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Abstract: Age-related macular degeneration (AMD) leads to gradual central vision loss and is
the third leading cause of irreversible blindness worldwide. The underlying mechanisms for this
progressive neurodegenerative disease remain unclear and there is currently no preventive treatment
for dry AMD. Sodium iodate (NaIO3) has been reported to induce AMD-like retinal pathology
in mice. We established a mouse model for AMD to evaluate the effects of quercetin on NaIO3-
induced retinal apoptosis, and to investigate the pertinent underlying mechanisms. Our in vitro
results indicated that quercetin protected human retinal pigment epithelium (ARPE-19) cells from
NaIO3-induced apoptosis by inhibiting reactive oxygen species production and loss of mitochondrial
membrane potential as detected by Annexin V-FITC/PI flow cytometry. We also evaluated the relative
expression of proteins in the apoptosis pathway. Quercetin downregulated the protein expressions of
Bax, cleaved caspase-3, and cleaved PARP and upregulated the expression of Bcl-2 through reduced
PI3K and pAKT expressions. Furthermore, our in vivo results indicated that quercetin improved
retinal deformation and increased the thickness of both the outer nuclear layer and inner nuclear
layer, whereas the expression of caspase-3 was inhibited. Taken together, these results demonstrate
that quercetin could protect retinal pigment epithelium and the retina from NaIO3-induced cell
apoptosis via reactive oxygen species-mediated mitochondrial dysfunction, involving the PI3K/AKT
signaling pathway. This suggests that quercetin has the potential to prevent and delay AMD and
other retinal diseases involving NaIO3-mediated apoptosis.

Keywords: age-related macular degeneration; sodium iodate; human retinal pigment epithelium;
quercetin; apoptosis; mitochondrial membrane potential
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1. Introduction

Age-related macular degeneration (AMD) is a progressive neurodegenerative con-
dition and the leading cause of blurry vision and blindness in the elderly population of
industrialized nations. AMD can be divided into early, intermediate and late AMD. Late
AMD is further classified into dry (atrophic) and wet (neovascular) subtypes. Dry AMD is
more common, accounting for approximately 90% of all cases, and 10% of dry AMD cases
progress to wet AMD [1]. The primary treatment for wet AMD is the administration of
antivascular endothelial growth factor, but at present, no effective treatment strategies exist
for dry AMD. This is because the pathogenesis of dry AMD is complicated and involves
various cellular pathways [2]. Dry AMD is characterized by drusen and widespread retinal
pigment epithelium (RPE) degeneration.

Risk factors associated with AMD include age, oxidative stress, genetic factors, chronic
inflammation, and race [3–8]. The development of AMD can be primarily attributed to ex-
posure to excessive reactive oxygen species (ROS) [9–12]. ROS overproduction destroys the
activity of RPE cells, including antioxidant reactions, metabolic processes, and lysosomal
degradative functions, eventually leading to apoptosis [13].

Chew et al. reported that antioxidant vitamins and zinc supplements can decelerate
AMD development [14]. The pathological mechanism underlying AMD has not yet been
completely elucidated, and the condition remains untreatable at present. Sodium iodate
(NaIO3), an oxidative toxic agent, causes selective RPE cell damage and can reportedly serve
as a reproducible in vitro and in vivo model of AMD [15–18]. NaIO3 at a concentration
of ≥10 mM activates caspase 3/7/8-dependent apoptosis and caspase-independent cell
necroptosis, leading to the apoptosis of RPE cells [19–22].

Hwang et al. (2019) reported that NaIO3 induced cytosolic ROS production but not
mitochondrial ROS production; furthermore, it activated ERK, p38, JNK, and protein kinase
B (AKT) signaling pathways [23]. They also found that cytosolic ROS-dependent p38 and
JNK activation led to the death of NaIO3-treated ARPE-19 cells (human retinal pigment
epithelial cells), whereas cytosolic ROS-mediated autophagy and mitochondrial dynamic
balance contributed to cell survival. Moreover, their data suggested that ROS, AKT, and
ERK signaling pathways played a role in pentraxin 3 (also known as the tumor necrosis
factor-α-stimulated gene) production in response to NaIO3 in ARPE-19 cells.

Quercetin is a type of flavonoid found in plant products. It has numerous phar-
macological applications and possesses antioxidant, neuroprotective, anti-inflammatory,
antiangiogenic, and antiapoptotic properties [24,25]. Many studies have described the
antioxidant activities of quercetin, including its ability to reduce and inhibit the dam-
age caused by oxidative stress, both in vitro and in vivo [26,27]. Sharmila et al. (2014)
confirmed that quercetin inhibits insulin-like growth factor receptor-1, AKT, androgen
receptor (AR), cell proliferation, and antiapoptotic proteins in an animal model of prostate
cancer [28]. Interestingly, quercetin has been reported to regulate antioxidant levels, thus
protecting nerves, the brain, and some human cells from oxidation-induced damage. Fur-
thermore, Ossola et al. (2009) found that the quercetin glycoside can cross the blood–brain
barrier and has more effective protective activity compared with rutin and isoquercetin
glycosides [29]. Weng et al. (2017) demonstrated that quercetin protected ARPE-19 cells
from H2O2-induced cell damage by activating the Nrf2 signaling pathway, inhibiting endo-
plasmic reticulum stress, and targeting antiapoptotic proteins [30]. However, to the best of
our knowledge, the protective effects of quercetin via stimulation of phosphatidylinositol
3-kinase (PI3K) expression and downstream signaling molecules and the NaIO3-induced
regulation of ROS and apoptotic proteins in ARPE-19 cells and AMD animal models have
not yet been determined.

2. Materials and Methods
2.1. Cell Culture

The human retinal epithelial cell line ARPE-19 (at passage 27, product CRL-2302,
American Type Culture Collection, ATCC, Manassas, VA, USA) was maintained in Dul-
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becco’s modified Eagle’s medium/F12 Ham nutrient mixture (HyClone, Logan, UT, USA)
containing 10% fetal bovine serum (Gibco) at 37 ◦C and 5% CO2.

2.2. Cell Viability Assay

ARPE-19 cells (1.5 × 105 cells/well) were seeded into 24-well plates at 1 mL volume
and incubated at 37 ◦C for 24 h. The culture medium was subsequently replaced by a
medium containing various doses of quercetin (0, 1.25, 2.5, 5, 10, and 20 µM) alone or
with a co-treatment of NaIO3. After 24 h, 0.5 mL culture medium containing 10 µL Cell
Counting Kit-8 reagent (Dojindo Molecular Technologies, Kumamoto, Japan) was added to
the cells in each well and they were incubated at 37 ◦C for 1–4 h. The absorbance of each
well was then measured at 450 nm using a ELISA reader (Multiskan Spectrum, Thermo Co.,
Vantaa, Finland).

2.3. Measurement of Intracellular ROS and H2O2 Production

Intracellular ROS production was determined by measuring the oxidation of 2′,7′

dichlorofluorescein diacetate (DCFH-DA) to the highly fluorescent compound 2′,7′-dichlor-
ofluorescein (DCF). ARPE-19 cells were cultured in 12-well plates and pretreated with
different concentrations (1.25, 2.5, and 5 µM) of quercetin for 1.5 h, followed by incubation
with 6 mM NaIO3 at 37 ◦C for 15 h. Subsequently, 10 µM DCFH-DA was added to the
culture medium, and the reaction was allowed to proceed at 37 ◦C for 30 min. The cells
were then washed with PBS and collected for flow cytometry (BD Biosciences, San Jose,
CA, USA). Data analysis was performed using CellQuest.

2.4. Measurement of Mitochondrial Damage

For the analysis of mitochondrial status, the cells were incubated with JC-1 dye
(2 µg/mL; Cayman Chemical, Ann Arbor, MN, USA) for 50 min, then 2 µL Hoechst33342,
a DNA-specific fluorescent dye, was added and the cells were incubated in darkness at
37 ◦C for 10 min. The stained cells were then observed under a fluorescence microscope.
JC-1 accumulates in mitochondria and appears as a red/orange fluorescence (590 nm) in
healthy organelles, however, when depolarized it appears as a green fluorescence (530 nm).
Fluorescence images of the cells were recorded and the relative intensities of green/red JC-1
fluorescence were quantified using Image J Software (U.S. National Institutes of Health,
Bethesda, MD, USA).

2.5. Measurements of Antioxidative Capacities and H2O2 Production

The activities of superoxide dismutase (SOD), catalase (CAT), and reduced glutathione
(GSH) were analyzed using assay kits from Cayman according to the manufacturer’s
instructions (Cat. 706002, 707002 and 703002, Cayman, Ann Arbor, MI, USA).

The H2O2 production in the culture medium was determined using a Biovision
assay kit (Biovision Research Products, Milpitas, CA, USA) following the manufacturer’s
instructions. The absorbance was measured at 570 nm with an ELISA reader.

2.6. Western Blot Analysis

ARPE-19 cells from different experimental conditions were lysed in a lysis buffer
[10 mM Tris, pH 7.5 (Sigma, St. Louis, MO, USA), 1 mM EDTA, and 0.1% Triton X-100
(Sigma, St. Louis, MO, USA). All samples were then electrophoresed on 10% SDS-PAGE,
and the separated proteins were transferred onto a PVDF membrane. The membrane was
incubated overnight with Bcl, Bax, caspase-3, cleaved caspase-3, cleaved PARP, PI3K p100,
p-AKT, and GAPDH or β-tubulin primary antibodies. Band intensities were measured
using AlphaImager 2200 software (Alpha Innotech Co., San Leandro, CA, USA).

2.7. Animal Model

Forty-two-week-old BABL/c mice were purchased from Asia University Animal Care
and Use Committee (IACVC No. 107-a51a-20, 01 August 2019) and housed in standard
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cages with a 12:12-h light–dark cycle. The mice were randomly divided into three groups,
with each group containing ten mice:

1. Mock group: Animals pretreated with an intraperitoneal (IP) injection of PBS and
then a single intravenous (IV) injection of PBS.

2. Vehicle-treated group: Animals pretreated with an IP injection of PBS and then a
single IV injection of 40 mg/kg NaIO3 [31].

3. Experimental group: Animals pretreated with an IP injection of 100 mg/kg quercetin
and then a single IV injection of 40 mg/kg NaIO3.

2.8. Histology and Immunohistochemistry

The eyeballs were fixed in Davidson’s solution (containing 10% formalin, 10% glacial
acetic acid, and 4% formaldehyde) for 3 days [32]. Paraffin-embedded sections (5 µm) were
obtained, stained with hematoxylin and eosin (H&E), and photographed using an optical
microscope (Olympus Optical, Tokyo, Japan). The thicknesses of the whole retina, outer
nuclear layer (ONL), and inner nuclear layer (INL) were measured at a distance of between
600 µm and 900 µm from the optic nerve along the superior and inferior hemiretina. Data
from six random sites were averaged for each eye.

Immunohistochemical staining was performed using a BondMax automated slide
staining system (Vision BioSystems Ltd., Newcastle Upon Tyne, UK). The sections were
subjected to antibody cleaved caspase-3 (1:100, Cell Signaling Technology, Danvers, MA,
USA) and then photographed using an optical microscope (Olympus Optical). Caspase-
3 staining was quantified using the Image J Immunohistochemistry Toolbox (National
Institute of Health, Starkville, MD, USA).

2.9. Retinal Imaging

Optical coherence tomography (OCT) was performed using RTVue XR Avanti with
AngioVue (Optovue Inc, Fremont, CA, USA). Briefly, OCT of a certain region of the retina
was performed repeatedly, and the resultant scans were examined for changes. Additional
information pertaining to OCT can be found in two previous studies [33,34].

2.10. Statistical Analysis

The current study was conducted using a completely randomized design. When a
significant difference (p < 0.05) was detected among groups by one-way analysis of variance
(ANOVA), differences among the treatments were further tested using the least significant
difference (LSD) test. All statistical analyses were performed using Statistical Analysis
Software (SAS Institute Inc., Cary, NC, USA, 2002).

3. Results
3.1. Effect of Quercetin Pretreatment on the Viability and NaIO3-Induced Apoptosis of ARPE-19 Cells

To determine whether quercetin is toxic to ARPE-19 cells, we exposed them to various
concentrations of quercetin and then evaluated the cell viability. The cell survival rate
was unaffected following treatment of cells with <5 µM quercetin (Figure 1A). However,
treatment with 10–20 µM quercetin significantly reduced the cell viability, with effects
being significantly different from the untreated controls (0 µM). For this reason, 1.25, 2.5,
and 5 µM quercetin were used for all subsequent experiments.

We also determined the viability of ARPE-19 cells, which were treated with various
concentrations of quercetin (1.25, 2.5, and 5 µM) and 6 mM NaIO3 (Figure 1B). Cell viability
significantly decreased from 100% in the mock group to 70% in the vehicle-treated group.
All tested concentrations (1.25, 2.5, and 5 µM) of quercetin significantly increased the cell
viability when ARPE-19 cells were treated with 6 mM NaIO3.

Apoptosis was detected in NaIO3-treated ARPE-19 cells using an Annexin V-FITC/PI
apoptosis detection kit and flow cytometry. The rates of apoptosis following pretreatment
with 1.25, 2.5 and 5 µM quercetin for 1.5 h before treatment with 6 mM NaIO3, were
34.6 ± 2.1, 26.9 ± 3.4 and 11.4 ± 2.9%, respectively, and were significantly decreased
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compared with the NaIO3 only treated group (38.1 ± 1.5%; p < 0.05) (Figure 1C,D). These
results indicated that quercetin decreased NaIO3-induced cell death.
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Figure 1. Cell viability of ARPE-19 cells treated with quercetin only or quercetin plus NaIO3. (A) 
ARPE-19 cells were treated with various concentrations of quercetin (1.25, 2.5 and 5 µM) for 24 h, 
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Figure 1. Cell viability of ARPE-19 cells treated with quercetin only or quercetin plus NaIO3.
(A) ARPE-19 cells were treated with various concentrations of quercetin (1.25, 2.5 and 5 µM) for 24 h,
and the cell viability was measured using a CCK-8 assay. (B) ARPE-19 cells were pretreated with
various concentrations of quercetin (1.25, 2.5 and 5 µM) for 1.5 h and then with NaIO3 (6 mM) for
24 h, before cell viability was measured using the CCK-8 assay. (C) ARPE-19 cells were pretreated
with various concentrations (1.25, 2.5 and 5 µM) of quercetin for 1.5 h before treatment with NaIO3

(6 mM) for 15 h. ARPE-19 cells were then detected by flow cytometry after staining with both
Annexin V-FITC and PI for 30 min. (D) The percentage of apoptotic cells in each treatment group
was quantified. Values represent the mean ± SD (n = 3). Data bars without letters in common (a–d)
indicate a significant difference (p < 0.05).
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3.2. Quercetin Reduced the Expression of Intracellular ROS and H2O2 Production

ROS is closely associated with oxidative stress, which can lead to cell apoptosis [34].
Oxidative stress induced by NaIO3 has been reported to cause apoptosis and autophagy [35].
Therefore, we assessed the effects of intracellular and mitochondrial ROS on NaIO3-induced
ARPE-19 cell death. After treatment with NaIO3 for 15 h, the cells were labeled with DCFH-
DA (an intracellular ROS probe) and analyzed through flow cytometry. As illustrated in
Figure 2A,B, the mean ROS-associated fluorescence intensity in the NaIO3-treated group
was significantly higher than in the mock group. Compared with the NaIO3-treated group,
pretreatment with quercetin attenuated the NaIO3-induced intracellular ROS levels in the
ARPE-19 cells (Figure 2B). We then measured the level of hydrogen peroxide (H2O2) again
using a commercial kit, and the results again showed that the increased expression of H2O2
in the NaIO3-induced group was significantly eliminated after treatment with quercetin
(1.25–5 µM) (Figure 2C).
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Figure 2. Effect of quercetin on NaIO3-mediated ROS generation in ARPE-19 cells. ARPE-19 cells
were pretreated with different concentrations of quercetin (1.25, 2.5, and 5 µM) for 1.5 h and then
treated with NaIO3 (6 mM) for 15 h. (A,B) Cells were labeled with the fluorescent probe, 2′,7′

dichlorodihydrofluorescein diacetate, the intracellular ROS levels were quantitatively analyzed
and the mean fluorescence intensity was calculated using flow cytometry. (C) ARPE-19 cells were
pretreated with different concentrations of quercetin (1.25, 2.5, and 5 µM) for 1.5 h and then treated
with NaIO3 (6 mM) for 24 h. The amount of H2O2 were measured by commercial assay kits. Values
represent the mean ± SD (n = 3). Data bars without letters in common (a–c) indicate a significant
difference (p < 0.05).
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3.3. Quercetin Inhibited the Reduction of Mitochondrial Membrane Potential (∆Ψm) via
Modulated the Activity of Anti-Oxidants

It is well known that the activity of glutathione (GSH), superoxide (SOD), and catalase
protects cells against ROS-induced oxidative damage [13]. As shown in Figure 3A–C,
the expressions of anti-oxidants except SOD were dramatically decreased in the NaIO3-
induced group. Quercetin (2.5 and 5 µM) treatment significantly reversed the reduced
levels of catalase and GSH and the increased level of SOD, indicating that quercetin could
modulate the activity of anti-oxidants. Since mitochondrial membrane integrity is sensitive
to cellular ROS, we assessed disruption of mitochondrial membrane potential in ARPE-
19 cells after quercetin pre-treatment. ARPE-19 cells exposed to NaIO3 for 15 h had a
decreased ∆Ψm, suggesting mitochondrial disruption, as indicated by a decrease in the
red/green fluorescence intensity ratio (Figure 3D). However, treatment with 2.5 and 5 µM
quercetin significantly increased the ∆Ψm. These results indicated that quercetin could
protect cells from NaIO3-mediated ROS injury by maintaining ROS levels and the ∆Ψm.
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Figure 3. Effects of quercetin on antioxidant activity and mitochondrial dysfunction in ARPE-19 cells. ARPE-19 cells were
pretreated with different concentrations of quercetin (1.25, 2.5, and 5 µM) for 1.5 h and then treated with NaIO3 (6 mM) for
15 h. The levels of (A) superoxide (SOD), (B) catalase, and (C) glutathione (GSH) were quantitatively analyzed, and the
mean fluorescence intensity was calculated using flow cytometry. (D) Mitochondrial membrane potential was measured
using the fluorescent probe JC-1. Loss of mitochondrial membrane depolarization (∆Ψm) was demonstrated by the change
in JC-1 fluorescence from red (JC-1 aggregates) to green (JC-1 monomers). The fluorescent intensity ratio of JC-1 aggregates
to monomers in treated cells. Values represent the mean ± SD (n = 3). Data bars without letters in common (a–d) indicate a
significant difference (p < 0.05).
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3.4. Effect of Quercetin on the Endogenous NaIO3-Induced Apoptotic Pathway

Activation of caspase-3 and a decrease in Bcl-2 are typical markers of apoptosis; Bax
is also an integral part of this apoptotic pathway [36–38]. We found that NaIO3 induced
apoptosis. To investigate how quercetin protects ARPE-19 cells from NaIO3-induced
apoptosis, we used Western blotting to evaluate the effect of quercetin on the expression
of apoptosis-related proteins (Bcl-2, Bax, caspase-3, cleaved caspase-3, and cleaved PARP)
(Figure 4). Compared with the mock group, exposure to 6 mM NaIO3 led to a lower
level of Bcl-2 and higher levels of Bax, caspase-3, cleaved caspase-3, and cleaved PARP.
However, treatment with 5 µM quercetin significantly reduced the expression levels of
Bax, cleaved caspase-3, and cleaved PARP, compared with the NaIO3-treated group. In
addition, quercetin increased the protein expression of Bcl-2 compared with the mock
group. These results indicated that quercetin inhibited cell apoptosis, downregulated the
protein expressions of Bax, cleaved caspase-3, and cleaved PARP, and upregulated the
protein expression of Bcl-2 in NaIO3-treated ARPE-19 cells.
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3.5. Quercetin Suppressed Apoptosis via the PI3K/AKT Signaling Pathway

The PI3K signaling pathway promotes cell survival and reportedly participates in
apoptosis in the central nervous system. AKT, a serine/threonine protein kinase that is
also known as protein kinase B, is the primary downstream effector of the PI3K signaling
pathway [39]. In a recent study, Chan et al. (2019) reported that NaIO3 induced cytosolic
ROS production by activating ERK, p38, JNK, and the AKT signaling pathway [36]. To
determine whether the antiapoptotic effects of quercetin on NaIO3-treated ARPE-19 cells
were mediated through the PI3K/AKT signaling pathway, we performed Western blotting
to measure AKT phosphorylation.

As shown in Figure 5, the levels of PI3K and phosphorylated-AKT (p-AKT) were
significantly higher in the NaIO3-treated group compared with the mock and experimental
groups. This indicates that quercetin inhibited the PI3K/AKT signaling pathway and
suggests that this pathway is involved in the underlying mechanism of apoptosis in NaIO3-
treated ARPE-19 cells.
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3.6. Protective Effects of Quercetin on Retinal Degeneration

To confirm the association between in vitro and in vivo experiments on retinal damage
caused by NaIO3, we established a retinal degeneration mouse model. After 7 days of
NaIO3 treatment, OCT was used to observe the thickness of the whole retina, INL and
ONL, and the results were validated by histological analyses (H&E staining).

OCT is a noninvasive technique based on optical reflectivity and it is able to ana-
lyze retinal thickness and structure to produce three-dimensional, cross-sectional, retinal
images [34]. It has been clinically adopted as the standard method to observe structural
changes associated with retinopathy. In the current study, the OCT images of day 7 NaIO3-
treated mice showed that their total retinal thickness was significantly lower than the mice
in the mock group (Figure 6). However, quercetin treatment was shown to effectively
restore the retinal thickness.

Representative images are shown for the retinal sections from the three study groups
(Figure 7A). The thicknesses of the total retina, INL and ONL were measured. In the NaIO3-
treated mice, the thicknesses of the total retina, INL and ONL were significantly lower
than in the mice from the mock group (p < 0.05). In addition, disruption between the inner
segment and the outer segment of the photoreceptor (IS/OS) was found in NaIO3-treated
mice (Figure 7A).



Int. J. Mol. Sci. 2021, 22, 4056 10 of 16Int. J. Mol. Sci. 2021, 22, 4056 11 of 17 
 

 

 
Figure 6. Preventive effects of quercetin on the retinal thickness of NaIO3-treated mice. Optical 
coherence tomography (OCT) was performed 7 days after NaIO3 treatment for all three study 
groups. The retinal degenerative changes are shown. Vertical bar = 100 µm and horizontal bar = 
120 µm; white line represents retinal thickness. Values represent mean ± SD (n = 6). Data bars 
without letters in common (a,b) indicate a significant difference (p < 0.05). 

Representative images are shown for the retinal sections from the three study groups 
(Figure 7A). The thicknesses of the total retina, INL and ONL were measured. In the 
NaIO3-treated mice, the thicknesses of the total retina, INL and ONL were significantly 
lower than in the mice from the mock group (p < 0.05). In addition, disruption between 
the inner segment and the outer segment of the photoreceptor (IS/OS) was found in 
NaIO3-treated mice (Figure 7A). 

Quercetin treatment protected the retinal layers against loss and caused partial 
recovery of the IS/OS disruption (Figure 7A). INL and ONL thicknesses were also lower 
in the NaIO3-treated mice; however, the degeneration was almost alleviated via quercetin 
treatment (Figure 7B,C). The degree of retinal degeneration was quantified by measuring 
the ONL thickness. The number of ONL nuclei was counted to demonstrate the 
degeneration of the retinal layers. Treatment of NaIO3-treated mice with quercetin 
prevented the decrease in ONL thickness and nuclei counts. Overall, quercetin 
administration effectively prevented retinal degeneration caused by NaIO3. 

Figure 6. Preventive effects of quercetin on the retinal thickness of NaIO3-treated mice. Optical
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The retinal degenerative changes are shown. Vertical bar = 100 µm and horizontal bar = 120 µm;
white line represents retinal thickness. Values represent mean ± SD (n = 6). Data bars without letters
in common (a,b) indicate a significant difference (p < 0.05).
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Figure 7. Protective effects of quercetin on retinal degeneration in NaIO3-treated mice. (A) Represen-
tative retinal sections (H&E staining) for the three groups from between 600 µm and 900 µm from
the optic nerve along the superior and inferior hemiretina. ONL, outer nuclear layer; INL, inner
nuclear layer; IS-OS, inner and outer segment of photoreceptor; RPE, retinal pigment epithelium.
Scale bar = 50 µm. (B) INL and (C) ONL thickness were measured at six locations and the values
were then averaged. Values represent the mean ± SD (n = 6). Data bars without letters in common
(a–c) indicate a significant difference (p < 0.05).
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Quercetin treatment protected the retinal layers against loss and caused partial re-
covery of the IS/OS disruption (Figure 7A). INL and ONL thicknesses were also lower in
the NaIO3-treated mice; however, the degeneration was almost alleviated via quercetin
treatment (Figure 7B,C). The degree of retinal degeneration was quantified by measuring
the ONL thickness. The number of ONL nuclei was counted to demonstrate the degenera-
tion of the retinal layers. Treatment of NaIO3-treated mice with quercetin prevented the
decrease in ONL thickness and nuclei counts. Overall, quercetin administration effectively
prevented retinal degeneration caused by NaIO3.

3.7. Quercetin Reduced NaIO3-Induced Retinal Apoptosis in Mice

We further explored the protective effects of quercetin on NaIO3-induced retinal cell
injury. After 7 days of NaIO3 treatment, the mock, vehicle-treated, and experimental
groups were subjected to immunohistochemical staining for cleaved caspase-3. Compared
with the other two groups, the expression of cleaved caspase-3 was significantly higher
in the vehicle-treated group (Figure 8), indicating that quercetin significantly reduced the
production of NaIO3-induced cleaved caspase-3.
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Figure 8. Effect of quercetin on NaIO3-induced retinal apoptosis in mice. After 7 days of NaIO3

treatment, immunohistochemical staining was performed for cleaved caspase-3 in all three study
groups. The red arrows indicate cleaved caspase-3 in the retinal pigment epithelial (RPE) layers.
The vehicle-treated NaIO3 showed a significantly higher expression of cleaved caspase-3, while the
mock and experimental groups showed significantly lower expression of cleaved caspase-3. Cleaved
caspase-3 is shown in brown, and the red arrows are within the position of the RPE layer.

4. Discussion

AMD is the primary cause of blindness in the elderly population of developed coun-
tries. Millions of patients with AMD experience gradual vision loss year by year and
no preventive treatment yet exists for decreasing dry AMD, which can progress to wet
AMD [40–42]. Therefore, the identification of potential anti-AMD agents is extremely
important. AMD is associated with several risk factors, and many of them are highly
linked to increased ROS. The current literature also indicates that excessive ROS triggers
AMD development, leading to apoptosis of RPE cells [13]. Previous in vivo and in vitro
studies have reported that inhibitors of caspases and necroptotic signaling pathways inhibit
NaIO3-induced RPE and photoreceptor cell death [23,35,43,44]. Chan et al. reported that
NaIO3-induced AKT activation was partially dependent on ROS production, eventually
leading to cell death [36]. In addition, blue light can induce apoptosis by increasing the
cleaved form of caspase-3 and the Bax/Bcl-2 ratio in RPE cells [45,46]. PARP-1 plays a
crucial role in DNA repair, replication, and cell death. PARP-1 cleavage is observed during
apoptosis, which is induced by caspase-3 activation [36].

In order to investigate the effects of quercetin on the retina, an NaIO3-induced experi-
mental model of AMD was established in vitro and in vivo. In this study, we found that
NaIO3-induced ROS production caused apoptosis by upregulating the expressions of Bax,
cleaved caspase-3, and cleaved PARP, and downregulating Bcl-2 expression through the
PI3K/AKT signaling pathway in ARPE-19 cells (Figures 4 and 5). In addition, we found
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that quercetin inhibited NaIO3-induced cell apoptosis by mediating PI3K/AKT inactiva-
tion, thereby downregulating the expressions of Bax, cleaved caspase-3, and cleaved PARP
and upregulating Bcl-2 expression (Figure 4). Consistent with these findings, we found
that quercetin attenuated NaIO3-induced increases in cleaved caspase-3 levels. Taken
together, our findings suggest that the antiapoptotic effects of quercetin are mediated
by the inhibition of apoptotic effectors. The results of this study showed that quercetin
significantly protected ARPE-19 cells against NaIO3-induced toxicity, high ROS levels and
apoptosis in vitro.

NaIO3-induced retinochoroidal degeneration is used as an animal model for AMD,
because IS/OS disruption of retinal tissue has been observed in mice treated with NaIO3
(Figure 7A) [19,47]. Previous studies have reported endogenous retinal repair follow-
ing rapid RPE damage induced by relatively high doses of NaIO3 (50–100 mg/kg). The
administration of 40mg/kg NaIO3 has been reported to be sufficient to generate distur-
bances in retinal function by retinal degeneration in mice and rats [48,49]. In the current
study, we observed that the intravenous administration of NaIO3 (40 mg/kg) induced RPE
degeneration in 7 days (Figure 6). We also found that quercetin treatment ameliorated
NaIO3-induced retinochoroidal degeneration in vivo.

NaIO3-induced RPE degeneration has been shown to lead to the production of
pigment-rich substances, and reductions in the thickness of both the outer and inner
segments of the photoreceptor and the ONL [18,49,50]. In addition, exposure of RPE cells
to NaIO3 has been shown to induce a loss of their integrity and cause enlargement [51].
In this study, we found that the thicknesses of the total retina, INL, and ONL of NaIO3-
treated mice were significantly lower compared with animals in the mock group at day
7, however, quercetin treatment could prevent the retinal degeneration caused by NaIO3
(Figures 6 and 7).

Manganese superoxide dismutase (SOD2) is a primary antioxidant located on the
matrix side of inner mitochondrial membranes, where it dismutates the superoxide byprod-
ucts of oxidative phosphorylation (OXPHOS) to H2O2, and the latter is further reduced
by glutathione peroxidases and catalase [52]. In this study, we demonstrated that NaIO3
could induce H2O2 accumulation due to cell death caused by ROS through enhanced
SOD activity and the inhibition of GSH and CAT activity (Figure 3A,B). In addition, we
showed that quercetin attenuated the NaIO3-induced intracellular cell death caused by
ROS via increases in catalase and GSH activity and reduced SOD activity in the ARPE-19
cells. There were a number of limitations to the present study. First, fundoscopy and
electroretinogram (ERG) studies were not performed, and these examinations should be
conducted in future studies to evaluate retinal function.

To the best of our knowledge, this is the first study to demonstrate the protective
effects of quercetin on NaIO3-induced retinal degeneration in a mouse model. To conclude,
we found that quercetin reduced NaIO3-induced cell apoptosis by downregulating the
expressions of Bax, cleaved caspase-3, and cleaved PARP, and upregulating the expression
of Bcl-2 via the PI3K/AKT signaling pathway in ARPE-19 cells (Figure 9). Moreover,
in vivo experiments demonstrated that quercetin could protect against NaIO3-induced
retinal damage. We believe that our results will encourage further studies on the potential
use of quercetin as a treatment for AMD.
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