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Abstract: The data on the existence and physicochemical characteristics of uncharged single element
chemical compounds formed by nitrogen atoms and containing more than two nuclides of this
element (from N4 to N120, oligomeric and polymeric polynitrogens) have been systematized and
generalized. It has been noticed that these data have a predominantly predictive character and were
obtained mainly using quantum chemical calculations of various levels (HF, DFT, MP, CCSD etc.). The
possibility of the practical application of these single element compounds has been considered. The
review mainly covers articles published in the last 25 years. The bibliography contains 128 references.
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1. Introduction

Nitrogen is known to be one of the most important chemical elements, due to its
already predominant concentration in the atmosphere of our planet (78.3% of its volume).
In addition, this element is a key component of proteins and polypeptides. In the Earth’s
atmosphere, nitrogen exists in the form of a simple substance, namely, dinitrogen, which
has the chemical formula N2. Although dinitrogen was first isolated from atmospheric air
almost 250 years ago (1772), independently, by Rutherford, Scheele and Cavendish, this
compound, in fact, still remains the sole stable simple substance formed by the atoms of the
given chemical element. In the given compound, nitrogen atoms are bonded to each other
by an N≡N triple bond; owing to this, the dinitrogen molecule is characterized by both
a very high dissociation energy (945.41 kJ/mol) and a very low chemical activity [1,2]. It
should be noted that, when a triple bond is broken, most of the energy of this bond (about
58%) is spent on breaking just the first of the components of this bond [3,4]. It determines
the resistance of the dinitrogen molecule to those reagents that, upon breaking one nitrogen
π-bond, form one or two bonds with the nitrogen atom. That is why, in particular, the
H2 molecule and even atomic hydrogen (H), under normal conditions, are not able to
interact with N2: the formation of one (when an H atom is attached) or even two (when
an H2 molecule is attached) N–H bonds do not compensate the energy spent on breaking
π-bonds in the dinitrogen molecule (nor H–H bonds, in the case of addition of H2) and
these reactions, accompanied by the formation of the •N2H radical and the diimine H2N2
molecule, respectively, are very energy intensive. Nevertheless, after the breaking of the
first π-bond in the N2 molecule and the formation of any of the above mentioned chemical
compounds, further breaking of each of the remaining two bonds requires much less energy.
When three H2 molecules are attached to an N2 molecule, the energy of the resulting N–H
bonds compensates the energy expended on breaking the N≡N bond and the formation
of ammonia NH3, as a result, turns out to be an exothermic process. At a temperature
of T < 63.29 K and a pressure of 101,325 Pa, dinitrogen is in a solid aggregate state, and
three modifications are currently known for it: α-N2 with a cubic lattice, space group P213
and period a = 5.660 Å, existing at temperatures below 36.61K; β-N2 with hexagonal close
packing, space group P63/mmc and lattice parameters a = 3.93, c = 6.50 Å, existing in
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the temperature range 36.61–63.29 K; and γ-N2, arising at pressures above 350 MPa and
temperatures below 83.0 K, with a tetragonal crystal lattice [1]. In principle, they may be
considered as allotropic modifications of nitrogen. In addition to dinitrogen, the existence
of only one neutral simple substance formed by nitrogen atoms, namely, tetranitrogen N4,
has been experimentally proven with a sufficient degree of reliability [5,6].

Today, the total number of works devoted to single element polynuclear nitrogen
compounds—the socalled polynitrogens—already measures a three digit number. During
different years, quite detailed review articles have been published on this subject (in
particular, [7–9]). However, all these reviews were published more than 10 years ago,
according to original works that were published before the beginning of the 21st century.
At the same time, in each of these reviews, the literature data systematics and discussion
were based on the number of atoms in the molecules of polynitrogens. Such a systematic
of neutral polynitrogens seems quite justified; taking into account all of the above, this
review is devoted mainly to the consideration of those works on single element polynuclear
nitrogen compounds that have appeared in the current 21st century.

2. Theoretical Background for the Existence of Various Polynitrogens

For the formation of polynuclear compounds with E–E bonds (E—an atom of any
chemical element) of any multiplicity, the ability of atoms of a given element to form
homochain structures with a sufficiently large number of atoms is necessary. The most
desirable way is when the atoms of the element E have the same number of valence orbitals,
number of valence electrons, and the maximum possible coordination number. Such a
coincidence, however, occurs only for one chemical element, namely, carbon; in the case
of nitrogen, where these numbers are four, five, and four, respectively, such complete
coincidence is absent. Nevertheless, more than one or two chemical compounds, in which
three or more atoms of a given element are interconnected, are known; this fact gives
us hope for the existence and possibility of obtaining a wide variety of polynitrogens.
However, it can be assumed that, since the nitrogen atom in its chemical compounds,
as a rule, forms no more than three chemical bonds with other atoms by the exchange
mechanism, this will occur for only those that contain either groups of atoms (–N=N–) or
(>N–N<) groupings, or both taken together. From the standpoint of classical ideas about the
valence capabilities of chemical elements, including such chemical bonds that a nitrogen
atom usually forms with other elements (namely, three), the total number of nitrogen atoms
in any stable neutral polynitrogen should be an even number. On the other hand, in this
variant, any of the stable neutral polynitrogens, according to the classical concepts, should
have a closed (cyclic) structure, because, otherwise, it is impossible to ensure that each
nitrogen atom in the polynitrogen would form, namely, three—not more or less—chemical
bonds with their neighbors. It does not exclude the possibility of the formation of such
polynitrogens, in which individual nitrogen atoms form more than three (namely, four or
even five) chemical bonds with their neighbors (for example, in the case of the diazide
N≡N=N–N=N≡N). Moreover, it is possible that their stability will be even higher than the
stability of polynitrogens with the same number of nitrogen atoms, but with a closed loop
of nitrogen atoms. Closed geometric structures with nitrogen atoms at their vertices can
be either two dimensional or three dimensional, or a combination of these. Potential two
dimensional structures for polynitrogens can be individual polygons with an even number
of vertices, as well as their various combinations with a total even number of vertices
(in this case, no more than three sides should converge at each of the vertices). Potential
three dimensional structures can be various polyhedra, but, in this case, at any vertex,
with the valence possibilities of nitrogen atoms, should be three valence angles—no more
and no less. These polyhedra include three of the five Platonic solids, namely, the regular
tetrahedron, cube and regular dodecahedron; seven of the thirteen Archimedian solids
(truncated tetrahedron, truncated octahedron, truncated cube, truncated cuboctahedron,
truncated dodecahedron, truncated icosahedron, rhombic truncated icosidodecahedron);
four of the five Fedorov solids (hexagonal prism, rhombic dodecahedron, as well as the
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already mentioned cube and truncated octahedron) and many other less symmetrical
polyhedra (in particular, polygonal prisms with an even number of vertices) satisfying the
above condition. Taking into account the above, first of all we will consider the literature
data array related to neutral polynitrogens with an even number of atoms.

3. Neutral Polynitrogens Nk Containing an Even Number of Atoms

With some degree of conventionality, these polynitrogens, depending on the number
of atoms in the structural unit, can be divided into three categories: those with the number
of atoms from 4 to 10, with the number of atoms from 12 to 20, and with the number of
atoms more than 20. We will consider these categories in this order.

3.1. Polynitrogens N4–N10

For tetranitrogen N4, the existence of three isomeric forms can be expected, in each of them,
all nitrogen atoms are trivalent, namely, tetrahedral (Td symmetry), distorted tetrahedral (D2d
symmetry) with three N–N single bonds, and rectangular (D2h symmetry) with two single bonds
and two N=N double bonds. The images of their molecular structures are presented in Scheme 1.
Isomers with a different shape, namely, zigzag or with two double N=N and one single N–N
bonds (C2h symmetry), or with one triple N≡N, one double N=N and one single N–N bonds
(Cs symmetry) (Scheme 2) are also not excluded. This chemical compound of nitrogen was
first mentioned in [10], where, however, it was postulated as a “van der Waals complex”, i.e.,
(N2)2, in which N2 dinitrogen molecules are interconnected due to only dispersion forces. In
later works [11–24], the possibility of the existence of isomeric tetranitrogens was theoretically
confirmed by quantum chemical calculations using quantum chemical methods at various levels;
moreover, in most of these works, methods with the functionals Hartree–Fock (HF) theory,
perturbation theory (MP), quadratic configuration interaction with singles and doubles (QCISD)
and the theory of linked clusters (CCSD and CCSD(T)) [11,15,18,19,22,23] were used, and only
in [12,14,15,17,24], various methods of lower levels, in particular density functional (DFT).
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Literature data on the relative stability of these isomers diverge quite noticeably from
each other. Thus, according to the calculations performed in [12] by the MBPT2 method, the
N4 (D2h) isomer has a total energy 12 kcal/mol higher than the N4 (Td) isomer, while the
calculations by the QCISD(T)/6-311 + G* [13] gave the opposite result (lower by 3 kcal/mol).
According to one of the recent works [22], using the QCISD(T)/TZVP method to calculate
the molecules of these two isomers, the difference in total energy between the tetrahedral
and rectangular isomers is very small and amounts to only 0.50 kJ/mol, i.e., these isomers
are energetically equivalent. Summarizing the presented data, as well as other theoretical
studies of tetranitrogens [16,19,20,23,24], it can be argued that the rectangular shape of N4
is more stable. A detailed calculation of the parameters of the molecular structures (bond
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lengths, bond and torsion angles) of these two theoretically expected forms of tetranitrogen
was carried out in [23,24].

The existence of the “rectangular” isomer N4 (D2h) was noted by experiment in [5,6,19].
It was obtained from the N4

+ cation and was found in the gas phase; in experiments based
on neutralization reionization mass spectrometry, the lifetime of its molecule was more than
1 µs; therefore, it is predicted to be a metastable compound. Bittererová et al. [16] used the
CASSCF method to study the dissociation of this isomer, as a result, a new transition state
with C2v symmetry was discovered with an effective dissociation barrier of 6.5 kcal/mol.
Tetrahedral tetranitrogen N4 (Td) was studied in detail in [11,15,18], but this isomer has not
yet been reliably found experimentally. In this regard, it is interesting to note that, according
to the data of [18], the most energetically stable is not N4 (Td) or N4 (D2h), but azidonitrene
N≡N=N–N, the triplet ground state of which (3A”) within RCCSD(T)/6-311+G(3df) and
MRCISD+Q/6-311+G(3df)) methods confirmed to be 56 kJ/mol lower than the tetrahedral
Td isomer (the ground state of which is a spin singlet).

The first report on the next most complex category of polynitrogens with even k,
namely, hexanitrogens, appeared more than 50 years ago in [25]. In this work, the formation
of N6 was suggested as a result of the dimerization of N3 radicals formed during the
interaction between the azide anion N3

− and the hydroxyl radical. The nature of this
compound was not identified with sufficient reliability. Theoretically, for hexanitrogens,
the presence of at least five isomeric forms can be expected, in each of which all nitrogen
atoms are trivalent, namely, the “open book” N6 (C2v) with two double bonds (an analog
of dewarbenzene, hexaazabicyclo[2.2.0]hexadiene-2,5), hexaazatricyclo [3.1.0.0]hexene-3
(analogue of benzvalene) N6 (Cs), trigonal prism (hexaazatetracyclo[2.2.0.02.6.03.5] hexane,
hexaazaprismane) N6 (D3h) and “twisted boat” N6 (D2) [9], as well as a planar hexagon
with three conjugated double bonds (hexaazabenzene, hexaazine) N6 (D3h) (Scheme 3).
Assuming the possibility of the presence, in N6, of nitrogen atoms with a different number
of chemical bonds formed by them (for example, two, four, and five), the assortment of
possible hexanitrogens will expand significantly; the simplest of them is diazide N6 (C2h)
(N≡N=N–N=N≡N), the formation of which, very likely, was observed in [25], indicated
above, and, also, two structures with C2v and Cs symmetry (Scheme 4). In later theoretical
works devoted to N6 [12,14,26–35], however, attention was paid to the fact that the shape
of the potential energy surface depends very strongly on the calculation method used.
Therefore, hexagonal molecular structures (hexaazabenzene is not among those) and N6
molecular structures were identified as stable minima on the potential energy surface
in the case of using the Hartree–Fock and MP2 methods [14,35], DFT with a B3PW91
functional and CCSD (T) [36]. The existence of N6 molecules with prismane, dewarbenzene,
benzvalene and “twisted boat” structures are predicted by these theoretical methods. The
systematic study of hexanitrogens using various methods of quantum chemistry began
only with the onset of the 21st century, which resulted in the appearance of works [37–45].
These cyclic isomers of N6, the existence of which was confirmed in the works of the
20th century, as well as the acyclic isomer, diazide, were considered in [37–41]. In the
earliest chronologically [37], the process of diazide destruction according to the N6 → 3N2
general scheme was investigated in the framework of the second order multiconfiguration
perturbation theory CASSCF/CASPT2, in combination with a preliminary study of this
process by the DFT method. In this case, a transition state with C2 symmetry was found
between the most stable linear diazide form of N6 and three N2 molecules, with an energy
barrier of 28.7 kcal/mol according to the CASSCF/CASPT2 method and 17.4 kcal/mol
according to the DFT method, respectively. A similar decomposition process was also
discovered in [38–41]; in [40,41], in addition to the process of the decomposition of diazide,
the processes of the decomposition of other isomeric N6 molecules with the formation of
molecular dinitrogen, namely, “twisted boat” and hexaazabicyclo[2.2.0]hexadiene-2,5, were
also analyzed, and the molecular structures of these three compounds were calculated.
According to these results, the most stable of these three isomers is diazide, while N6 (C2v)
and N6 (D2) isomers have higher total energies than diazide (by 26.2 and 62.5 kcal/mol,
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respectively). In this case, the N6 (D2) isomer decomposes in one step with a very low
activation barrier, while the decomposition of N6 (C2v) occurs by a stepwise mechanism [41].
The transformation of prismatic N6 (D3h) into N2, as well as the analogous process for N6
(D2), is also a one stage process and is characterized by a low energy barrier [40,42]. It was
shown in [43] that chain, ring, framework, and prismatic framework nitrogen-containing
molecular structures can be clearly separated by energy capacity. In particular, the prismatic
molecule N6 (D3h) is noted to have a very high dissociation barrier to N2 and, if it could
be synthesized, it would be very stable (allowing storage at ambient conditions). During
the reaction of its dissociation, a very large amount of energy is released, and without
the formation of any harmful substances [43]. In some works, devoted to hexanitrogens,
namely, [44–46], the possibility of the existence of hexaazabenzene (hexaazine) N6 was
analyzed. It was shown in [44] that the planar cyclic structure of N6, which is isoelectronic
to benzene, can be sufficiently stable if “peripheral” oxygen atoms are added to it, bound
to nitrogen atoms by covalent or coordination bonds. Another potential possibility of
stabilizing such a structure was proposed in [45], where a theoretical consideration was
carried out of the stabilization of the particles of the cyclic N6 fragment in the form of a
planar hexagonal ring in systems M(η6 -N6), where M = Ti, Zr, Hf or Th. It was found
that these systems have total energy minima at the N6 (C6v) geometry that corresponds
to the η6 complex of the corresponding M with the planar hexaazine ring N6, which is
70–130 kcal/mol higher than the energy of the metal atom and three N2 molecules, but have
significantly lower energy of any of the N6 isomers. It was suggested that the stabilization
of the N6 planar structure is associated with the interaction of the ring π-system with d-
(in the case of M=Ti, Zr, Hf) or f- (M=Th) orbitals; in such a case, five chemical bonds are
formed between the N6 and M rings due to the donor–acceptor (dative) mechanism. In [46],
using the HF, MP2, and DFT methods, the structure of hexaazine and its monoprotonated
(N6H+) was discussed and it was shown that, for N6 molecules, the so called HOMED
index (electron delocalization harmonic oscillator model), based on the extended geometry,
which is a measure of p-electron delocalization, is close to the HOMED index of the
benzene molecule. The protonation of one N atom in planar N6 does not significantly affect
the HOMED value, and, unlike the protonated benzene molecule, planar N6H+, like the
original N6 (D3h), is an aromatic compound; wherein, the p-electrons of the N6 ring do not
participate in the formation of the N–H bond. Nevertheless, the data of recently published
works [22,23], where the QISCD(T)/TZVP method was used for the calculation, clearly
indicate, on the one hand, the impossibility of realizing the isolated N6 (D3h) molecule, and,
on the other hand, that the most stable among all the cyclic modifications of N6, is, namely,
N6 (C2v) (hexaazabicyclo[2.2.0]hexadiene-2,5). Reliable information about obtaining any
hexanitrogens in the experiment (with the possible exception of diazide, which, judging
by the data of various quantum chemical calculation methods, has the lowest total energy
compared to other hexanitrogens), is currently not available in the literature. A fairly
significant number of studies are devoted to octanitrogens, however, almost all the results
and conclusions presented in them are based on theoretical data, revealed mainly by
quantum chemical calculations. One of the first (and, perhaps, the very first) works devoted
to octanitrogens is the work [47], published more than 40 years ago; it was shown by
the SCF pseudopotential method that octaazacubane (cubic N8, Oh symmetry) has higher
energy than two N4 molecules, and, consequently, its independent existence becomes
problematic. Nevertheless, taking into account the high symmetry of this structure, it
can be expected, according to [9], that N8 (Oh) should have a fairly significant activation
barrier for its decomposition to form dinitrogen N2. In later publications [48–57], a number
of other isomeric forms of N8, among which there are both cyclic and acyclic structures,
as well as “hybrid” structures containing both of these components, were analyzed. For
example, the authors of the article [48] also used ab initio methods of molecular electronic
structure to study, in addition to N8 (Oh), two more N8 isomers, namely, N8 (D2d), similar to
cyclooctatetraene (octaazacyclooctatetraene), and N8 (D2h), which has a planar bicyclic form
(octaazapentalene) (Scheme 5). These optimized geometries of various N8 molecules were
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obtained using DZP basis sets and SCF, MP2, CISD and CCSD methods. Their vibrational
analysis indicates that all three structures represent potential energy minima with the
octaazapentalene bicyclic structure being the absolute minimum (225 kcal/mol above
four N2 molecules) N8 (Oh) at 198 kcal/mol, while N8 (D2d) is only 35 kcal mol/1 higher
than azapentalene. The same results are confirmed in [49]. In [50], two novel structures
were added to these structures: N8 (D2v), designated as octaazacuneane, and N8 with
the same D2h symmetry as in octaazapentalene (Scheme 6), but, unlike octaazapentalene,
it lacks N=N double bonds (it can be considered as a combination of two tetrahedra
connected to each other by two N–N single bonds). In this work, nine (!) quantum chemical
methods of various levels were used for the calculation, the data of which, both in terms
of the structural and energy parameters of the N8 molecules under consideration, are in
fairly good agreement with each other (at least in a qualitative sense). In addition, it was
shown, on the one hand, that both of these isomers have minima on the N8 potential
energy hypersurface, and, on the other hand, that they have a higher energy than the N8
isomers containing N=N double bonds. Among the three N8 isomers considered in [50],
which have only single bonds, those with higher symmetry have higher total energies:
for example, according to the CCSD(T)/DZP method, the total energies of N8 (D2h) and
N8 (C2v) are less than the total energy of N8 (Oh) by 35.7 and 65.1 kcal/mol, respectively.
In later work [51], along with octaazapentalene, two more N8 isomers, azidopentazole
and diazidodiimide, were described using ab initio calculations, and, also, the potential
energy surfaces and the transition structures’ nature during the decay of each of these
three N8 isomers into dinitrogen N2 were studied. All these isomers are high energy
species compared to molecular nitrogen, but their energy is much lower than that of the
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The possibility of synthesizing any of the octanitrogens in the experiment with its
subsequent isolation from the reaction system remains open. It should be noted that, in a
recently published work [57] using hydrazinium azide [N2H5]+(N3)−, the N8 isomer with
the structure represented as (N≡N+)–(N−)–N=N–(−N)–(+N≡N), was obtained. It was
shown, using the methods of confocal micro-Raman spectroscopy and synchrotron powder
X-ray diffraction, that at 13–15 GPa [N2H5]+(N3)− passes into a new form without changing
its composition, the formation of which is associated with the internal strengthening of
hydrogen bonds, and with an increase in pressure up to 40 GPa—is transformed into N8.
This compound formation is accompanied by the emergence of new peaks at 2384, 1665,
and 1165 cm−1, arising from the terminal N≡N stretching, the central N=N stretching,
and the N–N stretching, respectively. This compound is resistant to degradation to N2 at
pressures above 25 GPa and decomposes completely at pressures below 3 GPa. There are
no other similar reports, apart from the paper just cited [57].

The study of decanitrogens began in [58]. In this publication, six possible N10 isomers
were considered: in the form of a pentagonal prism N10 (D5h); three articulated pentagons
N10 (D3h); two pentagons; two vertices that are connected to each other, and which are
themselves are in the same plane N10 (D2h) (Scheme 7); two pentagons, two vertices of
which are connected to each other and are in mutually perpendicular planes N10 (D2d); as
well as two more complex structures N10 (C3vm) and N10 (C3vc) (Scheme 8). Using the DFT
B3LYP/6-31G* methods and the MP2/6-31* perturbation theory with the combination of
the Gaussian94 program, geometric optimization of the structures was carried out and their
vibration frequencies and thermochemical parameters were calculated. According to the
data of this work, the total energies of the above isomers (Etotal) correlate with each other
as Etotal [N10 (D2d)] < Etotal [N10 (D2h)] < Etotal [N10 (C3vm)] < Etotal [N10 (D3h)] < Etotal [N10
(C3vc)] < Etotal [N10 (D5h)], i.e., the isomer with the lowest symmetry is the most stable. It
is interesting that N10 (D3h) with a flat structure of fused triple five membered rings is a
transition state for the N10 (C3v) molecule, with the trigonal–pyramidal structure. Since the
publication of this work, only a few works devoted to N10 have appeared, namely, [59–64],
as well as the recent publications mentioned above [42,43]. Therefore, in [59], the N10
(D2h) and N10 (D2d) isomers were studied using the HF, MP2, B3LYP, and QCISD methods,
and a saddle point for N10 (D2h) (five membered rings on the same plane) and a local
minimum for N10 (D2d) (two rings in two planes perpendicular to each other), separated by
an energy of 3–6 kcal/mol (depending on the calculation method used), were found. The
N–N bond energy between these five membered rings was estimated at 93 (QCISD) and
84 (B3LYP) kcal/mol, indicating a fairly strong bond between them. Based on this, it was
suggested that N10 could be a promising building block for more complex polynitrogens
(in particular, N60) [59]. In search of minima on the potential energy surface of the N10
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molecule, nine structures without double bonds were studied in [60] and it was found
that all nine are minima at RHF, eight are minima at B3LYP, and seven are minima at the
level of MP2 theory. In [61], a theoretical calculation of the molecular structure for the
acyclic isomer N10 (C2h), shown in Scheme 9, potential energy surfaces and activation
energy barriers for the dissociation reaction N10 → N8 + N2 were performed using the HF,
MP and CCSD(T) theory levels. By the CCSD(T) data, this barrier is approximately 17–18
kcal/mol; based on this, acyclic N10 is easily dissociated and therefore not suitable as a
high energy density material. Using the DFT B3LYP and MP2 methods, the authors of [62]
were able to find 11 energy minima on the potential energy surface with activation barriers
of the order of 10 kcal/mol for dissociation or isomerization reactions, allowing them to
suggested the kinetic instability of the N10 molecules, among which three are acyclic, five
are monocyclic with five membered cycles, and three are bicyclic with similar cycles with a
range of total energies from −547.26218 Hartree in the case of the bicyclic structure N10
(D2d) to −546.87618 Hartree in the case of one of the acyclic structures (i.e., relative energies
from 0 to 242.2 kcal/mol). Based on later work data [63], in which the stability of nine
N10 structures was considered at the level of the G3 theory, the most stable structure is a
bowl shaped structure with three five membered rings and C3v symmetry. It should be
noted that the total energy of this structure is −546.89556 Hartree, which is actually only
much greater than the total energy of N10 (D2d) (however, such a comparison is not entirely
justified due to the difference in the calculation methods for obtaining these values). The
structural variety of decanitrogens is not exhausted by the N10 structures listed above,
and it is possible that another molecular structure, even more stable than this cup shaped
structure, will be found in the future. In any case, it is too early to conclude this question,
especially because of a recently published work, [64]. Bipentazole N10 (D2d) was found to
be the most stable form of decanitrogen [64], consistent with the data of the work already
cited above [62].
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3.2. Polynitrogens N12–N20

This group of polynitrogens, however, is the subject of a relatively small number of
works [65–76]. Most of them relate to the 21st century; the articles [65,66] are the only
exceptions. In this paragraph, they are considered in ascending order of the number of
nitrogen atoms in their molecular structures.

Dodecanitrogens N12 were studied in the works [65–69]. In the earliest work [65],
two isomeric compounds were considered, namely, diazobispentazole N12 (C2h), whose
structure contains two pentazole fragments linked by an azo group (–N=N–), and a planar
acyclic isomer N12 with the same symmetry (Scheme 10). Their calculation by the DFT
method showed the significantly higher stability of the first of these isomers compared
to the second. In 1997, the authors of [66] theoretically studied two more N12 isomers:
in the form of a regular hexagonal prism N12 (D6h) and the form of an octahedron with
two triangular and six pentagonal faces N12 (D3d), containing only single N–N bonds, and
found that there are acceptable minima on the potential energy surface of N12 (Scheme 11).
The data presented give an opportunity to draw a reliable conclusion, that the aromatic
pentazole ring is a stable structural unit for at least some larger polynitrogens with an even
number of nitrogen atoms. The studies started in [65] were continued in the work [67]
at the levels of the theory HF/6-31G(d) and electron correlated MP2/6-311G(d), where
the transformation of diazobispentazole N12 (C2h) into pentaazopentazole N10 with C1
symmetry and into azidopentazole N8 with Cs symmetry was discovered; in this case, the
transition states corresponding to these processes were also calculated. In the following,
chronologically, work [68], using two DFT methods, the existence of a new isomer, N12,
was revealed, in addition to the five isomers studied in [65–67], namely, N12 (D3d) in the
form of a noncoplanar 12-gon (Scheme 12). The total energies comparison, as well as other
parameters of all these six compounds, testify, for [68], to the conclusion that the most
stable of them, according to the DFT B3LYP/6-311 + G(3df,2p)//B3LYP/6-31G* data, is
diazobispentazole N12 (C2h), with a total energy of −656.91946 Hartree, and the least stable
is prismatic N12 (D6h), with a total energy of −656.36743 Hartree (i.e., the difference in total
energies between them is no less than 346.4 kcal/mol). A similar result is also confirmed
using the simpler B3LYP/6-31G* method [68]. At the same time, the dissociation study of
all these isomers showed that, for five out of six of them, the energy barriers of this process
are less than 10 kcal/mol; the only exception is the open chain acyclic isomer with a value
estimated slightly higher (14.5 kcal/mol). In any case, all of these values are very low to be
considered sufficiently kinetically stable. Concluding the story about dodecanitrogens, the
work entitled “What Makes an N12 Cage Stable?”, suggested that cyclic N5 fragments have
a great influence on the stabilization of N12 polynitrogens, while cyclic N3 fragments have
a somewhat smaller effect, which must be noted [69].
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Only works [70–73] are devoted to polynitrogens with the number of atoms 14, 16, and
18. The first [70] considered 12 isomers of tetradecanitrogens N14, the majority of which
contain a cyclic pentaazole fragment in their composition. The lowest energy of them is N14
(C2h), where two pentazole fragments are interconnected by a grouping (–N=N–N=N–),
the highest energy is N14 (D3h) in the form of a nine-hedron with six pentagonal and three
quadrangular faces; the difference in their total energy, judging by the presented data, is
397.1 kcal/mol. The plane isomer N14 (C2v) is intermediate in total energy (Scheme 13).
In [71], 10 more isomeric tetradecanitrogens were considered, which, unlike most of those
studied in [70], had a three dimensional spatial structure; among them was the isomer N14
(D3h), mentioned above. Interestingly, in terms of its energy stability, it won third place,
with the difference in total energy between it and the most stable of these ten isomers
[N14 (C3v)] with three triangular, three pentagonal, and three hexagonal faces) (Scheme 14)
according to the HF, MP4 methods//HF and MP4//B3LYP are only 5.2, 9.1, and 10.1
kcal/mol, respectively. The least stable was the N14 (C2v) isomer with two triangular,
three quadrangular, and four hexagonal faces, the total energy of which is higher than the
total energy of N14 (D3h) by 87.2 kcal/mol [71]. In the article [71], along with compounds
N14, nine spatial isomers of N16 (hexadecanitrogens) were also analyzed: N16 (C2) in
the form of a decahedron with two triangular, six pentagonal, and two hexagonal faces
turned out to be the most stable, and the least stable was N16 (D2h) with six quadrangular
and four hexagonal faces, the total energy of which, according to the HF, MP4//HF, and
MP4//B3LYP methods, is higher than that for N16 (C2) by 135.2, 135.9, and 135.3 kcal/mol,
respectively. The conclusion made in [69] was confirmed by the results of [71], concerning
the significant effect on the stabilization of higher polynitrogens by cyclic fragments N5
and N3. N14 and N16 are also mentioned in [72], but only N14 (D3h) and N16 (D4h) with two
quadrangular and eight hexagonal faces were discussed there. Octadecanitrogens N18 have
been the study objects, apparently, only of a single study [73], although there is information
about one of these compounds, N18 (C2v) with one hexagonal, two quadrangular, and eight
pentagonal faces in [72], too. Within this publication, 18 isomeric octadecanitrogens with a
three dimensional structure are described, the most stable of them is N18 (D3h) with two
triangular, six pentagonal and three hexagonal faces, and the least stable is N18 with the
same D3h symmetry, but formed by six quadrangular and five hexagonal faces (Scheme 15);
the difference in their total energies, according to the HF, MP4//HF, and MP4//B3LYP
data, is 185.4, 189.1, and 188.0 kcal/mol, respectively. No data on octadecanitrogens with
planar (pentazole) and/or acyclic molecular structures has yet appeared.
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Eicosanitrogens N20 have also been considered in a small number of publications [74–77].
As early as 30 years ago, an article [74] was published: using the DZP SCF method, it was
shown that N20 has a dodecahedral geometry with an energy of about 50 kcal/mol per ten N2
molecules. A more detailed study [75] of eicosanitrogen isomerism at the levels of the MP2
and B3LYP theory allow the identification of three minima on the potential energy surface of
N20:N20 (Ih) in the form of an icosahedral cage, N20 (D5v) in the shape of a bowl, and N20 (D5) in
ring form (Scheme 16). According to the data of this work, the total energies of these structures
are in the order Etotal [N20 (D5)] < Etotal [N20 (D5v)] < Etotal [N20 (Ih)], with the N20 (Ih) having
energy almost 200 kcal/mol higher than the N20 (D5). In [76], another isomer was added to
this list, namely, N20 (C2) in the form of a polyhedron with two triangular, six pentagonal, and
four hexagonal faces, and the parameters of this structure were compared with the analogous
parameters of N20 (Ih). It was noted that N20 (C2) is also a more energetically favorable structure
compared to the dodecahedral structure (although by not much—only by 16–25 kcal/mol,
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depending on the calculation method). An attempt to explain this phenomenon is presented in
the same paper [76] and is based mainly on geometric features (“Despite an apparently ideal
structural environment, the N20 dodecahedron is not the most stable cage isomer. The cause is
an energetic penalty resulting from the eclipsed atoms and lone pairs in the planar pentagons in
the N20 dodecahedron. same reason. Also, this eclipsing effect may contribute to the instability
of spheroidal isomers relative to cylindrical ones at other molecule sizes as well”), that, however,
is not very convincing. Taking into account such the small number of studied N20 isomers
(only 4), it is premature to draw any conclusions about the geometry that will be inherent in
the molecular structure of the lowest energy isomer of a given composition (especially after the
publication of [76]; eicosanitrogens were mentioned only in the work already cited above [72], as
well as in [77] with an assortment of polynitrogens from N6 to N60 (and only about N20 (Ih))).
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3.3. Polynitrogens with More than 20 Nitrogen Atoms

The polynitrogens indicated in the title (judging by the number of papers [77–88],
excluding [78,81], were published in the 21st century), have attracted more attention than
the polynitrogens N12–N20. The most extensive, by the number of polynitrogens studied,
should be recognized as [77], in which the structural and thermodynamic parameters of
a very significant number of polynitrogens with an even number of atoms, namely, N6
(D3h), N8 (Oh), N10 (D5h), N12 (D6h), N12 (D3d), N16 (D4d), N18 (D3h), N20 (Ih), N24 (D3d), N24
(D4h), N24 (D6d), N30 (D3h), N30 (D5h), N32 (D4d), N36 (D3d), N40 (D4h), N42 (D3h), N48 (D4d),
N48 (D3d), N54 (D3h), N56 (D4h) and N60 (D3d); wherein, N48 (D3d), N54 (D3h), N56 (D4h), and
N60 (D3d), which are divided into four sets, were studied in the most detail. Some of these
polynitrogens are presented in Scheme 17.
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The molecular structures N18 of the N3(N5)3 type and N30 of the N5(N5)5 type were
also considered in a later work [78]. According to these data, on the one hand, the five
membered rings of nitrogen atoms play a major role in the stability of the molecule cage; in
this case, the lengths of bonds, on both sides of which five membered rings are located, are
the shortest. The role of three membered rings is less significant. On the other hand, for
molecules of isomeric cages, the more layers in the molecules, the more stable the molecules;
in this regard, the cylindrical isomers of the nitrogen cage molecules are more stable than
the spherical ones. These conclusions are quite consistent with the results obtained using
the levels of the HF and DFT B3LYP theory in [80], where the isomeric compounds N24
(D4h), N30 (D3h), N30 (D5h) and N36 (D3h), N36 (D4h) with N–N single bonds are discovered.
Tetracosanitrogen N24 was also considered in [79] (isomer N24 (D6d), method B3LYP/6-
31G*), and in [81], where the main emphasis was not on calculating its characteristics, but
on considering a new approach to assessing stability, based on determining the shape and
size of cages obtained by the partial replacement of individual nitrogen atoms by carbon
atoms. In particular, in this work, three dimensional N22C2 cages obtained by replacing
two nitrogen atoms in N24 were used for this purpose. In [59,77,82,83], a quantum chemical
consideration of the N60 hexacontanitrogen molecule isomeric forms was carried out. The
first study [82] reported on the calculation of two N60 molecule isomeric forms, N60 (Ih),
the image of molecular structure of which is presented in the Scheme 18, and N60 (S6)
by the HF/STO-3G and HF/6-31G methods; the authors concluded that the second of
these isomers is more stable than the first. In the article [59], the geometry was optimized
and the IR active vibration frequencies N60 (Ih) formed from N10 building blocks were
calculated at the SCF/cc-PVDZ, SCF/6-31G*, and AM1 theory levels. Using the HF/cc-
pVDZ method, the energy of the reaction N60 (Ih)→ 6N10 was estimated (2430 kcal per
1 mol N60). In this regard, it was suggested that the N60 (Ih) molecule can be formed
experimentally under extreme pressure conditions. This conclusion does not seem very
convincing, because of the data of works [77,82,83]: on the one hand, N60 (S6) is more
energetically stable, and, on the other hand, N60 (Ih) is not a kinetically inert compound.
In [83], the geometry was also optimized and the vibration frequencies at the HF/6-31G*
and B3LYP levels were calculated for the N60 (Ih) and N60 (S6) structures; it turned out
that the molecular structure of symmetry Ih is not a minimum on the potential energy
surface N60 (the calculation showed the presence of four imaginary frequencies at the
HF/6-31G* level and 12 imaginary frequencies at the DFT B3LYP/6-31G* level), while N60
(S6) symmetry at the HF/6-31G* level revealed two structures with corresponding minima,
and one minimum for the S6 symmetry structure at the B3LYP/6-31G* level. The difference
between the HF and B3LYP predictions was explained by the absence of dynamic electron
correlations in the HF method. Even more complex polynitrogens, N66, N72, N78 and N84,
are described in [84–87], respectively. All these works were carried out by the same research
group, and, therefore, in each of them the same analysis methodology and set of calculation
methods were used: the structure and energies were studied at the B3LYP/cc-pVDZ
level. In addition, one point energy calculations were completed at the MP2/cc-pVDZ
and B3LYP/cc-pVTZ levels, to determine the presence of dispersion interactions. In each
of these works, only one compound was investigated, namely, N66 (D3h), N72 (D3h), N78
(D3h), and N84 (D3h) with a prismatic form. All of these compounds belong to the group
of polynitrogens with the general formula (N6)n (n = 1–35, with alternative symmetry D3h
or D3d) and are the eleventh, twelfth and thirteenth members of this series, respectively,
that can form various nanotubes [88]. In this work, as well as in [84–87], the MP2/cc-pVDZ
and B3LYP/cc-pVTZ methods were used for calculations. It has been established that van
der Waals forces or dispersion interactions are the dominant stabilizing factor for large
prismatic nitrogen cages. The van der Waals forces intertwine with the covalent bonds
to form a dense network that tightly binds the nitrogen atoms at the network nodes and
makes the (N6)n type prismatic molecules stable. It is expected that this will open up great
prospects for the study and application of nitrogen nanofibers, because, according to [88],
nitrogen-containing nanotubes should be environmentally friendly. Publications of the last
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decade [89,90] concerned the problems of the topology of polynitrogens, from tetranitrogen
N4 to eicosahectanitrogen N120.
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Section 3 shows that the most diverse polynitrogens with an even number of atoms and
geometric structures are theoretically quite admissible. At the same time, for a small number
of atoms (k ≤ 8), apparently, the results of calculations obtained by various versions of the
DFT method, agree quite well with the results of calculations using higher level methods
(MP4, CCSD, etc.), at least measuring by quality. With an increase in the atoms number
(k) in polynitrogen molecules, naturally, the number of possible molecular structures, and
primarily three dimensional structures, also increases, and different theoretical methods
give different (and often quite contradictory) results. It is also obvious that far from all
possible structures have been identified for polynitrogens with k > 10 (and their relative
stability, based on the data that the most stable form is determined for each individual Nk,
cannot be considered unequivocally established either), and new, larger scale studies are
absolutely necessary.

4. Neutral Polynitrogens Nk Containing an Odd Number of Atoms

From the standpoint of classical concepts, each nitrogen atom is connected to other
atoms by exactly three (no more and no less) chemical bonds by the exchange mechanism,
and the number of nitrogen atoms in stable neutral polynitrogens should be an even
number. In neutral polynitrogens with an odd number of atoms, at least one nitrogen atom
must be bonded to its neighbors by either two or four of the above chemical bonds. In the
literature, there are separate (albeit purely theoretical) data on polynitrogens with an odd
number of atoms, but, in none of these compounds does that which has just been said take
place. The simplest of them are N3 trinitrogens, which are no longer of particular interest
among researchers of the physico-chemistry of polynitrogens, and therefore we will not
specifically focus on them in this review; information about earlier works on this compound
can be found in the review mentioned above [9]. In general, in addition to N3, some works
consider polynitrogens with an odd number of atoms from 5 to 15 [38,59,78,91–102]. The
next most complex category of polynitrogens with an odd number of nitrogen atoms, N5,
is the subject of works [38,59,78,91]. According to the article [91], the most stable form
is predicted to be (N2)(N3) with a binding energy of 1.2 kcal/mol, while the pentazene
structure is energetically less favorable by 40.6 kcal/mol and the open structure of N5
(C2v) by 56,16 kcal/mol (Scheme 19). The formation heats were also estimated for normal
conditions and amounted to (179 ± 2.4) kcal/mol [91]. All studies agree that the potential
well for N5 is very shallow, making it rather unstable. In the work [59], the geometry of
the closed ring N5 was optimized using the MP2, B3LYP, and QCISD methods; at the same
time, it was noted that, using the MP2 method, such optimization led to the “breaking” of
the N5 cycle, and the calculations of the second derivatives at all levels proved that the



Int. J. Mol. Sci. 2022, 23, 2841 15 of 24

optimized structure is a first order saddle point leading to further decomposition up to
N2. N5 as an intermediate product of hexanitrogen degradation was discovered in [38],
as a result, it was stated that such a molecule does not exist as a discrete species. Thus,
the conclusion drawn in [91], about the low stability of pentanitrogens, was confirmed. It
was shown in [78] that all energetically preferable structures appear with an angle to angle
connection between two rings for cyclic N3 and/or cyclic N5.
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torted hexagon; and two twisted acyclic structures C2 or Cs with an open chain, and these 
are the most energetically favorable. Later, the authors of [93] reported calculations at the 
levels of the UHF, MP2, and B3LYP theories of five more isomers, namely, in the form of 
a bath; an articulated quadrilateral and pentagon; linear N(N3)2, with a pentazole ring 
and a side chain N2 (N2)(N5) (Scheme 20); and a capped hexagon, in which the “capped”  
nitrogen atom is connected by three bonds to the nitrogen atoms of the cyclic fragment. 
According to this data presented, the acyclic W shaped isomer is the most stable, in good 
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data presented by the same group of researchers in [94], where the structure with a pen-
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For the neutral heptanitrogen N7, seven isomers were considered in [92] at the theoret-
ical levels UHF/6-31G*, UMP2/6-31G*, and B3LYP/6-31G*. It was found that five of them
correspond to minima on the potential energy surface (four with Cs symmetry and one
with C2 symmetry), among them there is a one cap “open book”, a structure in which two
triazene rings are connected to each other through a nitrogen atom; a “capped” distorted
hexagon; and two twisted acyclic structures C2 or Cs with an open chain, and these are the
most energetically favorable. Later, the authors of [93] reported calculations at the levels
of the UHF, MP2, and B3LYP theories of five more isomers, namely, in the form of a bath;
an articulated quadrilateral and pentagon; linear N(N3)2, with a pentazole ring and a side
chain N2 (N2)(N5) (Scheme 20); and a capped hexagon, in which the “capped” nitrogen
atom is connected by three bonds to the nitrogen atoms of the cyclic fragment. According
to this data presented, the acyclic W shaped isomer is the most stable, in good agreement
with the conclusion drawn in [92]. However, this does not coincide with the data presented
by the same group of researchers in [94], where the structure with a pentazole ring and an
N2 side chain turned out to be the most energetically favorable. In the same work, it was
also found that the stability of some of the stable isomers is enhanced by conjugation or
hyperconjugation. Perhaps further theoretical studies of the structures of heptanitrogens
will be able to reveal even more stable N7 isomers, but this question still remains open,
especially since, in recent years, no new publications on heptanitrogens have appeared.
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In the article [95], using the HF, MP2, and DFT methods, the calculation of stable molecular
structures for the nonanitrogen N9, as well as the N9

+ cations and N9
− anions formed by it, was

performed. Four minima were revealed on the potential energy surface of N9, and the structures,
energies, and vibrational frequencies of the corresponding N9 isomers were calculated. The
images of the molecular structures of these isomers are shown in Scheme 21. According to this
work, the N9 (C2v) isomer is the most stable. Possible pathways of N9 (C2v) dissociation were
detected using the HF/6-31G*, B3PW91/6-31G*, B3LYP/6-31G*, and MP2/6-31G* methods [96].
The transition states of decomposition processes on the potential energy surfaces HF/6-31G*,
B3PW91/6-31G*, and B3LYP/6-31G* are discovered and characterized, and the energy barriers
of the N9→N6 + N3 process are calculated, that with corrections for zero energy are predicted to
be 15.3, 31.8 and 32.9 kcal/mol, for the N6→ 3N2 process (second stage of decomposition)–8.2,
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16.3 and 14.4 kcal/mol, respectively. The N9
+→N7

+ + N2 barrier height is 2.1 kcal/mol, and
the second stage N7

+ → N2 + N5
+ is 4.3 kcal/mol at the B3LYP/6-311+G*//B3LYP/6-31G*

level. The authors of [97] calculated the energy barriers for the dissociation of a number of N9
isomers (as well as N11) at the HF, MP2, and CCSD(T) theoretical levels. In this work, only
acyclic zigzag structures were analyzed, each of them containing two practically linear N3
groups and three (N9) or five (N11) zigzag binding nitrogen atoms. A total of four N9 structures
(three with Cs symmetry, one with C2v symmetry) and five N11 structures (4 with Cs, 1 with
C2v symmetry) were studied. The energy barriers of dissociation reactions (depending on the
isomer and calculation method, varies in the range of 10–30 kcal/mol) are probably too high to
try to register even the most stable of them in the experiment.
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The molecular structures of undecanitrogens, also in [96], were considered in [98–100].
Stable structures for N11, N11+, and N11

− were calculated using HF, MP2, CCSD(T), B3LYP, and
B3PW91 theoretical levels [98]. As follows from these calculations, the most favorable structure
in the case of N11 and N11

− is the acyclic N5(N3)2, which is composed of two almost linear N3
fragments interconnected by a zigzag N5 grouping (Scheme 22). The dissociation and isomer-
ization reactions of N11 isomers, including two structures previously studied in [98], as well as
three new structures, were investigated using three variants of the DFT method, namely, DFT
B3LYP/6-31G(d), DFT B3LYP/6-311G(d) and DFT B3LYP/6-311+G(3df)//B3LYP/6-311G(d)
theory levels in [99]. It was shown, as in the previous results for the N9 and N10 isomers,
that the barrier height for the structures described in this work in the case of the removal of
N2 is about 10–15 kcal/mol, while the barrier height in the case of removal of N3 is 25–30
kcal/mol. Therefore, N2 appears to be easier to remove than N3 from relatively large nitrogen
isomers. In addition, for each of these three structures, both dissociation and isomerization can
occur; moreover, isomerization seems to be preferable even to dissociation, due to its relatively
low energy barrier height. Equilibrium geometries, energies, and vibrational frequencies for
eight low spin N11 isomers were calculated [100] at the HF/6-31G*, DFT B3PW91/6-31G*, DFT
B3LYP/6-31G*, and MP2/6-31G* levels of the theory. According to this work, the pentazole ring
remains the fundamental stable structural unit of the molecular structure of N11 polynitrogens.
In this case, the most stable N11 isomer in terms of energy is N11 (C2), which consists of two
aromatic pentazole rings connected to each other through a bridging nitrogen atom (Scheme 21).
However, the study of its decomposition reaction shows that this isomer has a low energy
barrier for its decomposition reaction (only 5.6 kcal/mol according to DFT B3LYP/6-31G*); so,
it seems that this structure is a kinetically unstable species with an open shell.
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Neutral tridecanitrogens N13 were detected only in [101], where a quantum chemical
study of nine low spin N13 isomers was carried out at the theoretical levels UHF/6-31G*,
UB3LYP/6-31G*, and UMP2/6-311G*. The most stable isomer was the N13 (C2v), which
contains two separate pentazole rings connected by three nitrogen atoms (Scheme 23). The
structures containing pentazole rings were generally more stable than the zigzag acyclic
structure and those containing four and six membered rings. The authors of the given
work [101] believe that the pentazole ring is a fundamentally stable structural unit applica-
ble not only to polynitrogens with even numbers of atoms but also to polynitrogens with
large odd numbers of nitrogen atoms. However, in our opinion, there are still insufficient
grounds for such a conclusion given the very poor knowledge of tridecanitrogens.
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Information on neutral pentadecanitrogens N15 is also contained in only one work [102],
in which, in addition to N15, polynitrogens with smaller odd numbers of nitrogen atoms,
N11 and N13, were also considered. The possible structures of N15 were investigated by the
MP2 and DFT B3LYP/6-31G* methods. According to this data, for polynitrogens Nk with
even k = 8–14, as well as for polynitrogens with odd k = 11–15, all the thermodynamically
most stable isomers are based on pentazole units; moreover, for each of them, the more
conjugated the five membered rings, the more stable the isomer (Scheme 24) and the more
side chains that link such cycles, the less stable it is. On the whole, polynitrogens with an
even number of nitrogen atoms, as expected, are more energetically stable than polynitro-
gens molecules containing an odd number of nitrogen atoms [102]. Concluding Section 4,
we note that no sufficiently reliable experimental data confirming the results of the above
mentioned theoretical works [38,59,78,91–102] have been obtained so far.
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5. Oligomeric/Polymeric Nitrogen Compounds

This variety in polynitrogens was the subject of publications [103–118]. For example,
in [103], a polymeric form of nitrogen was reported, where all atoms are linked by single
covalent bonds, similar to carbon atoms in a diamond; this compound was synthesized
directly from molecular dinitrogen at temperatures above 2000 K and pressures above
110 GPa using a laser heated diamond cell. It was identified by X-ray spectroscopy and
the Raman scattering of polymer nitrogen to have a theoretically predicted cubic gauche
structure (cg-N). In article [104], another synthesis variant of this allotrope was proposed
by using a mixture of nitrogen and argon flowing through bulk sodium azide or sodium
azide dispersed on multiwalled carbon nanotubes 100 nm long, when the reaction system
is exposed to radiofrequency plasma at temperatures close to ambient temperature. This
allotropic modification of nitrogen is a metastable compound; it has an energy capacity
more than five times higher than the capacity of the most energy intensive materials. The
given modification of polymer nitrogen was also discovered in [105,106], where its elec-
tronic structure was calculated using the density functional theory; exchange correlation
functionals, including the local spin density approximation; the generalized gradient ap-
proximation (GGA); the ab initio meta-GGA; and the hybrid functional shielded exchange.
It has been shown that cubic polymeric nitrogen has an even higher energy storage capacity
than reported in [103]. The possibility of the existence of other forms of polymeric nitro-
gen containing only single N–N bonds was also noted: layered, existing in the pressure
range P = 188–320 GPa [107,108]; helical tunnelling, existing at P > 320 GPa [107]; sheet
zigzag [109,110]; trigonal [111]; and even metal [112–114] (although it is very difficult to
assume that nitrogen atoms, due to their high electronegativity, can participate in the
formation of metal bonds!). The existence of polymeric nitrogen, having a “parquet” struc-
ture and composed of N6 hexagons, and resembling the structure of black phosphorus or
graphite [115], and also in the form of nanotubes [116], is possible. Finally, in the most
recent work [117], a new class of polymeric nitrogen molecules was investigated, consisting
of several intergrown nanotubes of nanometer length—astralenes, which, depending on
the shape of the central part (core), can be divided into cubic, hexagonal, and tetrahe-
dral. Using the DFT method, it was shown that astralenes can be used to form covalent
crystals—new allotropic forms of nitrogen with Pm3m, P6/m, and Fd3m symmetry and
are semiconductors with an energy gap in the range from 0.32 eV to 2.04 eV. A critical
review of the synthesis and prediction perspectives for the existence of various polynuclear
nitrogen compounds was presented in the article [118].

6. Possibilities of Practical Application of Polynitrogens

In many of the works mentioned above, [22,23,64,95,97,103], and, also, in [119–128],
the question of the possibility of using polynitrogens in various aspects was analyzed,
mainly as potential “green” explosives, because the process of their decomposition is
associated with a significant increase in entropy and is accompanied by the formation of
only molecular nitrogen (dianitrogen) N2; in this case, polynitrogens with both an even
(as, for example, in [64]) and an odd (as, for example, in [95]) number of nitrogen atoms
in the molecular structure were considered in this capacity. It is interesting to note the
article [124], which systematizes experimental data on the physicochemical parameters
of 300 high energy compounds from different classes (enthalpies of formation, densities
of molecular crystals, detonation parameters, and sensitivity to various types of impacts)
and develops calculation schemes for evaluating these characteristics. For polynitrogenous
compounds, the high efficiency of polynitrogens such as octaazacubane, octaazatetraene,
etc., has been predicted. The energetic properties of both individual compounds and
compositions containing these substances, together with others, were evaluated in order to
assess the effectiveness of their use as components of solid composite fuels. In addition
to this possibility, attention was drawn to one more aspect of their use, namely, to the
reactions of oxidation with molecular oxygen, i.e., as combustibles [22,23]. This possibility
was demonstrated on the example of the polynitrogens N4 (Td), N4 (D2h), N6 (C2v) and N8
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(Oh); on the basis of the thermodynamic parameters of the reactions of their oxidation to
nitrogen monoxide NO (∆rH0, rS0 и ∆rG0) calculated by the G4 method. It was noted that
all these reactions are exothermic and irreversible, which sharply distinguishes them from
a similar reaction to the interaction of dinitrogen N2 with oxygen, which is accompanied by
the formation of NO (which is known to be endothermic and can only be realized at very
high temperatures). The article [104] also focused on the possibility of using polynitrogens
as catalysts for various chemical reactions.

The applications of polynitrogens are very important, but even more important is the
possible use of polynitrogens in rocket technology, where such materials with a high enthalpy
of formation are required (which is very important in solving problems aimed at increasing
the speed and flight range of a rocket), and the high energy density of the initial substance (to
increase the share of the payload while maintaining the total mass of the rocket unchanged).
In the 21st century, these materials received a special term “high energy density material”
(HEDM), which has become widely used in the world literature to designate this type of energy
materials [123]. According to theoretical (as well as still few experimental) data, polynitro-
gens are characterized by uniquely high enthalpies of formation per unit mass (from 2000 to
5000 kcal/kg) and a fairly high density in the condensed phase (2–4 g/cm3) [120]. For this
reason, the use of polynitrogens will make it possible in the future to create a new generation
of solid rocket fuels that can successfully compete with liquid rocket fuels in terms of energy
efficiency. However, even more importantly, their use changes the principle according to which
a working fluid is formed in a rocket engine—the so called high enthalpy gas. In the classical
scheme of its formation adopted in modern rocket technology as a result of the oxidation of
rocket fuel (hydrocarbons, 1,1-dimethylhydrazine (“heptyl”), etc.) with oxygen or another
oxidizing agent, the thermal energy released as a result of the reaction is spent on heating the
reaction products. Using polynitrogens, their decomposition itself leads to the formation of
hot molecular dinitrogen, which creates thrust when it exits the nozzle. In addition, probably,
the breakdown of polynitrogens will provide higher values of specific impulse (Isp) than ox-
idation reactions [120]. Another advantage of using polynitrogens as rocket fuel is that their
decomposition produces dinitrogen, which does not lead to environment pollution (whereas
such pollution always occurs in the case of traditional rocket fuels). Review articles related to
the use of polynitrogens as HEDM have also been published [122,123,126–128].

7. Conclusions

Thus, based on the available calculated data, it can be argued that the existence of
polynitrogens with a very significant (more than 100) number of nitrogen atoms in the
molecular structure is quite possible. With an increase in the number of atoms in polynitro-
gen molecules, the complexity of calculations and the time spent on their implementation
increase significantly; therefore, virtually all available data on the structural and energy
characteristics of polynitrogens Nk with k > 20 were obtained either by the DFT method
or by methods of a lower level. Nevertheless, a comparison of the quantum chemical
calculations at various levels (HF, DFT, MP, CCSD etc.) for a wide variety of polynitrogens
presented in the cited publications allows us to assert that, in a qualitative sense, these
results, as a rule, are in good agreement with each other. Due to the predictions of all these
methods, among the set of Nk isomers with the same value of k (regardless of whether k is
even or odd), the isomer with the lowest level of symmetry almost always turns out to be
the most stable from the energy point of view. However, this seems to be quite understand-
able if we take into account the fact that, in nature, the order is a less probable category
than disorder, because of an increase in the degree of order in any physicochemical system
in general and molecules in particular (which is accompanied by a decrease in entropy)
certain energy costs are required and occur only if the formation of new, stronger chemical
bonds occurs. As for quantitative data (the parameters of molecular structures, distribution
of electron density, binding energies between nitrogen atoms, total energies of molecules,
their dissociation energies, standard thermodynamic parameters of formation, etc.), we can
only talk about a fairly good agreement between the parameters of molecular structures
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(bond lengths, bond and dihedral angles) calculated by various methods. For the other
indicators listed above, discrepancies between the corresponding digital data obtained by
various methods, are sometimes quite significant. However, such a difference should not
be embarrassing, because, at the current state of mathematical physics and the theory of
molecular structure, it is still impossible to consider all possible types of interatomic and
intermolecular interactions that take place even in the simplest molecules. In addition,
therefore, in each of the used quantum chemical methods, there only some of these inter-
actions can be taken into account. The situation is further complicated by the absence of
any experimental data of the polynitrogens’ physicochemistry, that, unfortunately, does
not allow today the verification of the reliability of the calculated data available in the
literature for these unique compounds. As more and more powerful computer systems and
technologies become available, and theoretical possibilities become more and more perfect,
there is every reason to believe that the reliability of the calculated data will also increase
and, eventually, they will be fully consistent with the corresponding experimental data.

Summing up, a paradoxical situation has arisen on the issue of polynitrogens: there
is so much calculated data on polynitrogens at the current time that it is very difficult to
combine them into any single story, while there is little reliable experimental data. Today,
there are a lot of abstracts in this specific area of chemical science, but very little concrete
experimental data for concrete polynitogenes. In our opinion, there is all reason to hope
that the difference between the number of theoretical and experimental works on polyni-
trogens will steadily decrease over time, and, in the future, many of the chemical nitrogen
compounds mentioned above will be obtained and used in anthropogenic activities.
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