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Unraveling the complexities 
of urban fluvial flood hydraulics 
through AI
Md Abdullah Al Mehedi1*, Virginia Smith1, Hossein Hosseiny2 & Xun Jiao3

As urbanization increases across the globe, urban flooding is an ever-pressing concern. Urban 
fluvial systems are highly complex, depending on a myriad of interacting variables. Numerous 
hydraulic models are available for analyzing urban flooding; however, meeting the demand of high 
spatial extension and finer discretization and solving the physics-based numerical equations are 
computationally expensive. Computational efforts increase drastically with an increase in model 
dimension and resolution, preventing current solutions from fully realizing the data revolution. In 
this research, we demonstrate the effectiveness of artificial intelligence (AI), in particular, machine 
learning (ML) methods including the emerging deep learning (DL) to quantify urban flooding 
considering the lower part of Darby Creek, PA, USA. Training datasets comprise multiple geographic 
and urban hydraulic features (e.g., coordinates, elevation, water depth, flooded locations, discharge, 
average slope, and the impervious area within the contributing region, downstream distance from 
stormwater outfalls and dams). ML Classifiers such as logistic regression (LR), decision tree (DT), 
support vector machine (SVM), and K-nearest neighbors (KNN) are used to identify the flooded 
locations. A Deep neural network (DNN)-based regression model is used to quantify the water depth. 
The values of the evaluation matrices indicate satisfactory performance both for the classifiers and 
DNN model (F-1 scores- 0.975, 0.991, 0.892, and 0.855 for binary classifiers; root mean squared error- 
0.027 for DNN regression). In addition, the blocked K-folds Cross Validation (CV) of ML classifiers in 
detecting flooded locations showed satisfactory performance with the average accuracy of 0.899, 
which validates the models to generalize to the unseen area. This approach is a significant step 
towards resolving the complexities of urban fluvial flooding with a large multi-dimensional dataset in 
a highly computationally efficient manner.

Flooding is globally one of the world’s most destructive types of disasters. In the coming years, floods are expected 
to be more frequent and larger globally1–3. Coupled with the effects of rapid urban growth and climate change, 
the frequency of large fluvial flooding events is expected to increase, elevating the destructive impact of floods4–9. 
To untangle this challenge, engineers, planners, and emergency managers must be able to accurately anticipate 
flood extent and depth10. Alterations to the depth and time of occurrence of precipitation as a result of climate 
change are forecasted to reshape the flooding scenarios encountered in many areas in the world shifting flood 
risk11. These risks are also driven in part by local stormwater management and fluvial infrastructure, making 
predicting flood events a particularly arduous and critical challenge in the built environments12,13. With the 
increase in urbanization, more impervious areas are generated resulting in less infiltration and greater flood 
peaks and runoff14. Hydrological response time is largely reduced in an urban setting increasing fluvial flood risk 
where the amount of impervious surface area is high15. As a result, assessing flood risk in urban areas involves 
a complex interaction between natural and engineered processes, some of which operate at very local scales, 
requiring fine-resolution data16. Numerous investigations have sought to define the pattern of hydrological regime 
transformation resulting from urban development17. Alteration in urban river flow regimes is ascribed to the 
construction of impervious areas which facilitate rapid surface runoff from rainfall, the drainage of surface runoff 
through sewers to the river, and fluvial infrastructure18–20. The proportion of urban land cover or the proportion 
of impervious cover within a catchment area provides predictor of changes in hydrograph characteristics, that 
lacks precision (e.g., the widely used Curve Number method)21,22. Hydraulic models provide more precise results, 
demand expensive computational results and data.
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The complex and ever-changing urban landscape makes urban fluvial flood prediction and modeling com-
putationally expensive and often infeasible due to high-resolution data requirements. Numerical analysis of 
hydraulic equations across spatio-temporal boundaries can be increasingly expensive depending on the resolu-
tion needed. In addition to the complex non-linear relationship among the features of urban fluvial flooding, 
estimating hydraulic parameters using physics-based equations is computationally expensive, as this process 
requires a large amount of memory allocation23. Due to the computational expense, the range of input data is 
often limited, resulting in models at course resolutions, exclusive to different types of hydraulic conditions and 
potentially relevant parameters. Moreover, the uncertainty of the parameters, defective model calibration and 
errors in the measurements can serve as an accelerator to the computational expense. Answering the challenge 
of urban fluvial flood necessitates models that can efficiently and effectively represent flood extent with available 
data, in a quick and robust manner.

Data-driven prediction with Machine Learning (ML) techniques in the field of artificial intelligence (AI) 
provides a potential solution. ML is rapidly growing in popularity across many fields. ML methods, including 
the emerging deep learning (DL) methods, have been successfully applied to the field of water resources for 
stage-discharge (Q/h) relationships24, rainfall-runoff25, sediment transport26,27, flood prediction28, water qual-
ity analysis29. AI models are specifically convenient when the uncertainty in model parameters, complexities 
in the physics-based equations and computational efforts are significantly high30, such as in urban hydrology. 
Several previous studies have used ML models for urban pluvial flood detection31–33. For example, a coupled 
physic-based model and random forest algorithm has been used to detect flood-prone areas in an urban coastal 
community34–37. The deep convolutional neural network was used to forecast long-term water levels using rainfall 
intensity with slope and surface curvature38. However, a convolutional network takes a long time and requires 
tedious hyperparameter optimization for the entire stochastic process, particularly when using large datasets39,40. 
Neural network models are highly sensitive to the initial randomization of weights, number of layers, number of 
neurons, activation functions and algorithm to choose (e.g., gradients descent)41–43. In the traditional ML and 
DL methods, a major challenge lies in developing models that can generalize to unseen case studies and sites44. 
This investigation overcomes this obstacle by leveraging a two-stage approach with a set of ML classifiers and a 
DNN-based regression model used to predict the flooded extends and magnitudes with a comprehensive set of 
urban hydraulic features. In several previous studies, data points were randomly divided into a training/testing set 
for the ML models with satisfactory performance45–48. However, due to the spatial autocorrelation effect, random 
sampling may not be adequate to validate the models to generalize to perform in the unseen area. Therefore, 
in this study, the models are tested considering the entire study domain as well as cross-validated spatially to 
minimize the spatial autocorrelation effect using the blocked K-folds Cross-Validation (CV) technique.

To predict the fluvial flooded locations, a set of classifiers e.g., Logistic Regression (LR), Support Vector 
Machine (SVM), K-nearest Neighbor (KNN) and Decision Tree (DT) are used. Binary classification generates 
the output in the form of binary data i.e., 0 s and 1 s, which represent whether a location is flooded or not in the 
study area. LR model has shown satisfactory performance in the previous study in classifying flooded locations 
using the matrix of the probability of detection on average for flood events49,50. The DT algorithm showed good 
performance with Minimum Absolute Error (MAE) and classification accuracy in IoT (Internet of Things) based 
flood detection and notification system51,52. The SVM attributes the non-linear transformation of geographic 
and hydraulic features in higher dimensional feature space53,54. Highly satisfactory performance was achieved 
from the SVM algorithm in detecting the area prone to flood risk in the river basin of Buzau in Roman37. Super-
vised regression with Deep Neural Network (DNN) is performed to predict the water depth within the model 
domain. Real-valued regression with an artificial neural network provides a reliable means of predicting the 
flooding depth with a good performance range55–57. In this investigation, a multilayer perceptron-based feed-
forward neural network with a back propagation algorithm is used to perform the regression task i.e., predict 
water depth in the computational space. The DNN regression model is specifically suitable for predicting the 
flooded depth with representative geographic and hydraulic features58. To increase the efficiency of the entire 
process of flood prediction, an efficient ML workflow plays a vital role by minimizing human involvement and 
increasing automation through coding59,60. Several previous research works predicted flooding using various 
features e.g., elevation, slope, aspect, curvatures, topographic wetness index, and hourly rainfall61–64. However, no 
investigation was performed to incorporate features that are closely related to the flooding in the urban environ-
ment e.g., fluvial infrastructure, impervious location within the contributing area. Many previous studies have 
shown their importance in runoff calculations. Urban streams and rivers are highly complex and particularly 
sensitive to urban land use and land cover areas65–69, stormwater management65,70, and the presence of fluvial 
infrastructure71,72 in addition to the geology and climate of the watershed. To represent the urban environment, 
we incorporated the effect of the impervious portion within the contributing area in the models. As a part of 
urban hydraulics, we introduced the downstream distance of the stormwater outfall and dams within the study 
area. All the variables under the topography, land covers and fluvial infrastructures linked to the urban flood 
dynamics were chosen based on an extensive literature search to accurately represent the urban hydrologic 
environment, without double counting variables73–76. This study delineates a novel data-driven strategy toward 
unraveling the complexities of the urban flooding environments using multiple AI approaches i.e., a set of binary 
classifiers to detect flooded locations and DNN regression to predict water depth with blocked K-folds Cross-
Validation (CV). The approach incorporates the characteristics of the urban area by introducing urban hydraulic 
drivers (impervious locations within the contributing area) in training the models for prediction. The outcomes 
of this research have significant potential to advance the flood preparedness mechanism for urban areas vulner-
able to riverine flash floods where devastation due to rapid accumulation of flood water is significantly high. The 
quick and flexible framework presented here is transferable and can be utilized to prepare large-scale flood maps 
in an inexpensive and efficient way in the cloud-computing platform across urban areas. The approach outlined 
in this study has the potential to efficiently predict urban fluvial flooding for a range of scenarios.
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Data and methods
Study area.  The study area considered in this study is the lower part of Darby Creek (DC), along the south-
west border of Philadelphia, PA, USA, shown in Fig. 1 77. The alluvial channel of the Creek flows through a 
floodplain with fully urbanized settings which is subject to frequent flooding. The population residing near 
the creek is subject to flooding significantly78. The portion of the river considered in this study flows from the 
Mt. Moriah Cemetery (upstream) to the confluence with the Delaware River (downstream) and carries alluvial 
deposits through an urbanized setting79, approximately 15 river kilometers (rkm). Darby Creek plays an impor-
tant role in the adjacent environment and ecology; it is also a flood-prone area48. It also offers a unique environ-
ment for various plant and animal species80.

Preparing hydraulic dataset in iRIC.  Hydraulic models are simulated in the iRIC platform to generate 
dataset for ML classifiers and DNN regression model. The iRIC is a numerical tool capable of modelling rainfall 
runoff generation, flooding, and sediment dynamics. It receives terrain and hydraulic data (e.g., water surface 
elevation, roughness) for the model calibration purpose. FaSTMECH (Flow and Sediment Transport with Mor-
phological Evolution of Channel) is used as a solver in this study to model flood extent and depth82. Notably, 
this was a fluvial hydraulics model, and did not include a rainfall runoff simulation. Instead, model calibra-
tion used elevation data from the floodplain and bathymetry of the channel with water surface elevation at the 
upstream of USGS Cobb Creek gage at Mt. Moriah Cemetery (USGS gage 01475548) for the flooding event of 
30th August of 2009 is utilized to calibrate the hydraulic model77. The terrain data is discretized to a size of 5 m2 
for every computational cell. As the higher discharges from the upstream side of the river are responsible for the 
morphological changes, higher discharge values from the highest flood event in Darby Creek are chosen to cre-
ate scenarios for AI models. Multiple scenarios are created using various constant discharge values upstream of 
DC within a certain range. The discharge data from observed flood events in the time span of 14th July to 16th 
September is obtained from USGS peak stream flow data (USGS gage 01475548)83. A set of discharge values is 
chosen to execute ML/DL models used in this study. The discharge values are 37, 42, 45, 50, 52, 61, 83, 95, 99 and 
164 m3 per second (cms). The outcomes generated by the iRIC are water surface elevation and flooding depth. A 
set of urban hydraulic features i.e., the quantity of the impervious areas within the contributing area, and down-
stream distance from the hydraulic structures e.g., stormwater outfall and dam are introduced in this study to 
integrate the effect of urban attributes with the flooding extent and magnitude. Furthermore, the average slope 
of the contributing area is derived through GIS analysis and incorporated to represent the flow accumulation to 
a specific location.

AI models.  The quantification of the flood extent and depth by the ML framework is accomplished in three 
steps. Firstly, exploratory analysis and feature engineering are performed to study and transform the entire 
dataset prepared by multiple geographic and hydraulic features that impact the hydrograph, listed in Table 1. 
After analyzing the dataset and conducting necessary transformation on the features, classifiers, such as Logistic 
regression (LR), K-nearest neighbors (KNN), decision trees (DT), support vector machines (SVM), are trained 
using the data prepared in the first step to locate or classify the flooded locations for each scenario of various 
upstream discharges. Third, a DNN is used to prepare a regression model to predict the depth of water within 
the computational domain. ML classifiers and DNN models are evaluated using several error matrices, e.g., 
F1-score, Jaccard similarity score and Root Mean Square Error (RMSE). The algorithms are tuned and optimized 
by altering the hyperparameters to reduce the error and obtain satisfactory performance. The ML workflow of 
flood prediction is described in Fig. 2. The entire process can be divided into groups of tasks, i.e., data collection, 
exploratory data analysis, feature engineering, model training, model evaluation, model deployment, and model 

Figure 1.   The figure above shows the global (a) and local (b) terrain of the study area. Maps are processed and 
generated in the ArcGIS Pro platform81.
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improvement. Details are provided in the following sections. The steps are further categorized into distinct 
groups namely transformer, estimator, and evaluator.

Feature engineering.  Within the first group of activities (transformer step), data collection, preprocess-
ing, Exploratory Data Analysis (EDA) and feature engineering are performed (Fig. 2). EDA involves observing 
descriptive statistics and initial investigation of the variables (Table 1). Scikit-learn is used as the ML library for 
feature engineering in Python84. It offers several classifications, regression and clustering algorithms including 
LR, KNN, DT and SVM which are used as binary classifiers for identifying flooding locations in this study. 
Modules needed for ML and Deep Learning algorithms such as optimization, linear algebra, integration, inter-
polation, and special functions can be accessed through SciPy41. Independent variables for Binary Classifiers 
and DNN regression model are listed in the Table 1. Flooded location is used as the target variable denoted by 
y1 in case binary classifiers and water depth, y2 as a target variable in case of DNN model. Spatial information, 
coordinates and elevation values are obtained from the original Digital Elevation Model (DEM) of the study area 
using ArcGIS Pro. Water Depth and Discharge values are extracted through simulating multiple hydraulic mod-
els in the iRIC platform. Average Slope and number of impervious cells of the contributing area of every point of 
the DEM are urban hydraulic features, which have not been introduced before as a training feature for AI mod-
els. ArcPy, a Python site package that offers an effective and efficient way to perform geographic data analysis, 
data conversion, data management, and map automation using Python was utilized to generate the contributing 

Table 1.   Full descriptions of the predictors and target variables used to train/test the ML classifiers and DNN 
regression model.

Features Full descriptions

x1 x-coordinates of every location in the model domain

x2 y-coordinates of the same location

x3 Elevation in meters of same location

x4/y2 Depth of water in meters

x5/y1 Flooded locations

x6 Average slope of the contributing area of every point in percentage

x7 Number of impervious locations of the contributing area

x8 Downstream distance from the stormwater outfalls

x9 Downstream distance from the dams

x10 Upstream river discharge in m3/s

Figure 2.   Flood Prediction workflow using machine learning classifiers and neural network regression 
techniques illustrates how the tasks are linked from the data preprocessing steps to the model deployment and 
maintenance stage.
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areas of every cell upstream in the model domain85. It can be compared with the upstream area contributing to 
those cells. No modification was needed to alter the data type, as it is generated from iRIC-FaSTMECH simply 
as binary data type. The main data frame is constructed through concatenating datasets derived from different 
upstream discharges (Q) scenarios.

Feature Engineering tasks used in this study to prepare the datasets for the ML/DL algorithms include numeri-
cal imputation, outlier detection with standard deviation and dropping, splitting training/testing datasets, and 
scaling with normalization. The proportion of the train-test split is assumed to be 80/20 for both ML classifiers 
and DNN regression. Dataset is divided into train/test split in a non-reshuffle manner where the datapoints are 
selected for training purpose without random sampling from original dataset to make the test dataset independ-
ent from the train dataset. In Eq. 1 how the normalization of the features performed can be observed. X denotes 
the feature vector including all the features used to train/test the models. Preparation of dataset for training 
the DNN is identical to the preparation of the training dataset for ML Classifiers. Eighty percent (80%) of the 
data is used to train, and the rest of the data is used to test both the ML classifiers and DNN regression model.

Identifying flooded locations with ML classifiers.  Logistic regression (LR).  In the Activity 4 in Fig. 2, 
ML classifiers and DNN model are trained using the independent variables (Table 1) to predict the flooded 
locations and depth. Linear regression searches a function that builds relationships to a continuous dependent 
feature/variable, y, to some outcome/predictors (independent features x1, x2, etc.). LR is a variation of linear 
regression, utilized when the existing dependent variable/outcome, y1, is categorical. LG uses log loss as the 
loss/objective function in the classification algorithm. It generates a formula that forecasts the probability of 
the category as a function of the independent features. Logistic regression fits a special s-shaped curve (sigmoid 
function) by taking the linear regression and converting the numeric into a probability with the function, which 
is known as the sigmoid function σ86.

The probability of a category 1 (a location being flooded) = (Y = 1|X) = σ
(
θTX

)
= e(θ

TX)

1+e(θ
TX)

 . Therefore, LR 
passes the features (e.g., x1 = elevation, x2 = slope of the contributing area, x3 = water depth, etc.)) through the 
logistic/sigmoid functions; however, considers the outcome as a probability. The goal of LR algorithm is to 
identify the best parameters θ, for ℎ(x) = σ(θTX), in such a way that the algorithm forecasts a cell is being flooded 
or not in the model domain.

Decision tree (DT).  Decision tree learning is one of the predictive modelling approaches used in statistics, data 
mining and machine learning. It uses a decision tree (as a predictive model) to go from observations about an 
item e.g., features mentioned in the Table 1 (represented in the branches) to conclusions about the item’s target 
value, e.g., binary decision on a location being flooded or not (represented in the leaves)87. From Scikit-Learn, 
Decision Tree Classifier is used to perform the classification task on flooding location. Gini Impurity is used as 
a loss function of the DT classifier44.

Support vector machine (SVM).  SVM works by mapping data to a high-dimensional feature space so that data 
points can be categorized, even when the data are not otherwise linearly separable. A separator between the cat-
egories is found, then the data is transformed in such a way that the separator could be drawn as a hyperplane. 
Following this, characteristics of new data can be used to predict the group to which a new record should belong. 
Like the LG classifier, SVM uses the logistic loss function with a piecewise linearization88.

K‑Nearest Neighbors (KNN).  The principle of KNN is based on the concept that the k closest objects or similar 
cases in the p-dimensional space (the number of dimensions is identical to the number of the features men-
tioned in the Table 1) determine the class of an unknown variable i.e., flooded locations. KNN aims to partition n 
observations (number of rows in the flood prediction data frame) into k clusters tagging each observation (rows 
in the data frame) to a specific cluster with the cluster centers or cluster centroid or the nearest mean serving as 
a prototype of the cluster. The entire data space is partitioned into Voronoi cells in this approach. As the target 
variable (flood locations) is predicted by local interpolation of the target associated with the nearest neighbors 
in the training dataset with the independent variables, no specific loss function is used in the KNN classifier46. 
When features are obtained in different physical units with vastly varying scale, normalizing the training features 
and outcomes can improve the accuracy of the KNN algorithm as it depends on distance of the data points for 
the classification47.

Predicting flood depth with DNN model.  After predicting the flooded locations, DNN regression 
model is used to predict the water depth (y2). To do this, a full set of multiple hydraulic variables/features men-
tioned in Table 1 and flooded locations from ML models are used to train/test the DNN model.. Open-source 
library TensorFlow is used in this study work to construct DNN model as it has an excellent particular focus on 
the inference and training of DNN48. Training a model with TensorFlow typically starts by defining the model 
architecture.

(1)Xnorm =
X − Xmin

Xmax − Xmin

(2)hθ (x) = σ

(
θTX

)
=

e(θ0+θ1x1+θ2x2+...)

1+ e(θ0+θ1x1+θ2x2+...)
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Input layer contains features denoted by xi in general, which is similar to the binary classification problem. The 
weights imposed on different features, aggregation of multiple features, further weights before the output layer 
and the activation functions are denoted with W, z, and a respectively. Finally, target variables (water depth) are 
generated from output layers. In Fig. 3 (a), introducing neural networks improves the prediction performance 
significantly through the introduction of non-linearity among the input and target features. The activation 
function used to introduce the non-linearity to the model is ReLU (rectified linear unit) function shown in 
Fig. 3 (b). This function returns the standard ReLU activation: maximum (X, 0), the element-wise maximum of 
input tensor (X) and 0 with default values. The total number of layers used to perform DNN is four including a 
normalized input feature layer, two hidden layers and a linear single-output layer. The total number of weights 
for each trainable neuron is 4609 where 11 neurons are found to be non-trainable.

Urban hydraulic feature importance is studied by analyzing the sensitivity of the change in feature values 
over the target variable, water depth and Permutation Feature Importance (PFI) technique in the computational 
domain89,90 (Fig. 4). In PFI, the impact of shuffling the values of a feature, e.g., impervious locations (xm) within 
the contributing area over the target variable ( ̂yi1 ) is quantified to observe the response in output variables due 
to the change in input variables. The score of the error matrix (RMSE) derived from the observed and predicted 

Figure 3.   DNN architecture for flood prediction (a). A perceptron with summation of weights, features, and 
biases with the activation function (b). Input layers consist of all the input features and their corresponding 
weights. Aggregation of the features, weights and biases constitutes output layer.
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values of water depth as a result of the shuffle in the independent variable provides the score of feature impor-
tance. The values of impervious area, average slope of the contributing, downstream distance (DD) from the 
Stormwater Outfall (SO) and Dams (DO) are varied (5%, 10% and 20%) to observe the impact on the target 
variable in the DNN regression Model. The RMSE values are obtained from the difference between the series of 
the target variable, water depth after running the DNN model with the changed features and the series before 
running the model. In the PFI technique, DNN model is run with the values of a specific feature, e.g., impervi-
ous areas of the contributing area permuted/shuffled keeping the other features constant and the change in the 
RMSE values are recorded41. Only the output from DNN model i.e., water depth is used as a target variable in 
estimating the feature importance of other input variables as the output from ML classifiers are already used as 
an input variable in the DNN model.

Model evaluation for the study area.  In the activity 5, model evaluation in Fig. 2, ML classifiers and 
DNN model are evaluated for the entire study area using multiple error matrices. Several conventional statistical 
measures are available to evaluate the performance of the ML classifiers. Mean Absolute Error (MAE), F1-score, 
True Positive (TP), False Negative (FN), Root Mean Square Error (RMSE) Jaccard similarity score, log-loss are 
among the popular choices and provide evaluation of the models in quantitative terms91. In this study, F1-score 
and Jaccard similarity score are used to evaluate the ML classifiers. The F1-score is used to evaluate binary clas-
sification algorithms, e.g., logistic regression, which generates binary outputs of whether a location is flooded 
or not. The harmonic mean of the model’s precision and recall is calculated to determine the F1-score92. The 
performance of the ML classifiers can also be determined from the confusion matrix, shown in Fig. 8. A confu-
sion matrix is a table that is used to define the performance of a classification algorithm. A confusion matrix 
visualizes and summarizes the performance of a classification algorithm. It is used to visualize the performance 
of a classifier, typically a supervised classification algorithm93. Two parameters needed to estimate the F1-score 
are precision and recall. Precision represents the fraction of the number of instances which the model correctly 
predicted (Tp) and the sum of all instances that are incorrectly predicted as true (Fp). Recall, sometimes referred 
to as sensitivity, is the fraction of the number of instances which the model correctly predicted (Tp) and the sum 
of all instances that are incorrectly predicted as false (Fn)94.

The Jaccard coefficient quantifies similarity between finite sample sets and is determined as the size of the 
intersection divided by the value of the union of the sample sets. Given forecasted values of fluvial flooding 
occurrence as ( ̂y  ) and actual values of flooding occurrence as y, the Jaccard index can be defined as

(3)2 ∗
precision ∗ recall

precision+ recall
=

Tp

Tp + 0.5
(
Fp + Fn

)

(4)j
(
y, ŷ

)
=

y ∩ ŷ

y ∪ ŷ

Figure 4.   Mechanism of Permutation Feature Importance (PFI).
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Root Mean Squared Error (RMSE) value is used for the DNN regression model evaluation. Datapoints are 
selected randomly from the entire study area to prepare the train/test sets. The train/test split used in this study 
is 80/20 providing 80% of the total datapoints for train set and 20% for test.

Blocked K‑folds cross‑validation.  Blocked (spatial) K-folds Cross-Validation (CV) is performed for the 
ML classifiers in classifying the flooded locations95,96. The entire study domain is clustered into 10 folds (zones) 
as spatial autocorrelation among the nearby cells may lead to bias and wrong model evaluation if the models are 
evaluated considering the entire study area only97,98. In the random sampling for train/test split, there is a pos-
sibility of taking the cells out in the study domain for the training set which are neighbors to the cells taken out 
for the test set. Consequently, those features in the train and test set are no longer independent, invalidating the 
evaluation of the ML classifiers. Therefore, the entire study domain is grouped into 10 folds to prepare individual 
train/test sets to compute the error matrix. Finally, the average of all the values of the error matrix is computed 
to show the model performance. An illustration of the entire process of the blocked K-folds CV is presented in 
Fig. 5. Ten different splits are introduced to isolate the test set with an independent fold. In each split the rest of 
the nine folds are used to train the model.

Results and discussion
Scenarios from hydraulic model.  The relationship with the water depth in the computational space and 
river discharge is highly non-linear. High variation in the geometry of the channel and roughness of both chan-
nel and floodplain against the flow can enhance the non-linearity in the system. In this section, water depth vari-
ations with their corresponding locations are presented with respect to multiple scenarios with several upstream 
discharge values, including 37, 42, 45, 50, 52, 61, 83, 95, 99 and 164 m3 per second (cms). The validated hydraulic 
model from iRIC is used to simulate and create scenarios having the water surface elevation and depth, locations, 
and binary output regarding a certain location is flooded or not as results. In Fig. 6, two plots of water depth 
with the locations for the scenarios with discharges 52 and 99 cms are shown, which are obtained from hydraulic 
simulation in iRIC.

Figure 5.   Blocked K-folds CV with a set of ten tarin/test splits.

Figure 6.   Flooding extent and depth estimated by the FaSTMECH solver in the iRIC platform for the scenarios 
with discharge values (a) 52 and (b) 99 cms. These scenarios are used to train/test ML classifiers and DNN 
regression algorithm. Maps are processed and generated in the ArcGIS Pro platform81.
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Binary flood map.  The features used to train the ML classifiers (LR, DT, SVM and KNN) are X = [x1: 
x-coordinate, x2: y-coordinate, x3: ground elevation, x4: water depth, x6: average slope, x7: number of impervi-
ous locations, x8: downstream distance from SO, x9: downstream distance from dams, x10: upstream discharge]. 
Locations are classified using their corresponding water depth into two classes, whether a particular location is 
flooded or not (1/0). Figure 7 illustrates the distribution of flooded location for the scenarios with the upstream 
discharge values of 52 and 99 cms predicted with the DT algorithm. DT is the top performer among all other ML 
classifiers with the F1-socre and Jaccard Similarity matrix of 0.991 and 0.966.

All ML classifiers conveyed satisfactory performance in isolating flooded locations as the values of the error 
matrices in Table 2 are closer to unity. From Table 2, it can be observed that LR and DT outperform other classi-
fiers. The F1-score and Jaccard similarity matrix of the LR and DT are 0.975, 0.991 and 0.995, 0.986 respectively 
which are greater than the values of the SVM and KNN.

Performance of the binary classifiers can also be illustrated in the form of confusion matrix, comparing cor-
rectly predicted outcomes with the incorrectly predicted outcomes. In Fig. 8, the confusion matrices showed to 
illustrate the performance of the ML classifiers. The number of flooded cells predicted correctly by LR algorithm 
(a) numbers 8332 (96.8%), while the incorrectly predicted cell count is 324 which is significantly lower than the 
number of correctly predicted locations. Similarly, the number of correctly predicted not-flooded cells count 
54,747 (99%) where the number of incorrectly predicted not-flooded cells are 47. A total of 96.8% of predicted 
cells are correct, suggesting a highly accurate model performance.

The distribution of the individual model accuracy of the ML classifiers in the blocked K-folds CV is presented 
in Fig. 9 using boxplots. Median values of the model accuracies (F1-score) are presented with the red lines with 
the values 0.924 (LR), 0.975 (DT), 0.827 (SVM) and 0.871 (KNN). The range of the accuracy scores of the DT 
algorithm is 0.890–1.000 and is found to be the best ML classifier among all others. The median score of the DT 
model is 0.975 and is the highest score followed by the LG, KNN and SVM. Overall, LG, DT, KNN, and SVM 
showed satisfactory performance, as the range of the model accuracy of all classifiers is 0.582–1.000. As the 
dataset used for the predictive analysis is a tabular dataset with segmented values of the input variables, as well 
as a categorical-typed target variable (flooded/non-flooded) in this case, tree-based non-parametric algorithm 
i.e., DT algorithms, outperform other classifiers by capturing the interaction between different features. However, 
extensive hyperparameter tuning, intermediate feature creation and variation in the size of dataset might lead 
to alteration in model performance. However, extensive hyperparameter tuning, intermediate feature creation 
and variation in the size of dataset might lead to alteration in model performance.

Figure 7.   Flooded locations detected by the DT model for representative scenarios with upstream discharge 
values (a) 52 and (b) 99 cms. Prediction performance of the DT algorithm is the best among all other classifiers. 
Maps are processed and generated in the ArcGIS Pro platform81

.

Table 2.   Comparison of the performances of ML Classifiers.

Binary classifiers F1-score Jaccard similarity score

Logistic Regression (LR) 0.975 0.995

Decision Tree (DT) 0.991 0.966

Support Vector Machine (SVM) 0.892 0.901

K-Nearest Neighbors (KNN) 0.855 0.810
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Figure 8.   Confusion Matrix is used to observe the performance of ML classifiers i.e., logistic regression (a), 
decision tree (b), support vector machine (c) and K-nearest neighbors (d). Total number of predicted cells 
from ML classifiers are compared to the actual values from hydraulic model to extract the number of correctly 
predicted cells.

Figure 9.   Distribution of the model accuracy (F1-score) in K-folds CV for the ML classifiers.
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DNN regression to predict flood depth.  Artificial neural network with a single hidden layer is not 
capable of extracting the insights of the non-linearity and complexity of the flood prediction. Therefore, DNN 
with multiple hidden layers is incorporated in the prediction process of water depth. Adding more hidden lay-
ers increases the accuracy of prediction. However, inclusion of a large number of hidden layers requires high 
computational power and may result in overfitting the model99,100. From the model evaluation, it can be observed 
that the DNN described in this manuscript reflected the complexities of river flood prediction. To capture the 
high amount of non-linearity among the geographic and urban hydraulic features mentioned in this paper and 
establish linkage among them, it is a prerequisite to introduce multiple hidden layers. Hidden layers with the 
nodes built in them are used to train the model through an iterative optimization process. A total of three hid-
den layers are used with 64 neurons assigned to each. While the number of epochs found best with a minimum 
error is 110. 80 percent of the whole dataset was used for model training purposes, while 20 percent was used for 
testing the performance of the DNN. The activation function for hidden layers used is ReLU. Other popular acti-
vation functions such as hyperbolic tangent, sigmoidal or leaky ReLU functions are recommended to introduce 
the non-linearity in DNN. The model evaluation matrix, RMSE value of 0.027 illustrates the DNN regression 
algorithm conveyed satisfactory performance in resolving the high non-linearity in the flooding depth predic-
tion process.

Urban hydraulic features, i.e., average slope and the number of impervious cells of the contributing area, are 
introduced in this process to train the DNN regression model. It is clear from Fig. 10 that the flood depth is highly 
correlated and sensitive to the upstream discharge. With the increase in the upstream discharge, flood depth 
also increases. In the DNN regression model training phase, a non-linear correlation is built among these urban 
hydraulic features and flooding amount and extent. By introducing these urban hydraulic features, connections 
among the features and target variables i.e., number of impervious locations and water depth are established.

As the output (flooded location) from the ML classifiers is used in the DNN model, CV is not performed for 
the DNN model evaluation. However, difference mapping (error distribution) of the water depth simulated/pre-
dicted in the hydraulic and DNN model is presented in Fig. 11 in addition to the model evaluation for the entire 

Figure 10.   Predicted water depths for the representative scenarios covering the full range of upstream discharge 
values (a) 42, (b) 52, (c) 99 and (d) 164 cms outputs from the DNN regression model. Maps are processed and 
generated in the ArcGIS Pro platform81

.



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18738  | https://doi.org/10.1038/s41598-022-23214-9

www.nature.com/scientificreports/

study domain with the error matrix, RMSE. The difference maps in Fig. 11 illustrate the variation in the predicted 
water depth from DNN regression model and hydraulic model. The spatial distribution of the differences is not 
significant (in the scale of 0.01 m) for varying upstream discharge condition. Based on the error matrices and 
difference mapping, it can be concluded that the performance of the DNN regression model is excellent for the 
urban hydraulic features considered in this study. Orange locations showing high range of difference in errors 
(predicted and observed flood depth from iRIC) were found mostly in deep water region along the stream 
obtained from the hydraulic simulation. They are also surrounding the downstream potion of the stream with 
greater transverse extent with deeper water level. DNN model conveyed a few wider ranges of error in predicting 
comparatively deeper water along the stream. Imposing more weights on the high water level (extreme values) 
to reduce the error might lead to a better prediction performance by DNN in the deep-water zones.

Performance learning curve (PLC) of the ML models conveys the impact of the size of the training examples 
over the model performance. In the Fig. 12, PLC is shown with the train and cross-validation scores for the ML 
classifiers in flood detection and DNN model in quantifying flood magnitude. Among the ML classifiers, DT per-
formed best with a top F1-score of 0.994 in training and 0.959 in cross-validation. Model performance improve 
for all models with the increase in the training phase except LR shown in the Fig. 12 (a). Poor performance of 
the LR model may result from the overfitting, bias, algorithm incompetence in capturing the complexity in data 
and overall data quality issues. Future studies could focus on the point of diminishing returns for the size of 
training data in the context of physics-guided AI models in flood detection. Similar to the ML classifiers, DNN 
model shows improved performance (lower RMSE) with the increase in size of the trainset. The total number 
of datapoints (examples) to train the models is 253,800 which is 80% of the total datapoints of 317,250 with 
8 m of spatial resolution in the computational domain. In case of DNN model, the performance score, RMSE of 
0.027. Training sample size is dependent on the spatial resolution of the computational domain. Increasing the 
resolution may lead to increase in the size of the dataset (increasing the size of the trainset). However, that may 
end up with less computationally efficient estimation.

Urban hydraulic feature importance.  Permutation Feature Importance (PFI) and sensitivity analysis 
approach are used to determine the impact of the urban features on the DNN regression prediction output i.e., 
water depth based on the RMSE value as the indicator. PFI measures the variation in the prediction error of the 
model after the feature’s values are permuted71. This approach quantifies the change in the RMSE values as the 
prediction error after a series of feature values of interest is permuted/shuffled breaking the linkage between the 
feature (e.g., downstream distance from stormwater outfall) and target variable (e.g., water depth). This meas-
ure is an indicative of the dependency of the model outcome to a specific feature. A sensitivity analysis for the 
increase in the feature values (5%, 10% and 20%) is performed to quantify the response of the target variable in 
the DNN regression model, i.e., water depth to the variation in the urban features using RMSE value. From both 
analysis, impervious area is found to have the highest importance to predicting flood depth compared to the 
other features. This is logical, as impervious areas directly contribute to runoff and hence to the accumulation 
of water. The importance scores in both approaches are shown in Fig. 13 to illustrate the significant response of 
water depth predicted from the DNN regression model due to the change in the urban hydraulic features. The 
iRIC model used was a hydraulic fluvial model, and did not include rainfall runoff, but the model was calibrated 
with USGS gage data and validated with NDWI data, showing a high spatial accuracy for flood inundation77. 
Impervious areas showed the highest influence over the target variable i.e., the water depth predicted from the 
DNN regression model followed by the downstream distance of the stormwater outfall and dams and average 
slope to the contributing area in case of PFI and 20% increase in the feature values. For the 5% and 10% increase/

Figure 11.   Error distributions calculated by subtracting the water depth from DNN regression model output 
and iRIC simulation is shown here for two scenarios with upstream discharge of 52 (a) and 99 (b) cms. Maps are 
processed and generated in the ArcGIS Pro platform81.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18738  | https://doi.org/10.1038/s41598-022-23214-9

www.nature.com/scientificreports/

decrease in the feature values, downstream distance from the stormwater outfall showed highest impact. The 
score of the feature importance, the RMSE value increases for all features with the increase in the change of the 
feature values from 5 to 20% shown in Fig. 13. Highest response in the RMSE value can be observed in the case 
of PFI where the feature values are permuted instead of adjusted with a simple sensitivity analysis by percent 
increase. While these values show the relative importance of features contributing to flood inundation spatially, 
the disconnection with the physics may create a scenario where the driver(s) of fluvial flooding is limited.

Conclusion
Robust and real-time prediction of flooding is critical to alleviating the growing risk of urban fluvial flooding. 
Estimation of the water depth of the river and floodplain for various scenarios is of paramount importance in 
urban flooding planning and management, particularly as many municipalities seek to install or upgrade infra-
structure. Data-driven ML approaches provide a path to circumvent the complexities of urban flooding using 
geographic and urban features outlined in this paper and have the potential to get insights into the flooding 
attributes. Computationally expensive physics-based numerical models become burdensome at the city-scale 
and beyond. Traditional hydraulic models depend on solving physics-based differential equations, they require 
extraordinarily processing power and high memory allocation, specifically for large amount of data and thus 
perform much slower compared to data-driven methods presented in this paper. In this study, flooding in urban 
areas, such as the highly urban Darby Creek watershed, is predicted using hybrid physics-informed data-driven 
techniques. A novel approach to classify and predict the flooded locations and depth using various ML classi-
fiers and DNN-based regression method illustrates a promising ground and potential to entirely shift into the 
data-driven techniques. Derived urban hydraulic features, i.e., impervious locations and average slope within 
the contributing area, downstream distance from the stormwater outfall and dams, are introduced in this paper 
to incorporate the unique impact of urban features on the riverine.flooding extent and magnitude which was 
not present in the previous research works. Future inclusion of additional parameters and resolutions can aid in 
deepening the understanding of urban hydrology.

A set of binary classifiers (LR, DT, SVM, KNN) is used to identify the flooded locations and a DNN regression 
model with multiple hidden layers is applied to capture the high non-linearity and quantify the flood magnitude 
in an urban environment. Both the classification and regression algorithms trained to predict the flooding loca-
tions and depth in urban areas with minimum error generated satisfactory outcomes. All error matrices used to 
evaluate the performance of the binary classifiers are F1-score, Jaccard Similarity matrix and confusion matrix 
delineate the promising capability of the ML classifiers in isolating flooded locations. The RMSE value used to 
evaluate the adequacy of the DNN algorithm in predicting water depth. also showed satisfactory performance for 
the unique datasets with geographic, derived urban and physics-informed hydraulic features. Further, the urban 

Figure 12.   Performance learning curves of the ML classifiers, (a) LG, (b) DT, (c) SVM, (d) KNN and (e) DNN 
model with the training (red) and cross-validation score (green).
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hydraulic feature importance scheme quantified the impact of urban features over the outcome (water depth) 
of the DNN regression model. Therefore, the satisfactory performance of the proposed framework presented 
here shows a higher potential for flood prediction in an urban environment, by accounting for the influence of 
urban features compared to the traditional physics-based hydraulic models. In addition, due to spatial autocor-
relation effect, random sampling of data points to prepare the train/test splits from the entire study domain may 
not yield a satisfactory validation of the model to generalize. In this study, a blocked K-folds CV is performed 
to further validate the model’s performance to generalize to the unseen areas. The performance score for CV 
showed satisfactory performance for all the spatially segmented blocks as well as the entire study area. Proposed 
CV framework can be useful in validating ML based flood models to generalize the model performance. For 
improved flood estimation in complex urban area, a balanced perceptive of the proposed framework could 
serve as a discerning tool for the engineers and decision makers. Data itself cannot be an alternative for physi-
cal modeling, however, when combined with the informed and detailed knowledge of the physics-transformed 
variables from hydrodynamics models, it is highly likely to yield more precise and comprehensive solutions.

The computational time required to converge to the solution by the physic-based model iRIC has been 
reported approximately one and half times higher (1 h 7 min for iRIC; 32 min for ML models) than the full 
pipeline of training ML models for flood detection, estimation and feature importance with the ML classifiers 
and DNN regression model. However, average time required by the trained ML classifiers was 4.7 s in estimating 
the flood extent where it was 9.3 s for the DNN model in quantifying the flood magnitude. Trained AI models 
can also be highly efficient in reproducing a range of scenarios which may aid to the decision-making process in 
a faster and more efficacious way compared to the hydrodynamic model. In addition, several influencing factors 
(e.g., average slope and impervious locations of the contributing area, downstream distance from the stormwater 
outfall and dams) used in the ML classifiers and DNN model, were not taken into consideration in the physic-
based model equations to quantify the flood extent and magnitude. Therefore, in both, the computational time 
required and inclusion of the number of influencing factors to the target variable, ML models outperformed 
the physics based iRIC simulation. The performance of the ML classifiers and DNN regression models can be 
improved with the increase in the discretization of the computational domain creating more training and testing 

Figure 13.   Change in the RMSE value of the DNN regression model due to the % increase/decrease in the 
feature values and Permutation Feature Importance.
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data. Geographic and hydraulic features can be stored in the web where the entire training or testing workflow 
is possible to be executed in the cloud-computing platform. Further, other machine learning and deep learning 
classifiers and regression models such as Gaussian Process classification, Bayesian classification, Histogram-
based gradient boosting, and Long Short-Term Memory regression can be studied with the river hydraulic 
dataset. Notably the transferability of this method is data-limited. Linking to physical models has the potential 
to advance model capabilities, as well as allow for deeper insight into urban hydrologic processes, Future work 
in this area is highly recommended as the data availability and computational power are increasing rapidly. The 
approach outlined in this study has the potential to be combined with the weather forecast models paving the 
way of feasible and inexpensive quantification of real-time riverine flooding scenarios.

Data availability
Data collected for the study can be made available upon request from the corresponding author.
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