycine residues (Gly208 and Gly271) since the distance between them is too far 

to form any H-bonding (exceed the distance threshold 2.5 Å), in contrast to the wild-type complex. 

Consequently, the two mutants (Leu679Ala and Ile686Ala of CAST4) would be unfavorable for 

binding bovine CAPN1, destabilizer than the wild-type complex as 3.03 kcal/mol and 2.22 kcal/mol 

respectively. The prediction further performs a search for stabilizing multiple mutations on a set of any 

of 20 amino acids for saturation mutagenesis to determine the specificity of residues found at the 

positions (the positions of 679 and 686 for CAST4). In the cases where combinations of simultaneous 

mutations are generated, the mutations with the lowest mutation energy at the position from the  

wild-type protein are scanned. Then, a novel residue that satisfies the positions is identified, 

highlighting the importance of the sites for its inhibitor binding. This is reflected in the key factors in 

the active, site-directed CAST4 from the specific locations as shown in Figure 2. There seems to be a 

requirement for the formation of H-bonds between them as well as, contribution to essential 

hydrophobic interactions in the region of the active site for protease inhibition. Moreover, as the 

general preference, greater freedom of movement of the side chain for large side chain (in an inhibition 
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potency in the order of arginine > phenylalanine > leucine > tyrosine) is required at the 679 position, 

and the bovine CAPN1 may tolerate tryptophan or, histidine within the hydrophobic binding site as 

shown in Figure 2. The mutant specificity (Figure 2) was defined by the highest selectivity of binding 

affinity from stabilizing to destabilizing effects at this position, but the priority of these residues seems 

unlikely to be very selective as they are also accommodated by the hydrophobic pocket of another 

CAPN member, CAPN2 (Figure 1a). Interestingly, the residues (Leu679, Ile686) of CAST4 were 

positioned at the start and end points in a serial β-turn and kink construct, and their orientation in 

relation to each other was in the opposite direction for the wild-type. The predominant interactions are 

mediated by a complement to the distorted backbone conformation as a local kink of residues 679–686 

directly compact interacting with the active core cleft of bovine CAPN1. For these specificity profiles 

of bovine CAST4, the frame of the local kink at the positions must be even more important if other  

three-dimensional structures (for example, an extended β-strand conformation consisting of proline 

peptide [36], which arise from nucleophilic attack by the thiol group of Cys115, preferably located 

Leu679 and Ile686 residues closer to the Cys115 residue, where it can easily undergo local folding 

prior to cleavage in a substrate-like manner. The binding mode of residues 679–686 points away  

from the enzyme active site and thus avoids cleavage that is apparent from the inhibitor capabilities  

(as shown in Figure 1). 

Figure 1. The hydrophobic interaction surfaces of the binding-site residues near the 

location at which the local kink conformer (residues 611–624 of rat CAST4 and 678–691 

of bovine CAST4) binds. (a) Close-up views of the residues (Leu612 and Ile619) of 

CAST4 binding at the key contacts of rat CAPN2; and (b) the corresponding residues 

(Leu679 and Ile686) bound to the active site of bovine CAPN1. Both the subdomains B of 

CAST4 assume a similar backbone conformation for the distorted local kink. These local 

kink conformers show the most similar patterns of hydrophobic contact distribution across 

the CAPN subgroups. Hydrogen bonds are represented by green dashed lines. 
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Figure 2. The inhibitor specificity of the residue preferences observed for each position in 

subdomain B of bovine CAST4. The Leu679 mutant shows preferences for the residues 

Arg, Phe, Leu, and Tyr (had stabilizing effects), whereas the residues Tyr, Trp, Phe, and 

Arg of the Tyr690 mutant had natural effects of the almost apparent wild-type complex 

(from most to least stabilizing). Those mutants show distinct preferences for residues 

bearing hydrophobic side chains (rather than hydrophobic ones) indicating specificity for 

both positions. In the single-point mutation study, the mutant conformer contributes 

considerably to the difference in mutation binding energy from the wild-type complexes. 

The energy difference of each mutation on binding affinity is the difference between the 

binding free energy in mutated and wild-type proteins, which are predicted to cause 

destabilizing effects such that mutation energies greater than 0.5 kcal/mol are designated  

as destabilizing.  

 

On the other side of the binding mode, the Thr685 residue does not show stronger interaction with 

specific residues Gly271 and Trp298 than the main chain interactions between Gly680 and Gly271 

residues in the bovine CAPN1/CAST4 complex owing to a relatively disordered and steric orientation 

to the rear of the protruding local kink. This was well documented by the alanine mutation effect when 

the Thr685Ala mutant was introduced by hydrophobic substitution from the polar group in its side 

chain; the mutation newly occurred due to hydrophobic contact with both Val269 and Trp298, in 

contrast to the Gly680Ala mutant, which was designed to abolish the electrostatic interaction with 

Gly113 and Cys115 of CAPN1. The entrance into the opposed chemical property of the variants  

(the Thr685 and Gly680 mutants to alanine) appeared that the forehand variant replenished for the 

backbone’s entropic penalty into less destabilizing effect (0.80 kcal/mol) than latter variant was most 

significantly reducing a relative of backbone flexibility (3.96 kcal/mol). 

The Pro687 and Pro688 mutants demonstrated that the π-π stacking interactions with the Trp298 

residue play major roles in stabilizing their substructure and maximizing its binding affinity, the 

interaction strength of which depends on their relative positions. The Pro687mutant not settle down 

than the neighboring Pro688 mutant as a difference of greater than 3-fold magnitude as 2.12 kcal/mol 

and 0.66 kcal/mol for their mutants respectively. In comparing the two proline variants, the degree of 

destabilization effects between them could possibly originate from whether a parallel or diagonal π-π 

stacking interacts with the indole ring of the Trp298 residue via stacking conformation and 
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stabilization effect for their wild-type. The side chain of Pro687 stacks in a coplanar conformation as a 

parallel π-stacking with respect to the indole group of Trp298, and it has a generate effect than that of 

the Pro688 mutant (Figure 3). Though these π-π stacking interactions are physically remote from the 

Ca2+-binding-induced to the active conformer, the alanine scanning effects at residues 687–688 do not 

account for this coplanar stacking into destabilizing the dipole moment of the Trp298 residue, or any 

non-polar contacts observed in the absence of those π-π stacking interactions. Therefore, if either of 

the relevant proline to alanine substitutions made no direct contact with the Trp298 residue that 

prevents access of the inhibitor to the active center with direct blockage of the catalytic residues, the 

alternation effects might interpose to some extent an additive hindrance to the mutated complex. Two 

proline residues (687–688) have a restrained backbone conformation, which likely contributes to 

maintaining an unstructured conformer of the inhibitor protein. These residues also served specificity 

profile for the positions is not cleaved unlike the substrate of the enzyme. The observed overall 

mutation effect using virtual alanine scanning for the conserved TIPP peptide the mediating the 

inhibitory activity of CAST4 showed good agreement with the results of earlier studies by Betts et.al. [37]. 

One major structural attribute in the TIPP sequence is likely to bind inhibitor, that is, the backbone 

disorder of the peptide after all. 

Figure 3. The π-π stacking interactions between two proline residues (Pro687 and Pro688) 

of CAST4 and a key tryptophan residue, Trp298 of CAPN1 from bovine in which Trp298 

moved to tuck into a hydrophobic patch formed by the Ca2+-binding induced rearrangement of 

the gating loops (residues 96–108 in DI and 251–271 in DII). 

 

The TLPPKYK sequence in CAST1 and TIPPDYR sequence in CAST3 can be found in the  

N-terminal of the conserved TIPPXYR motif, but they are not detected in CAST2 corresponding to the 

TIPPKYQ inhibitory motif within the subdomain B of bovine CAST4. The TIPP peptide (residues 

685–688 of the bovine CAST4) resulted in no obvious difference between its inhibitory profile and 

those of other mammal CAST but not the KYQ peptide (residues 689–691) located in the two turn 

helix conserved across the species. The position of the KYQ peptide-bond makes its lining out of the 

activated pocket cleft, whereby it may indirectly affect CAST inhibitor activity through interactions 

with the flexible regions on both sides of the entrance of the protease core of CAPN1. The comparison 

of the binding affinity of both Lys689 and Tyr690 mutations to the wild-type, showed very interesting 
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results in this study. The substitution of Tyr690 with alanine showed more than a 1.7-fold decrease 

from 2.29 to 3.38 kcal/mol in the CAPN1 binding, as shown in Figure 2, relative to the Lys689 

modification (1.62 kcal/mol); these wild-type residues are bound to the enzyme surface in each 

position that corresponds to the localization of the exposed reactive site loop in the domains DII for 

Lys689 and DI for Tyr690 residue, and their mode of interaction with the protease binding loop is 

substantially different (Figure 4). 

Figure 4. Detailed view of the interaction sites of the Lys689 and Tyr690 residues of 

subdomain B, which are in contact with the entryway of the protease core DI and DII 

(shown in ribbon represented in blue and brown, respectively) and were mutated to alanine 

to reduce the size of its side-chain, rendering CAST4 less space-filling mode from the 

active site. 

 

The Lys689 mutant causes its side chain to hold more rigidly in the hydrophilic contacts to 

considerably decrease electrostatic interactions with the polar loop region (Cys108, Gln109, His179, 

Trp298 and Glu300 residues) in DII, in particular to the primary amino group with a positively 

charged in Lys689 no longer enhances the electrostatic contact with side chain of Glu300 as a result of 

the replacement of the methyl group. More surprising was that the strongest stacking between Tyr690 

and His179 in DI occurred in the presence of Trp298, an apparent consequence of the large surface 

area of their large side chain, and the dipole moments were devoid of change with alanine at the 

position. The absence of this staking in the Tyr690 mutant may alter a set of direct and indirect 

contacts that affect the positioning and orientation of the π-π stacking done by Trp298, which results in 

acting for the statically blocking access to the binding loop residue, and also electrostatic properties of 

both the His179 and Tyr690 residues. In contrast, the mutation of Tyr690, in which a methyl group 

was inserted between Leu175and Val176, the shielded the hydrophobic residues from the aqueous 

solvent but was insufficient alone. In particular, large amino acids, such as tryptophan or 

phenylalanine, at the position should contribute greatly to preference by CAPN1 interaction with the 

electron-delocalized π-system showed a relative preference in Figure 2. The Tyr690 residue, which 

shows more than twice the inhibition of Pro687 residue, implies other preferences to an affinity of 

CAPN for the flexible binding loop in DI, especially on the C-terminal side. The Tyr690 mutant 

resulted in a dramatic loss of binding affinity at the position. This suggests that simultaneous π-π 

stacking interactions, in the presence of Trp298 residue with active site assembly seem particularly 

important for the inactivation of bovine CAPN1 by CAST4. The data in Figure 2 suggests that the 
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order of suitable fitting possesses a variety of key features, such as three-dimensional structure, and the 

physical and chemical properties within the binding pocket revealed some preferences at the 679 and 

690 positions. The mutant of the same residue, arginine, which when compared with the mutant 

complexes from its wild-type has an unequal response to non-polar binding sites. Thus, it is important 

to characterize their similarities and differences in positions; there is a far greater stabilizing effect for 

the 679 (−0.9 kcal/mol in the Leu679Arg variant) than 690 (0.0 kcal/mol, without the mutation effect 

of the Tyr690Arg variant) position based on the free energy difference of the binding of two molecular 

partners due to single-point mutation of selected residues. The difference in the stabilizing effect for 

the arginine mutants (Leu679Arg, Tyr690Arg) according to their locations has been made from the 

backbone conformer. This appears to be more important in defining the preference profile within the 

subdomain B of bovine CAST4. Inhibition could occur at the positions more or less independently of 

the specific residues presently bound to the subsites as it fulfills the fundamental factor of being a 

distorted structure, whereas the scope of inhibition might be less affected by the primary residues. 

Though both structures are required to confirm the mode of action with the complex, this should 

provide interaction contacts to stabilize the bound form of CAPN1 as a crucial printing improving 

inhibitory activity. Notably, the tendency of binding preferences at those positions (the 679 and  

690 positions) of CAPN1 appear to be more important in defining the most potent inhibitors of the 

enzyme share Arg-Trp moieties. This was also characterized by Cuerrier et al. [27]. When compared, 

even if two positions are not responsive to the P3 and P4 positions in the peptidomimetic inhibitors, if 

sufficient features similarly are observed there is some difference in the relative preferences toward 

CAPN1, possibly explained by the stabilizing contributions of the other domains (DIII, DIV of 

CAPN1, and subdomain A of CAST4) of the complex in our model system. 

A further interesting point is that Gln691 is only bovine-species-specific and it was not preserved 

across the subdomain B of each of the four repeating domains of the protein CAST (lysine in CAST1, 

arginine in the CAST3 and glutamine in the CAST4 from bovine). However, the hydrophilic residue 

should be at the position at which it could possibly result in the adaptation of alanine, which would 

otherwise have a poor fit. The position of the Gln691 residue is not subject to direct contact with the 

matching domain DI of the CAPN1, but the aqueous environment where the mutation renders it 

apparent as a lesser extent of decreasing binding (0.02 kcal/mol) at the subsite compared with the wild-type 

protein including some impact on the specificity of its polar property of the side chain. The bovine 

CAST4 specificity of both the Lys689 and Gln691 residues towards bovine CAPN1 is a difference of 

more than ten-orders of a decreased affinity that remains between their mutants, which is highly 

dependent on these positions. On the other hand, the Tyr690 residue should only be made with its 

nonspecific-inhibitor caution by the conserved motif of the subdomain B on the C-terminus of  

the CAST4. 

The corresponding mutation effects (calculated energy effects) in terms of the stability of the 

bovine CAPN1/CAST4 complex structure (a green bar chart) and binding affinity (a red bar chart) 

with the bovine CAST4 are shown in Figure 5.  
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Figure 5. Inhibition profiles of its native inhibitor CAST4. The conserved 

KLGERDDTIPPKYQ motif in the bovine CAST4 (residues 678–691) was screened using 

a computational, alanine scanning mutagenesis. The results are shown as the residue 

preference from a wild-type complex with the corresponding energy effect (kcal/mol) of 

alanine mutation at the single-point position for the stability (green) and binding affinity 

(red) of the bovine CAPN1/CAST4 complex. Each bar chart of mutation energy is created 

to allow for comparing the different effects of mutation, when the mutation effects are 

defined as “stabilization” (mutation energy less than −0.5 kcal/mol), “natural” (mutation 

energy between −0.5 and 0.5 kcal/mol), and “destabilizing” (mutation energy greater than  

0.5 kcal/mol). 

 

Both mutation effects (stability and binding affinity) displayed analogical inhibitory preference 

results that generally show almost identical relative CAST4 mutation effects having a correlative 

tendency (the correlation coefficient is observed by 0.92) toward bovine CAPN1, consistent with their 

binding site. Interestingly, the differences between the effects of the Asp 683 and 684 mutations to 

alanine at the positions for stability and binding affinity suggest that the other domains in full-length 

have a greater impact on the complex stability than binding affinity related to the inhibition specificity. 

These positions are far enough from the hydrophobic sites that they must be influenced by the local 

kink construct. Conversely, the general preference for bulk hydrophobic residues, Ile, Leu, and Tyr  

(at positions 679, 686, and 690) is consistent with fitting into the equivalent large hydrophobic pockets 

within the protease core of bovine CAPN1, where their inhibitory efficiency is similar to that of the 

other CAPN2 subgroup. Indeed, the Gly680Ala mutant suggests that this β-turn backbone portion of 

the inhibitor is highly flexible when complex with the protease core to avoid its steric packing (Figures 1 

and 5). However, additional inhibitory preferences were observed with the KYQ peptide (residues 

689–691) of bovine-specific residues. The unfixed sequence (KYQ in the conserved TIPPXYR motif) 

influences the selectivity of bovine CAST4 at these positions, but it does not need to be similar to 

optimized inhibitor candidates, because the leading structure may orient to an extent sufficient to direct 

the enzyme inhibition independent of whether the primary sequence is adequate for the active site. 

Consistent with the central roles of the residues at the binding pocket, active site-directed  
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inhibitors [26–29,37] block their susceptibility to CAPN1 similar to the CAST4 preference in the 

corresponding positions (Figure 6) throughout the same non-covalent interactions found in the rat, 

humans and our bovine model. The generating specificity of both active site-directed inhibitors is 

illustrated in Figure 6.  

Figure 6. Small molecule inhibitor interaction diagrams for the binding pocket of the 

mammalian CAPN subunits (PDB code: 1TL9, 1NX3). For both inhibitor-bound structures, 

inhibitors are shown as sticks accompanied by key residue representation of 2D-CAPN 

interacting interface. The complex structures reveal the defining their physicochemical 

properties for CAPN selectivity and specificity: (a) In the complex structure between rat 

CAPN1 and leupeptin (1TL9) at the protease core, extensive interactions help stabilize 

leupeptin at the active site by eight hydrogen bonds with the side-chains of Glu72, Glu261, 

Gln109, Cys115 residues (a blue dashed arrow) and backbone of Gly208, Gly271 residues 

(a green dashed arrow) and hydrophobic interactions with Leu260, Ser251, Ala273, 

Asn253, Ile264 residues. The domain-leupeptin complex overlaps with those of the 

CAPN/CAST complex structure (PDB code 3DF0) as main chain atoms r.m.s.d of 1.4 Å [38]; 

(b) The interaction site for the crystal complex structure (1NX3) of CAPN domain DVI (of 

pig) and its inhibitor PD150606 bond in a hydrophobic pocket (Val125, Leu132, Phe137, 

Ile169, Gln173, Phe224) of DVI where it makes favorable π-π interaction with the  

side-chain of His129. 

 

The major interactions, during which H-bonding and hydrophobic interactions between active site 

residues and the inhibitors serve to stabilize the complex during Ca2+-binding and to orient the 

inhibitor as a common feature, and other marked deviations from the structural characteristic are also 

observable in both complex structures. In the immediate vicinity of peptidomimetic inhibitors, the 

secondary structure, on the other hand, behaves exclusively as a major obstacle where CAPN attack 

occurs since these portions of the inhibitors are highly flexible when competitively bound in the active 

site to the enzyme substrates. The β-strand conformation (PDB code 1TL9 and 1TL0) is apparent from 

these specificity profiles for protease recognition as one of the major factors that is not considered 

when deciding whether to develop reversible or irreversible inhibitors. The conformation accelerates 
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additional H-bonding and an antiparallel β-sheet of both backbones with the key residues (the Gly271, 

Gly208, Cys115 residues), and then the ability of the peptide to inhibit CAPN is altered. This further 

makes bovine CAPN1 a target for the computationally aided molecular design of novel active  

site-directed inhibitors. A potent inhibitor specific for bovine CAPN1 could be designed to scrutinize 

allosteric or other binding sites such as domain DIV, which when ligated by CAST4 imitation, renders 

the enzymes unable to achieve their proteolysis function. It must be carefully considered whether the 

targeting interaction sites would be subject to either autolysis or subunit dissociation or aggregation. 

2.1.2. Predicting Mutation Effects on the Two LGMD2A-Accociated Mutations (R385H and D600G 

in the Corresponding Positions in the Bovine CAPN1) 

More importantly, additional tendencies of preferences were observed with the subsite of an exposed 

bent loop (residues 663–669) on the N-terminus of subdomain B in CAST4, which is adjacent to the 

interface of the Arg385 residue related to the LGMD-2A mutation’s position (R448H in CAPN3). 

These tendencies were not predicted resulting in a distinct difference of specificity from previous 

studies on the inhibitor selectivity of CAPN1 [34]. We were interested in two LGMD2A-associated 

mutants, R448H and D705G, which retain the proteolysis activity of either of these CAPN isoforms 

(CAPN3, CAPN2); however, they significantly affect the stability of the protein itself and are also 

diseases causing [8]. In the current study, of known pathogenic mutations in CAPN3, it was possible to 

predict the effects of two mutants for pathogenic missense mutations (R448H and D705G) in 

LGMD2A in terms of the bovine CAPN1 inactivation and its complex stability through the 

CAPN1/CAST4 complex model. We made an assumption based on a sequence homology (more than 

45%) that the structure should be similar to CAPN1 and should share biochemical properties, such as 

Ca2+-dependent activation (in the nanomolar range of Ca2+ ions concentration) and maximal activity at 

natural pH, despite the presence of three exclusive sequence inserts (NS at the N-terminus, IS1 in the 

domain DII, and IS2 between domain DII and DIII) without small subunits [7]. Both mutants R448H 

and D705G in CAPN3 should be projected onto R385H and D600G in the corresponding positions in 

the bovine CAPN1. The Arg385 residue is situated on a loop of domain DII that makes intramolecular 

domain contacts (DII/DIII) and intermolecular interfaces (CAPN1/CAST4) on either side of the center 

of the loop, and it may leaven the assembly and activation of the enzyme. On the contrary, the Asp600 

residue is located elsewhere in the EF-hand2 motif (residues 587–620) of domain DIV; it is exposed to 

solvent in both the absence and presence of Ca2+ ions and has no interactions with reactive residues of 

the CAST4 (Figure 7). Surprisingly, the Asp600Gly mutant adjoins to the dimerized interfaces 

(domains DIV/DVI) between CAPN1 molecules through the fifth-EF-hand motif such that its stability 

must be dominated by the heterodimer formed. 

One possibility, we considered was that the Arga385His mutant could affect stabilizing, 

electrostatic interactions (salt-bridge) with the enzyme itself and some binding partner, CAST4, in 

such a way that it altered the coupling strengths of partners (the residues Asp665, Val667, Lys668, 

Glu669 on N-terminus of subdomain B) interacting with Arg385 residue in both interaction regions 

(DII/DIII) and that it could play an important transfer part in Ca2+-induced activation signaling. When 

we analyzed the complex model, the residues Asp665 and Glu669 located in the bent loop of CAST4 

were considered potential partners for salt-bridge formation according to the strength governed by 
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their positions on the flexible loop. As another factor, both residues of subdomain B are also localized 

at the external surface of the CAST4 across the domain DIII of CAPN1 as seen in Figure 7. The 

mutation of arginine to histidine at the 385 position could decrease electrostatic interactions with the 

adjacent hydrophilic residues within both the CAPN1 and N-terminus subdomain B of CAST4 

originating from its basic property and charge variation. In particular, the internal salt-bridge would 

finally result in a much greater reduction in the structural stability of the complex (2.70 kcal/mol) than 

of the enzyme itself (0.20 kcal/mol) in relation to both their wild-types (Table 1). 

Figure 7. Interaction residues associated with two LGMD2A-related mutants  

(Arg385His, Asp600Gly). 

 

The Arg385 residue is distant enough from the protease core that it should retain the proteolysis 

function of the enzyme, but the mutant considerably affects fissure of the CAPN1 structural integrity 

in the presence of the inhibitor CAST4. The structural stability was much lower in the unbound state 

than in the bound state, that is, almost 14-times lower. Moreover, the substitution did not directly 

change the enzyme folding but significantly disturbed the tighter association with subdomain B  

since, at the scanned position, which is not positioned and oriented at an optimal distance for the  

salt-bridge-interaction of acidic partners (the residues Asp665 and Glu669 of CAST4), so the wild-type 

salt-bridge is no longer available as a result of the Arg385His mutation. Correspondingly, the basic 

loop flexibility allows a small increase in the entropy of the complex, as if the conformer change of the 

local site caused by the mutation is not sufficient to influence for the Ca2+ion-binding of either the 

inactive or active enzyme form to any significant degree (mutation energy effect of −0.23 kcal/mol as 

neutral effect). However, in the case of the CAPN1/CAST4 complex, the reduction of electrostatic 

interactions (salt-bridge) with the inhibitor was more unstable in the bound state than in the unbound 

state (with increased binding free energy of 1.85 kcal/mol from that of the wild-type complex as a 

destabilizing effect) and could let down the binding affinity of CAST4. Thus the variation at the 385 

position has a larger impact on the inhibition of CAST4 via the structural stability of the complex than 

the efficiency of association between them. 

In contrast to the Arg385His mutant, it is feasible that the Asp600Gly variation would have a 

smaller impact on structural stabilization and would behave similarly in the absence or presence of 

protease inhibitor dominated by its ability to form a heterodimer. The stability of the variant at the 600 

position was shown to be greater in its inhibitor complex (−0.99 kcal/mol) than in the enzyme itself  

(−0.55 kcal/mol) against either wild-type. 
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Table 1. Evaluating effect of single-point mutations on stability and binding affinity. 

 
CAPN1 

Arg385His 
CAPN1 

Asp600Gly 
CAST4 

Leu643Ala 
CAST4 

Leu646Ala 
CAST4 

Leu650Ala 
† Mutation Energy (the enzyme itself stability) 0.20 kcal/mol −0.55 kcal/mol - - - 
* Stability effect  Neutral Stabilizing    
† Mutation Energy (the complex stability)  2.70 kcal/mol −0.99 kcal/mol 1.70 kcal/mol 1.96 kcal/mol 2.09 kcal/mol 
* Stability effect  Destabilizing  Stabilizing Destabilizing Destabilizing Destabilizing 
‡ Mutation Energy (Ca2+-binding)  −0.23 kcal/mol −0.99 kcal/mol - - - 
* Ca2+-binding effect  Neutral Stabilizing - - - 
‡ Mutation Energy (CAST4-binding)  1.85 kcal/mol −0.43 kcal/mol 2.39 kcal/mol 2.88 kcal/mol 2.50 kcal/mol 
* CAST4-binding effect Destabilizing Neutral Destabilizing Destabilizing Destabilizing 

†: Structural stability is determined by the difference between the folding free energy of mutated structures and the wild-type enzyme for the single-point mutations;  
‡: Binding free energy is defined as the difference between the free energy of the complex and unbound state; *: Mutation effect is defined as follows that stabilization 

indicates that the mutation energy is less than −0.5 kcal/mol, neutral is mutation energy between −0.5 and 0.5 kcal/mol, and mutation energies greater than 0.5 kcal/mol are 

designated as destabilizing. 
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The stability gain of the Asp600Gly mutant that was observed on heterodimerization with engaging 

the major hydrophobic interface that holds together through the pairing of their EF-hands motif of 

between CAPN1 molecules and not only that bound in a direction opposite to an amphipathic α-helices 

of the subdomain A of its inhibitor CAST4. The structural stability would be maintained by the 

CAPN1-induced helical anchors of subdomain A. After mutation, the structural stability became too 

high for effective protection through the hydrophobic residue’s packing form in an aqueous 

environment. Thus, the mutation energy for CAST4 binding was lower (−0.43 kcal/mol) than that for 

Ca2+-binding (0.44 kcal/mol) for more increasing binding affinity with the former Arg385His. 

However, this would have a relatively small impact on the mutation energies, which were in the neutral 

range from −0.5 to 0.5 kcal/mol, which mean that the mutation had a very small effect on enzyme 

function. The variation of any acidic residue at the 600 position is required for the Ca2+-chelating 

residues. As summarized in Table 1, two variants (Areg385His, Asp600Gly) showed differences 

between the folding free energy of mutated structures and binding free energy with molecular partners 

(Ca2+ ions and CAST4) in their mutated complex structures. The variants allowed CAPN1 to hold its 

active conformation within the Ca2+-induced structure, but the preference for inhibition of CAST4 was 

different for each mutant; the Arg385His variation significantly decreased its binding affinity to 

CAST4 due to its complex’s instability. 

On the other hand, the Asp600Gly variant was less efficient in forming the complex than a 

heterodimer with the other CAPN; it had a stabilizing effect on the complex but did not affect cohesion 

with the inhibitor. In addition, the Arg385His mutant contributed to revealing the important interaction 

sites (the bent loop of residues 663–669) on the N-terminus of subdomain B of CAST4 for enzyme 

regulation. Furthermore, the importance of the bent loop for the CAPN1-CAST4 binding was 

previously unknown. 

2.1.3. Predicting Mutation Effects on the LDDALDQLSDSLGQ Motif in Subdomain A of  

Bovine CAST4 

Subdomain A of CAST4 bound to a hydrophobic pocket formed by EF-hands one (the residues 

543–578) and two (the residues 587–620) in the domain DIV filled by the inhibitor. Peculiarly, the 

conserved hydrophobic Leu residues 643, 646, and 650 inside an amphipathic helix (the residues 638–650) 

of subdomain A were buried deep in the allowed binding region, which helped to form strong 

hydrophobic interactions with the domain DIV. Several bulky residues (Leu552, Leu556, Phe612, 

Trp616, and Leu623 of DIV) in the hydrophobic pocket closely embrace the Leu residues to form 

favorable contacts with between side chains. The breadth of the hydrophobic groove seems like an 

opened baseball glove, within which the inhibitor subdomain A is somewhat flexible. The conservative 

interaction residues, both of them in the bovine complex, were further condensed as shown in  

Figures 8 and 9. Even a single site mutation in either region could have an effect on the affinity of 

either region alone. This can be seen by estimating the SAP (Spatial Aggregation Propensity) whereby 

inhibition can occur as a complement to the subdomain A of CAST4, directly interacting with the key 

trace residues (colored blue and red) on the exposed hydrophobic region as shown in Figure 9. While 

the Leu residues (Leu643, Leu646, and Leu650 in the residues 639–652 of LDDALDQLSDSLGQ 

motif of subdomain A) have always been thought to be embedded in the inhibition region, virtual 
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alanine scanning (mutated to be less hydrophobic) was performed of either a single or multiple 

displacement to elicit an induced effect (for the complex’s stability and binding affinity) caused by the 

positional changes along with the hydrophobic interaction. The effect of each mutation of the three 

Leu residues (Leu643, Leu646, and Leu650) individually on alanine had varying results (Table 1). The 

stability of the complex was greatly reduced, even further than the binding capacity to the enzyme in 

each variation, illustrating the sensitivity of this region to changes in the hydrophobic interactions. 

These mutants were expected to display a reducing flexibility of the side chain and van der Waals 

contacts with the companion residues (Leu552, Leu556, Phe612, Trp616, and Leu623 of DIV) in the 

wider bounding pocket, thereby showing weaker preferences for the positions. The effects of these 

mutations on the hydrophobic pocket of the enzyme could be directly predicted by multiple mutations 

of a set of the Leu residues for the complex’s stability, when double mutations are generated from the 

retained single mutations and then the triple mutations are generated from both the former mutations 

(the retained single mutations and double mutations). Their multiple displacements to alanine show a 

sharp stability drop in a mutually dependent manner to approximately an order of magnitude as a high 

order of repeated variations (single Leu646Ala to double Leu650Alal and Leu646Ala to triple 

Leu643Ala, Leu646Ala and Leu650Ala mutants leads to an increase in the folding free energy from 

the wild-type complex with values of 2.88, 5.21, and 7.11 kcal/mol respectively. The data is not shown 

in Table 1) with a negative effect on the inhibition. The increase in the structural instability of these 

mutant complexes contributes to subdomain A binding to the hydrophobic pocket of the CAPN1 in the 

stabilization of the wild-type complex structure, resulting in stronger inhibition than that seen with the 

mutant complexes. 

Figure 8. Sequence alignment of bovine CAPN1 and CAPN2 large catalytic subunit. The 

accession numbers for these sequences are NP_776684.1 (NCBI reference sequence) and 

AAI34527.1 (GenBank), respectively. Bovine CAPN1 has 81.5% sequence homology to 

the subunit of CAPN2. The trace residues that made up the class-specificity of CAPN in 

the interaction sites with subdomains A and B of the CAST4 group are indicated in red.  

All positions are described in terms of the bovine CAPN1 amino acid sequence. For 

comparison, two bovine CAPN isoforms had similar specificity toward the enzyme CAST4. 
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Figure 9. Interaction sites within the protease core by residue character: class-specific 

(blue; Ile83, Lys174, Val176, Ile254, Ser255, Asp259, Ala262, Val269, Glu300, Arg347) 

and bovine only species-specific (red; Ser209, Asp253, Ser256, Met260, Val263, Lys270) 

trace residues among key interaction contacts made the CAPN1/CAST4 complex. Notably, 

not adjacent regions of the catalytic Cys115 residue, the positions of trace residues from 

bovine CAPN1 are location-focused within the open conformation of the flexible loop of 

domain DII (residues 251–271) which gates active site, consistent with their binding site of 

conserved KLGERDDTIPPXYX motif of CAST4 subdomain B having similar inhibitory 

preferences in the active site cleft, but will likely not be identical against two CAPN 

isoforms (CAPN1 and CAPN2) from the bovine. 

 

2.2. Targeting More Specific Site to Increase the Bovine CAPN1/CAST4 Complex Stability Using 

Hydrophobicity Exposed to Aqueous Solvent of the CAPN1 Residues (SAP Values for the Residues) 

Molecular simulations using SAP were used to predict the bovine CAPN1 aggregation prone 

regions, which will be the subject for screening variants for which enzyme stability can be increased 

without losing its CAST4 binding affinity. Furthermore, enzyme stability is crucial when considering 

diseases associated with its destabilization. Protein aggregation is directly responsible for several 

diseases, such as type II diabetes and Alzheimer’s. One of the severe consequences of CAPN 

pathological activation is that over-activity of the enzyme frequently exacerbates many degenerative 

diseases [11,39,40]. For protein aggregation, hydrophobic interaction was shown to be the predominant 

interaction and also an important driving force behind binding at the interface of the heterodimer of 

CAPN1. We analyzed the bovine CAPN1 aggregation propensity, which is a measure of the tendency 

of surface residues to be aggregated among the trace residues exposed in solvent. The sites on the 

enzyme surface with high aggregation propensity scores specify regions that are prone to aggregation; 

there should be a more extreme intrinsic aggregation tendency of CAPN in such domains as DIV/DVI 

for the hydrophobic interfaces exposed to aqueous environment retained before and after Ca2+-binding. 

The variability of the increased tendency to enzyme aggregation will also depend on how many 

aggregation regions are present therein and on the effect of mutations on the stability and activity of 
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CAPN1. Destabilizing mutations of the enzyme/inhibitor complex’s stability will shift the reversible 

equilibrium toward the unbound state in the complex system and can lead to a decrease in the 

inhibitory activity of CAST4. We observe that this was confined to a few regions with positive peaks 

for SAP, indicating high exposed hydrophobicity (Figure 10a). The enzyme-aggregation-prone regions 

(red on the SAP map) clearly indicate that the highly hydrophobic regions within the activated bovine 

CAPN1 are located on the functional interfaces. Two prone regions in hydrophobic patches 2–3, as seen 

in Figure 10b, disclosed intradomain conformational changes of domain DII on Ca2+-binding in which 

opening of the active site cleft occurs as the gating loop (251–271) and movement of the domain  

DII-DIII linker relative to the basic helix in domain DII to produce a more assembling to the 

catalytically active conformation. Hydrophobic patch 2 (residues 258–272) among the prone regions, 

takes in the active catalytic site, in particular His272; it provides, access of the bulkier inhibitor to a 

wider active site gated by the flexible loop (the residues 251–271). The loop in domain DII is variable 

across the mammalian CAPN group, providing potential for inhibitor selectivity (as the trace residues 

Ala262, Val263, Phe265 and Lys270 exist in the prone region) by defining the width of the protease 

core cleft on the hydrophobic patch 2 exposed. When His272 is converted to alanine, the mutant shows 

a lack of activity but an increase in the hydrophobic environment in Ca2+-dependent proteolysis and 

aggregation, respectively. The His272Ala mutant seems to be unable to instigate the nucleophile 

reactivity of the thiol group of Cys115 as observed previously in the His262Ala of CAPN2 [41]. 

However, in the complex formation with its inhibitor, this attribute of the coverage of patch 2 on the 

flexible gating loop (the residues 251–271) by the subdomain B of CAST4 is protected from 

aggregation throughout them shielded from water molecules. Hydrophobic patch 2, therefore, plays a 

crucial role in both the active conformation and function of bovine CAPN1 for stability of the complex 

with its inhibitor in the presence of Ca2+ ions. In the Ca2+-activated CAPN1 enzyme, the domains DIV 

and DVI also show interdomain conformational changes, and the catalytic hydrophobic core becomes 

accessible to CAST4 (at the subdomains A and C), leading to the enzyme/inhibitor complex where 

hydrophobic dimerization surfaces are positioned in aggregation prone region 1 (Figure 10b). This 

appears to prevent CAPN aggregation by non-covalent binding to both DIV and DVI coincidentally as 

if the following small subunit’s dissociation may be a major factor responsible for the Ca2+-induced 

aggregation of CAPN1. More interesting, however, are the residues (Phe690, Phe704, Phe707, Gln711, 

Leu712 and Thr713) that were not located at dimerization interface (but Met687, Met714, and Phe715 

are highly conserved at the dimerization interface across the mammalian CAPN group) with other 

CAPN1 molecules among the bovine-specific trace residues within hydrophobic patch 1 with high 

SAP values (Figure 10a). 

These residues show that a much greater selection of residues is expected to fit to the 

complementary EF-hands in DVI, allowing EF-hands4 (682–716) of domain DIV to activate the 

extensive hydrophobic contacts into additional stabilization, and then to affect its variable plasticity in 

the heterodimer. Thus the residues are positioned in a direction opposite to binding subdomain A of 

CAST4 that does not seem to be directly seen through their inhibitor selectivity, which must be 

achieved somewhere else in the non-aggregation prone region such as the hydrophobic core (the 

interaction region between subdomain A of CAST4 and CAPN1 in Figure 11).  
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Figure 10. Spatial aggregation propensity (SAP) for bovine CAPN1: (a) Values of SAP at 

R = 10 Å which define SAP based atoms within radius-10 Å from a given atom for the 

catalytic subunit (domains DI-DIV) of active bovine CAPN1, along with peaks of chosen 

regions of the enzyme known to interact with inter-domains or other proteins; (b) SAP 

values (R = 10 Å) mapped onto the active bovine CAPN1 model. Positive SAP values are 

red (hydrophobic) whereas negative values are blue (hydrophilic); therefore, a highly 

exposed hydrophobic fragment would be deep red and a highly exposed hydrophilic 

fragment would be deep blue. 
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Figure 11. Overview of the 3D-complex model structure of bovine CAPN1 bound to 

CAST4. The modeled structures of the bovine CAPN1/CAST4 complex all have the same 

domain color schemes in the presence of Ca2+ ions: DI (blue, residues 30–220), DII (brown, 

residues 221–386), DIII (yellow, residues 387–543), DIV (green, residues 544–716) in the 

catalytic subunit of bovine CAPN when the CAST subdomains A–B and the three Ca2+ 

ions are shown as ribbon diagram and sky blue spheres, respectively. The domain DVI of 

small subunit (colored in pink) had not been characterized by our homology modeling and 

has been proposed as a homo-dimer model of the CAPN1 using the crystal structure of 

CAPN domain VI in PDB code 1DVI (Blanchard et al. [42]). 

 

This probably has an influence on subdomains A and C of CAST4 by enabling the hydrophobic 

cores of CAPN to be instantaneously anchored in domains DIV and DVI and inducing tighter  

cross-binding between subdomain B of CAST4 and domains DI-DIII via increasing inhibitor 

efficiency. Three prone region’s destabilization may lead to aggressive intramolecular domain 

interactions and may impair the assembly and activation of the enzyme. This being caused by such an 

exposure is energetically unfavorable and even more disfavored in an aqueous environment as it would 

accelerate random association between them leading to aggregation. Accordingly the CAPN that did 

not assemble into either its active form or into heterodimers might be resistant to CAST inhibition but 

it could be subject to aggregation in the Ca2+-dependent. The active enzyme is rapidly subject to  

auto-proteolysis, and subunit dissociation is better at high Ca2+ ions-concentrations. As revealed by the 

present study, the correlation between the highest SAP region and the known aggregation region is so 

high that the SAP values in the prone region can be the enzyme’s descriptor for the structure-based 

design of a CAPN-specific small inhibitor, such as PD150606 [31] in Figure 6b to extend the overall 

efficiency of the inhibitor candidates against over-activating CAPN via SAP stabilization. These 

aggregation prone regions (patches 1–3) where biochemical constraints were conserved in the CAPN1 

do not modified object, but other critical flanking residues should increase the enzyme’s stability that 

radically shifts in the class-specific and the bovine species-specific residue positioned away from the 

interaction interface with CAST4 therein. 
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Information about the importance of hydrophobic interactions and the effects of CAST4 gained 

from the high SAP regions (patches 1–3), can providing significant new insights into aggregation that 

can be useful in screening more specific target sites to stabilize both unstable SAP regions and the 

complex stability with CAST4 at once. From all of the data obtained, CAST4 probably recognize 

overall activate CAPN1’s 3D-structural elements in the crude enzyme but absent from one part of 

fragments (the protease core in domains DI and DII) with the inhibitor’s interaction determinants. 

More distant interaction preferences of the bovine regulation system were predominantly distributed in 

the class-specific and species-specific residues for enzyme activation and inhibition by CAST4. In the 

case of subdomain B of CAST4, the preferences at key positions moved towards the N-terminus; 

hence, our data indicate its importance. Alanine mutations in the N-terminal part of subdomain B have 

a greater specificity effect on CAPN1 binding than do mutations in the C-terminal part for CAST4 

inhibition. To advance our understanding of the inhibition determinants, we found a particular 

correlation with hydrophobicity exposed to solvent (SAP values for residues) for the complex’s 

stability and the binding affinity of both of them; in particular, the stabilization of CAPN1’s 

aggregation prone regions improved to inhibitory activity of CAST4. These findings should not be 

ignored in the design of small inhibitors having selectivity for specific CAPN isoforms. 

2.3. Protein-Protein Interface Determinant Residues Using a Combination of Alanine-Scanning 

Mutagenesis and Receptor-Based Pharmacophore Modeling 

As previously mentioned, most interaction interfaces between bovine CAPN1 and CAST4 are high 

SAP regions. This study on the aggregation prone regions of CAPN1 has shown that hydrophobic 

patches contribute greatly to the complex stability and inhibitory preferences between the proteins. 

Hydrophobicity is a leading force in protein-protein interactions, and the number of patches, in which 

may vary from 1 to 15, and their size may range from 200 to 400 Å cause an increase in entropy in 

stable complex formation. Most of the movements within these interfaces are governed by side chains 

and perturbations of local loops both from polar aqueous to nonpolar environment, resulting in the 

expulsion of water molecules in the hydrophobic interface. Protein-protein interactions have been 

frequently observed on much larger nonpolar surfaces and flatter interfaces (such as proteases 

interaction interfaces as 2000–4660 Å2, especially, the CAST4 buried approximately 2800 Å2 of the 

interface of CAPN2 in the crystal structure, 3BOW [43]) than the protein-small molecule contact 

surface, so that cannot be easily blocked by small inhibitor molecules for proteases. However, most of 

the protein-protein binding affinity is related to few key residues at intermolecular protein interfaces; 

hence, the exchange of residues critical for the affinity of interactions may almost abolish protein-protein 

binding. Identifying these key residues would aid in the rational design of complexes with high affinity 

and specificity as well as that of small inhibitors that can mimic the structurally conserved epitopes of 

the protease complex system. Alanine scanning mutagenesis enable the detection of the structurally 

conserved motif of which, on average, 79% of the key residues are located on complementary pockets, and 
93% of the residues with a free energy difference of binding (∆∆ܩ(௠௨௧)௕௜௡ௗ௜௡௚) higher than 4 kcal/mol was 

found [44]. Nevertheless, in each case, residues whose mutation results in such a large distinction are 

unusually dependent on the complex characteristics, such as activity, binding partner, stability, or 

aggregation to compensate these negative effects. In particular, in the protease system, the threshold 
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had to be lowered to 1.5 kcal/mol to obtain enough significant data. The mutation effect for some, but 

not all of active site residues is equipoise between activity and stability, as if a mutation that increases 

the catalytic activity is more likely to be destabilizing. In the opposite case, if a mutation increases the 

stability of a protein the catalytic activity will be decreased [45]. We suggest that local instability of 

the CAPN1 enzyme may be necessary for substrate binding and proteolysis by equipoise to expropriate 

three prone regions as shown in Figure 10. 

The current study may also provide the opportunity to interpret the high SAP roles of protein-protein 

interfaces (as the aggregation prone region of patches 2 in Figure 10, as well as mobile gating loops 

within the active site of DII concentrated in the trace residues (whether class- and species-specific or 

conserved) of the bovine CAPN1. Well conserved trace residues across mammalian within the 

interface are expected to be crucial for the function of the CAPN group. They can tolerate some 

outside variation, but overall, the physicochemical properties of the residue are conserved. On the 

contrary, a great variety of class- or species-specific trace residues can be conservation shifting sites 

between CAPN subgroups (CAPN1 or CAPN2); they represent a distraction of constraints for such 

functional divergence, indicating less important positions than the former for the original function. We 

performed alanine scanning mutagenesis to identify the few key residues involved in the interactions 

of CAPN1 with CAST4, and then derived pharmacophore models for the protein-protein complex 

towards understanding the interaction between an enzyme and its natural inhibitor. In the 20-modeled 

bovine CAPN1/CAST4 complex structures, the energy effect of each alanine mutation on the binding 

affinity were calculated on all of the residues of CAPN1 and the residues of CAST4 within 5 Å 

defined in a group of interaction interfaces. The calculated values of mutation energy for any one of 

the mutated residues and their residue type are shown Figure 12. In 83 interfacial residues, Gln109, 

Gly113, Lys171, Trp298, Arg385, Arg475, Ile480, and ASN481 from the bovine CAPN1 on the 

protease core with subdomain B of the CAST4, on the other hand, the residues of Lys578, His579, 

Trp616, and Arg627 on the hydrophobic pocket of DIV with the subdomain A, have mutation energies 

above 1.5 kcal/mol. This can be used as a reasonable cut-off for significant residues which may 

contribute to the binding affinity of the protease-natural inhibitor complex. The key residues for 

interaction with subdomain B can essentially be divided into two groups; the Gln109, Gly113, Lys171, 

Trp298 residues are far more conserved if located at a complemented pocket as the protease core than 

the Arg385, Arg475, Ile480, Asn481 residues if located within the rest of the interface toward a rim of 

between interdomains. As expected, highly conserved core sites at the interfaces are likely to be good 

candidates to target with a small inhibitor. 

2.3.1. The Definition of Binding Site (Consisting of Gln109, Gly113, Lys171 and Trp298) Constraints 

for Virtual Small Inhibitor Screening 

We selected the key residues (Gln109, Gly113, Lys171, and Trp298) in the first region considering 

their binding affinity correlated with the interface size and their local organization in interaction with 

subdomain B of CAST4. The pharmacophores for bovine CAPN1 were generated from the complex 

model structure with the inhibitor CAST4 as we previously predicted. The pharmacophores were 

constructed using the receptor-ligand pharmacophore generation protocol in DS Version 3.1 with 

minimum features (6) and maximum features (10). The importance of key residues in those positions 
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can be clearly seen in Figure 13, which shows seven pharmacophore features mapped at compact 

regions of residues and the cavity shape of the interaction interface. 

Figure 12. Contribution of only interaction interface residues to net binding energy in the 

CAPN1/CAST4 complex. Difference in binding free energy between alanine-substituted 
and wild-type of the bovine CAPN1 (∆∆ܩ(௠௨௧)௕௜௡ௗ௜௡௚) at contact residues is represented by 

chart bars. In the interfaces, the majority of residues of bovine CAPN1 are predicted to 

cause destabilizing effects (mutation energy greater than 0.5 kcal/mol is designated as 

destabilizing), while negative values indicate that the binding affinity increased when the 

side-chain was substituted by alanine.  

 

The Trp298 mutation to an alanine of bovine CAPN1 shows a highly complex destabilization  

(3.66 kcal/mol) due to the generation of a large cavity after alanine mutation, where there is no 

provision of aromatic π-π stacking interaction with two proline residues (Pro687 and Pro688 of the 

CAST4) and of a hydrogen bonding donor mapped to the indole nitrogen of Trp298 that corresponds 

to Thr685 of CAST4. The unique function of Trp298 clearly shows its importance in inhibitor 

interaction in two pharmacophore features, hydrogen acceptor within a distance 3.0 Å of Thr685, add 

excluded volume 4.0 to 5.0 Å as a large hydrophobic surface from the corresponding residue Ile686 on 

CAST4. The Gln109 being a large residue with neighbor Trp298 offer a side-chain allowing packing 

defects, is coupled with a small hydrophobic Pro687, with likely backbone H-bonding ability across 

the interface. The H-bonding ability of Gln109 has a smaller effect on binding affinity (substitution 

effect by alanine 1.59 kcal/mol), which would remain the same when mutated to alanine. Therefore, it 

may be less useful as a targeting key residue, but, it can be accompanied by another key residue, 

Trp298, providing a synergic effect for specificity of a small inhibitor. Interestingly, the Gly113 could 

afford conformational flexibility into the backbone and is not commonly selected as a key residue; 

however, it has a strong impact on CAST4 binding. The effect of mutation to alanine should be higher 

than 5.0 kcal/mol, and it does significantly contribute to the complex destabilization. The excluded 
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volumes of the three key residues (Trp298, Gln109 and Gly113) at specific positions suggest that the 

steric barriers for small inhibitor conformers to anchor to binding sites are very important. There is a 

competitive binding site between the inhibitor and substrates of CAPN1 with respect to the catalytic 

Cys115 residue located near the center of the interface. As mentioned above, the local kink conformer 

of CAST4 (residues 679–686) within the site is the optimal fitting architecture characterized by 

complementarity both in shape and in the staggered positions against Cys115 (Figures 1 and 13).  

Figure 13. The protease core (left) between the domains DI and DII and hydrophobic 

pocket (right) in the domain DIV of the new CAPN1-based pramacophore models 

generated from the modeled bovine CAPN1/CAST4 system, superimposed on the key 

residues of interaction interfaces. The following pharmacophore features on the key 

residues (Gln109, Gly113, Lys171, and Trp298 within the protease core and Lys578, 

His579, Arg627, and Trp616 in the hydrophobic core of DIV) are color coded, adding 

location constraints to the pharmacophore features, defining the relative positions of the 

features required for the CAST4 inhibitor to map: H-bond donor (pointed green ball), 

Hydrophobic (pointed cyan ball) excluded volume (grey ball), negative charge (pointed 

blue ball), shape constraints (grey shape) of the interaction interface. 

 

In particular, the key Gly113 residue located at the bottom of the complement pocket to the kink 

conformer is critical for tight packing with the inhibitor to increase binding stability by escaping the 

Cys115 in a hydrophilic environment. These excluded volumes, which act as another shape constraint 

for the inhibitor-binding, can adapt to different structural contexts in the same residues between the 

substance and inhibitor of CAPN1 and can be used to determine likely interaction sites for other 

binding partners. Moreover, the Lys171 is its basic character and is positive charged; hence, it often 

has a high degree of complementarity with the target if the negative charged interaction within 5.6 Å 

may be important for endowing with specificity for the inhibitor, alanine mutant of which reduces the 

complex stability by increasing mutation energy of 3.86 kcal/mol compared with the wild-type. We 
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reconfirm the importance of key interacting residues binding to CAST4 with three mutations in the 

complex system (Gln109, Gly113, and Trp298 and Lys171, Gly113, and Trp298 to alanine mutations). 

As expected the three alanine mutations result in drastic losses (three fold, 15.01 and 14.61 kcal/mol, 

respectively) in binding affinity with the single mutation of Gln109Ala. In three multiple mutations, 

the free energy change caused by the simultaneous mutations at the residue positions in the CAPN1 is 

compared with the sum of the free energy change associated with single mutations at each of the 

residues positions. The deviations can be applied as evaluation criteria of cooperatives to improve 

binding affinity (The deviations of the former and the latter combinations are 4.38 and 1.71 kcal/mol, 

respectively, and deviations of the former combination of key residues can be more effective as 

targeting them with virtual small inhibitor screening). Therefore this is desirable to develop a  

rule-based screening function for specificity based on the features and the 3D locations. 

More interestingly, for these four residues, the Trp298 and Gln109 residues of CAPN1 are  

reported to be key residues involved in the rat CAPN1 enzyme inhibition of both α-ketoamide-based 

inhibitor-bound X-ray crystal structures (PDB codes 2R9C and 2G8J). Qian et al. [26] showed that, in 

two crystal structures (PDB codes 2R9C and 2R9F), the aromatic staking interaction and the H-bond 

between the adenine moiety of α-ketoamide inhibitor (ZLAK-3001 in PDB code 2R9C) and Trp298 

and its neighboring residue Gly300 of the rat CAPN1, respectively, provided the inhibitor with a 

decisive potency advantage over an equivalent inhibitor (ZLAK-3002) lacking a terminal aromatic 

group. This revealed the importance of the aromatic stacking interactions between them. Trp298 plays 

a central role of transient opening of binding pockets, as found in simulations with other cysteine 

proteases; hence, the Trp298 residue alone is insufficient to specifically target CAPN1. SNJ-1945, 

another α-ketoamide-type inhibitor (in PDB code 2G8J) shares a similar interface but more localized 

electrostatic field binding in deeper cleft, and remarkably, it targets the same key residues (Gln109, 

glycine residues 207, 208, and 271, His 272, etc., via H-bonding) that leupeptin uses to bind the 

CAPN1 protease core (as shown in Figure 6a). The cyclopropyl ring of SNJ-1945 stretches into 

Glu261, which is displaced in the conformation of a much more open gating loop (residues 251–271) 

in DII than that previously observed in 2G8J (as shown in Figure 14) from a shallow cleft formed by 

the indole ring of Trp298, the α carbon of Gly113, and the side chain of Gln109.  

Cuerrier et al. [28] suggest that, the highly conserved Glu261 present across human CAPN isoforms 

(from CAPN1 to CAPN13 has a critical function in the CAPN group owing to its location adjacent to a 

non-conserved region of DII. However, in our bovine CAPN1, which is not 23-modeled structures in 

the isolated proteolytic core, it cannot be determined whether the contact of Glu261 contributes 

significantly to tight binding along with its complex with CAST4 (the Glu261Ala mutant than toward 

wild-type is negatively affected by −0.56 kcal/mol such as very little increased binding affinity with 

the CAST4). Figure 14 shows the salient features of the key residues (the Gln109 and Trp298 residues 

of the CAPN1) on the characterized interfaces by the rat CAPN1 and α-ketoamide-type inhibitor. The 

geometry of the key interacting pharmacophore features was in good agreement with the positions of 

the corresponding interacting residues; thus, the role of their side-chain functional groups at specific 

positions can be inferred from the bovine CAPN1/CAST4 complex model. 
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Figure 14. Side view of the superimposed interactions interface for the rat 

CAPN1proteolytic core inactivated by both ZLAK-3001 and SNJ-a945, α-ketoamide-based 

inhibitors-bound X-ray crystal structures in the PDB code 2R9C (red) and 2G8J (green), 

automatically created two-dimensional diagrams of complex with PoseView [46]. 

 

2.3.2. The Definition of Allosteric Binding Site (Consisting of Lys578, His579, Trp616, and Arg627) 

Constraints for Virtual Small Inhibitor Screening 

It is unclear to what extent each binding contact with CAST subdomains A and B contributes to the 

overall free energy of binding by the relationship of structure-function alone for the 27-modeled 

bovine CAPN1/CAST4 system; even a binding site mutation in either region can affect the protease 

activity. Nevertheless, the most effective inhibition by CAST requires that all three subdomains (A, B, 

and C) in each inhibitory domain (CAST1 to CAST4) must bind to CAPN simultaneously for 

maximum inhibitory effects. To permit the coincidental binding of all subdomains to CAPN, they may 

also be required for other structurally well-characterized interfaces (in the hydrophobic pocket of DIV) 

and alternative functional epitopes (the bovine residues 639–652 of LDDALDQLSDSLGQ motif of 

subdomain A). Large effects (1.5 to 3.62 kcal/mol) were also seen in the hydrophobic pocket into 

which the conserved motif of subdomain A can put its hydrophobic residues from one surface with its 

hydrophilic residues fitting into exposed water molecules on the opposite face (Figure 15). The key 

binding residues are Lys578, His579, Trp616, and Arg627 on the hydrophobic pocket surrounded that 

pack together to form a tightly packed hydrophobic core from the inside. There is a hydrophobic cavity 

between the van der Waals surfaces of many of the polar residues that had greater mutation energies 

for binding affinity than the buried contact residues (Leu residues 552, 556, 623, and 631, Ile residues 
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571, 575, 619, and Phe612 in Figure 12). For the CAPN1-subdomain A of CAST4 interactions, these 

are predominantly interactions between hydrophobic interface regions; therefore, unlike the 

hydrophilic residues outside of the hydrophobic pocket, the patches of high surface hydrophobicity 

located at the central region of the interface are partially compensated by the alanine mutation, and 

their mutation energies were less than 0.5 kcal/mol. The most hydrophilic residues (Lys578, His579, 

Trp616, and Arg627, of which Trp616 contributes mainly to the binding of the CAST4 inhibitor and is 

most likely oriented toward the inhibitor, which is thereby accessible) on the periphery of the 

hydrophobic interfaces can also contribute considerably to the specificity of binding by unfavorable 

electrostatic interactions or steric repulsions. They may be also required for other binding factors, such 

as intermolecular H-bonding networks or salt-bridges. For example, Arg627 located over the center 

interface is capable of multiple H-bonds (up to five) and a salt-bridge out of its positive charge with 

contacting residues to increase binding stability by enhancing favorable interactions in the 

hydrophobic environment (Figures 13 and 15).  

Figure 15. Stereo views of the hydrophobic surface plots within CAPN1 with the 

hydrophobic inhibitors; subdomain A of CAST4 (the natural CAPN inhibitor, Left) and 

PD150606 (the small inhibitor, Right) binding sites. The inhibitors bound to the 

hydrophobic pocket formed by EF-hands 1 and 2, that exposed on water molecules when 

both non-Ca2+-binding and Ca2+-binding. The inhibitors are positioned in almost the same 

place assuming a similar magnitude of Ca2+-induced conformational changes before 

binding to CAPN1. 

 

The binding affinity of subdomain A to the Arg627Ala mutated enzyme was shown to decrease 

more than 3.5 kcal/mol compared to its wild-type. A comparison of subdomain A of CAST4 (natural 

enzyme inhibitor) predicted to be an amphipathic helix and PD150606 (a small inhibitor in PDB code 

1NX3) showed that the two inhibitors interact with the domain DIV of CAPN1 using the same pocket 

residues (several bulky ring residues of Phe553, Phe612 and Trp616 and a verity of other hydrophobic 
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residues of Leu552, Leu556, and Ile571) except for one residue, Ile576 (corresponding to Vla125 of 

pig CAPN1), in which they are positioned slightly differently. The hydrophobic region that settles 

these inhibitor molecules seems to be flexible enough that their various sizes can be accommodated as 

shown in Figure 15. Surprisingly, a comparison of the subset of key residues that are functionally 

critical for binding showed that they had the different positions according to their arrangement 

(Lys578, His579, Trp616 and Arg627 within bovine CAPN1 and Arg128, His129, Trp166, Lys177 

within pig CAPN1) indicating different substructure of the hydrophobic region. If we use the 

narrowness of the hydrophobic binding site and convert the narrow binding site to shape, we will add 

the molecular shape constraints to the pharmacophore surrounded by the key residues (Lys578, 

His579, Trp616 and Arg627 of CAPN1) to increase the selectivity and ensure that reasonable sized 

fragments are identified as the inhibitor. The excluded volumes unlike the protease core, however, do 

not fully reflect the shape of the hydrophobic binding pocket in DIV that shape constants, which make 

contacts between the CAST4 inhibitor and the CAPN1 and are added to the pharmacophores instead of 

excluded volumes, in which the sizes are proportional to the number of atoms within the inhibitors (in 

the right of Figure 13). This should be considered since the inhibitors might impinge sterically on the 

CAPN1, and then the large hydrophobic region would facilitate further expansion of this binding 

pocket to adapt to different sized inhibitors. These shape constants also allows a greater degree of 

flexibility in the corresponding positioning of other pharmacophore features (H-bond acceptor, 

hydrophobic, and negative charged point etc.) from the CAPN1 key residues where those features of 

subdomain A of CAST4 interact. It would be reasonable to expect similar binding and induced effects 

from the common key residues such as His579 and Trp616 as seen in the PD150606 and pig CAPN1 

complex structure (His129 and Trp166 in Figures 6b and 15). 

3. Experimental Section 

Residue Mutations and Their Impact on Protein Stability, Binding Affinity and Aggregation in the 

Bovine CAPN1/CAST4 Complex 

In the study, we used the Protein Design protocol to predict model structures for a mutated CAPN1 

(from the wild-type structure) and to calculate the energy effect of mutation for CAPN1 stability and 

binding affinity of CAST4 domain or Ca2+-ions with the corresponding single-point mutations of 

bovine CAPN1 itself, or of the bovine CAPN1/CAST4 complex. We were able to perform computational, 

amino-acid-scanning mutagenesis by mutating each residue to alanine on a set of specified CAST4 

residues, which were thought to play an important role in inhibitory functions coupled with  

Ca2+-dependent anchoring to CAPN though experimental site-directed mutagenesis [37,41]. One or 

more mutated protein structures were created based on the wild-type structure. The side-chain 

conformation of the mutated residues in the protein structure was optimized by its probability and first 

torsion angle using a rotamer library; the probability distribution of its rotamer positions was based on 

experimental observation of high-resolution crystal structures [47]. 

The energy stabilization effect of each mutation was evaluated as the difference between the folding 

free energy of the mutated and wild-type structures: ∆∆ܩ௠௨௧ = ௙௢௟ௗ௜௡௚(௠௨௧௔௡௧)ܩ∆∆ −  ௙௢௟ௗ௜௡௚(௪௜௟ௗି௧௬௣௘)ܩ∆∆
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The folding free energy (∆∆ܩ௙௢௟ௗ௜௡௚) is defined as the free energy difference between the folded 

and unfolded states of the proteins: ∆∆ܩ௙௢௟ௗ௜௡௚ = ௙௢௟ௗ௘ௗܩ∆ −  ௨௡௙௢௟ௗ௘ௗܩ∆

The folding free energy was calculated by applying the CHARMm polar hydrogen force field [48] 

to the modeled protein structures. Since the bovine CAPN1 active form contains modified protonation 

amino acids as thiol deprotonation of Cys115 and His272 protonation at a natural pH of 7.4, the 

CHARMm polar hydrogen force field was applied in both the nucleophilic active site cysteine 

(Cys115) and its neighboring residues (including His272 and Asn296 residues). The mutation energy 

function also contained entropy terms of the protein side chain and backbone, which were evaluated 

according to room temperature in aqueous solvent. In this case, the solvent environment was implicitly 

considered to have a dielectric constant of 80 using the Generalized Born solvation model [49]. The 

total energy was calculated as an empirical weighted sum of van der Waals (E୴ୢ୵ ) interaction;  

pH-dependent electrostatic interaction (∆ܩ௘௟௘௖(ܪ݌,  an entropy contribution (−ܶܵ௦௖) related to the ;((ܫ

changes as the side-chain mobility; and a non-polar, surface dependent, contribution to solvation 
energy (∆ܩ௡௣). For this reason, the calculations of non-polar contributions to the folding free energy 

are related to protein ionization of the wild-type and mutated structures in both the folded and unfolded 

states. The electrostatic energy terms were also obtained by integration over the proton binding isotherms 

derived from the fractional protonation of the sites, including the effect of ionic strength (I) [50], on 

the calculated free energy terms: ∆ܩ௧௢௧(ܪ݌) = ௩ௗ௪ܧܽ + ,ܪ݌)௘௟௘௖ܩ∆ (ܫ − ܿܶܵ௦௖ +  ௡௣ܩ∆

where empirical scaling parameters, a = 0.5 and c = 0.8, were applied to the terms. 

The energy effect of each mutation on the binding affinity was also calculated as the difference 

between the binding free energy in mutated and wild-type structures, where the binding affinity of 

molecular partners in the bovine CAPN1/CAST4 system, or the bovine CAPN1-Ca2+ ions binding on 

the enzyme activation was calculated as the difference of the binding free energy (∆∆ܩ௕௜௡ௗ) of the 

bound state and unbound states, 	∆∆ܩ௠௨௧ = ௕௜௡ௗ(௠௨௧௔௡௧)ܩ∆∆ − ௕௜௡ௗ(௪௜௟ௗି௧௬௣௘)ܩ∆∆ . All interaction energy 

terms were calculated in the same manner as those of the pH-dependent mutation energy for bovine 

CAPN1 stability in the water solvent environment, while the optimal values of the other scaling factors 

remained the same. 

Structural knowledge regarding bovine CAPN1/CAST4 interaction would identify the structural 

elements important for the inhibition of bovine CAPN1; therefore, the results of this study may be 

directly useful in screening for SNP markers of bovine CAPN1 during disease diagnosis. Activated 

mammalian CAPNs structures, especially the CAPN/CAST complex, have also become invaluable 

target models when the structure-based virtual screening of drug candidates (from discovery phase to 

development) is applied for over-activated CAPN, which has been linked to a variety of diseases, such 

as post-ischemic injury and cataract formation [33,45]. It was proposed that the effects of Ca2+-binding 

to the enzyme include activation as well as the dissociation, aggregation, and autolysis of small regular 

subunits [39]. Unfortunately, protease tends to aggregate when treated with divalent ions at the  

high-concentration required for the Ca2+-activated enzyme, and this could disturb the regulation of its 

inhibitor CAST. The inhibitor is recognized as the only structure of the activated CAPN enzyme, and it 
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leads to a decrease in its proteolytic activity. This property of the CAPN system makes it very difficult 

to crystallize, not only the whole enzyme but also the enzyme/inhibitor complex. Extensive research of 

protein folding and protein-protein binding has shown that hydrophobic interactions play a key role in 

protein or antibody aggregation [39]. Indeed, the aggregation of the large CAPN catalytic subunit (four 

domains DI to DIV in the presence of Ca2+ ions shown in Figure 11) would be expected to promote 

exposure of hydrophobic dimerization surfaces to aqueous solvent (in particular, hydrophobic contact 

interfaces as fifth EF-hand motif between DIV and DVI on both large and small subunits). The 

dimerization interfaces in DIV and DVI have exposed hydrophobic surfaces in the same region, even 

in the absence of Ca2+ (inactivated form). This is so energetically unfavorable that the unstable effects 

lead to the formation of randomly associated aggregates as a result of Ca2+-induced conformational 

rearrangement and partial dissociation. Surprisingly, the crystal structures (PDB code 3BOW, 3DF0) 

of the rat CAPN2/CAST complex seem to be protected from the aggregation of CAPN2 resulting in 

encompassing of exposed hydrophobic regions on the enzyme, by the CAST inhibitor [3]. This may be 

a consequence of simultaneous binding to CAPN molecules by both subdomains A, and C, each of 

which is part of the CAST-independent-inhibitor domains (from CAST1 to CAST4) and each of which 

is stabilized by hydrophobic interactions in the presence of Ca2+ ions. As a result, there was no enzyme 

self-aggregation or subunit dissociation. These results provide more support for the complex model 

structure of bovine CAPN1/CAST4 in which self-aggregation cannot occur as a complement to 

CAST4 subdomain A due to through direct hydrophobic interactions with the interaction site of 

CAPN1. We predicted selective mutation effects and the relative importance of hydrophobic 

interactions on the exposed hydrophobic surfaces of the residues across the bovine CAPN1/CAST4 

complex by calculating the spatial aggregation propensity (SAP) [11,40,51] based on the  

pre-calculated solvent accessible area (SAA) of the fully exposed side chain by the CHARMm polar 

hydrogen force field. The SAP for a CAPN1 mutated from the original structure was obtained as the 

specified radii from the hydrophobicity scale of Black and Mould [40], which was added as atom and 

residue properties on the patches of exposed hydrophobic residues. The hydrophobicity scale was 

normalized such that glycine had a hydrophobic value of zero; thus, amino acids more hydrophobic 

than glycine were positive, while hydrophilic residues were negative. Therefore, the bovine CAPN1 

aggregation propensity for the enzyme atom is defined as: ෍൤൬ SAA	of	side	chain	atoms within radius RSAA	of	side	chain	atoms	of fully exposed residues൰ × residue	hydrophobicity൨ 
The SAP for each residue on the patches of the exposed hydrophobic residues was obtained as the 

average of its atomic aggregation scores. High aggregation scores (0.0 < SAP < 0.5) indicated highly 

exposed hydrophobic regions, and then an SAP map for the region was generated by red color-coding, 

which allowed us to perform target mutations of those regions to prevent enzyme aggregation and thus 

enhance stabilization. Low SAP values (−0.5 < SAP < 0.0) indicated that the exposed protein surface 

was a hydrophilic region (blue). This can be expected as most of the protein surface exposed to water 

is usually hydrophilic. SAP might provide useful information on the physicochemical properties of 

interaction surfaces in the bovine CAPN1/CAST4 complex by identifying its aggregation regions. 

Homology modeling and all computational studies were performed with the Discovery studio (DS) 3.1 

molecular modeling package [52] on a personal workstation. 
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4. Conclusions 

In the absence of whole-structural data for mammalian CAPN1, we have predicted Ca2+-induced 

conformational changes before and after bovine CAPN1 activation and further the CAPN1/CAST4 

complex structure by homology modeling. These structure models were refined by focusing on the 

binding site regions and each key interaction residues and its interaction constraints with CAST4. The 

focus was directed toward the relevance of trace residues (class and species-specific and conserved 

residues across mammalian CAPN group) and the major specificities of bovine CAPN1 with molecular 

properties. Our findings suggest that the positions of trace residues of bovine CAPN1 were primarily 

distributed from domain DII to DIII through the exposed binding grooves to water molecules and 

interaction regions between domains of the enzyme molecule, in which the protease activity and the 

binding affinity with subdomain B of CAST4 are localized to the highly flexible gating loop in DII 

comprising residues 251–271. In addition, they affect both the enzyme itself and the complex with 

CAST inhibitor stabilities rather than functionality (as binding affinity with its substrate or inhibitor or 

Ca2+ ions). The hydrophobic interfaces with high SAP are the main factors for enzyme stability and 

aggregation. In this observation, the effects of trace residues of bovine CAPN1 were also confirmed by 

the fact that CAPN1/CAST4 complex stability has a greater impact on the enzyme origin of disease 

mutations (R385H, D600G related with the LGMD-2A) than the binding affinity with CAST4. 

Furthermore, for all of trace residues analyzed our combined site-directed alanine mutagenesis studies 

and pharmacophore models revealed the importance of key residues within each binding site region for 

CAPN1-CAST4 interactions. These results provide more support for the interpretation of the 

requirements for CAPN1-small inhibitor interactions based on their X-ray crystal complex structures. 

One of the most intriguing findings of our studies is whether the geometry of the key interacting 

pharmacophore features or the shape constraints present in the binding site cavities were all previously 

unknown to create the specificities of the CAPN1 subgroup. Most importantly, this is based on the 

finding that key residues of CAPN1 [53] show no apparent sequence preferences compared to CAPN2 

in agreement with their pharmacophore features, but the depth and breadth of the CAPN1 active site 

were well reflected in the geometry between their pharmacophore features, which correlates with 

CAPN inhibitor specificities that are conformation dependent. In this paper, we have presented a novel 

approach whereby inhibition can arbitrate some of the key residues within bovine CAPN1 directly 

interacting with its endogenous inhibitor, CAST, the alanine mutations of which in these contact 

regions significantly reduce not only the binding affinity for the inhibitory domains of CAST but also 

their complex stability, less effective than the complete protease-protease inhibitor interactions did. 

These key residues can be targeted in the virtual screening of competitive small inhibitors, which 

mimic the natural inhibitor CAST throughout fingerprint fragments with its important properties, with 

the large polypeptide substrates against the CAPN1 subgroup with improved specificity and selectivity 

as compared to the wild-type inhibitor. The bovine CAPN1/CAST complex models, which are subjects 

to analysis in the study, have been deposited in the Protein Model Database [54] and anyone can 

accessible to the public (PMDB ID: PM0079218, PM0079221, and PM007922 in both inactive and 

active model structures of bovine CAPN1 and in the Ca2+-bounded complex of two subdomains 

CAST4, respectively). 
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