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a b s t r a c t

The data described herein is related to the article with the title
“Fatty acid esters produced by Lasiodiplodia theobromae function as
growth regulators in tobacco seedlings” C.C. Uranga, J. Beld, A.
Mrse, I. Cordova-Guerrero, M.D. Burkart, R. Hernandez-Martinez
(2016) [1]. Data includes nuclear magnetic resonance spectroscopy
and GC–MS data used for the identification and characterization of
fatty acid esters produced by L. theobromae. GC–MS traces are also
shown for incubations in defined substrate, consisting in Vogel's
salts supplemented with either 5% grapeseed oil or 5% glucose, the
two combined, or 5% fructose. Traces for incubations in the com-
bination of 5% grapeseed oil and 5% glucose for different fungal
species are also included. Images of mycelium morphology when
grown in 5% glucose with or without 5% grapeseed oil are shown
due to the stark difference in mycelial pigmentation in the
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presence of triglycerides. High concentration gradient data for the
plant model Nicotiana tabacum germinated in ethyl stearate (SAEE)
and ethyl linoleate (LAEE) is included to show the transition
between growth inhibition and growth induction in N. tabacum by
these compounds.

& 2016 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Microbial biochemistry.

ore specific sub-
ject area
Fatty acid metabolism by plant fungal pathogens.
ype of data
 Mass spectrometry data, NMR spectra, GC–MS chromatograms, photography,
microscopy, N. tabacum morphology and measurements of early growth in
LAEE and SAEE concentration gradients.
ow data was
acquired
High resolution mass spectrometry: Agilent 6230 ESI-TOF MS. NMR: Varian
500 MHz instrument equipped with an XSens 2-channel NMR cold probe.
GC–MS: Agilent 7890A GC system, connected to a 5975C VL MSD quadrupole
MS (EI) mass spectroscopy. Olympus stereo microscope (SZX12).
ata format
 Analyzed

xperimental
factors
Material was purified with silica gel, HPLC and TLC for HR-MS and NMR
analysis, followed by GC–MS. Carbon substrates were defined and simplified
and subjected to further GC–MS.
xperimental
features
Fungal samples were lyophilized, then extracted via a modified Folch
extraction using 1:1 v/v dichloromethane and methanol along with 0.01%
BHT as an antioxidant.
ata source
location
University of California, San Diego, USA and CICESE, Ensenada, Mexico
ata accessibility
 All relevant data is provided.
D

Value of the data

� This is the first report of fatty acid esters naturally produced by Lasiodiplodia theobromae and the
other fungal species studied.

� Lipases from L. theobromae and Neofusicoccum parvum have broad substrate specificity that may be
of interest for further characterization and potential biotechnological uses.

� Many of the fatty acid esters are novel for phytopathogenic fungi and might open exciting new
research areas in fungal lipidomics and plant pathology.
1. Data

The data being shared consists in NMR spectra, as well as high-resolution mass spectrometry
spectra and gas chromatography–mass spectrometry chromatograms used to identify fatty acid esters
from the phytopathogenic fungus, L. theobromae. Other fungi such as Neofusicoccum parvum, Fusarium
oxysporum f.sp. lycopersici and Trichoderma asperellum were also studied for comparison. Images of
mycelial morphology for L. theobromae in different carbon sources are shown. Effects of fatty acid
esters produced by L. theobromae in N. tabacum morphology are included. Concentration gradients for
the most physiologically active compounds, ethyl stearate (SAEE) and ethyl linoleate (LAEE) are
also shown.



Fig. 1. Analysis of the compound isolated from Lasiodiplodia theobromae. A: 1H NMR spectrum. B: 13C NMR spectrum identified
as linoleic acid ethyl ester (LAEE).
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Fig. 2. Overview of GC/MS traces from Lasiodiplodia theobromae strains incubated in oatmeal. A: Three replicates of negative
control (oatmeal only). B: Three replicates of strain UCD256Ma. C: Three replicates of strain MXL28.
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Fig. 3. GC/MS traces of Lasiodiplodia theobromae (UCD256Ma) incubated in Vogel's salts with A; 5% glucose. B; 5% grapeseed oil.
C; 5% fructose. D; a combination of 5% glucoseþ5% grapeseed oil as carbon sources.

Fig. 4. GC/MS traces of A; Lasiodiplodia theobromae (UCD256Ma) and B; Neofusicoccum parvum (UCD646So). Both were grown
in 5% glucoseþ5% grapeseed oil combined.
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Fig. 5. GC/MS traces of a soil borne pathogen Fusarium oxysporum f. sp. lycopersici incubated in Vogel's salts with both 5%
glucose and 5% grapeseed oil.

Table 1
Mean area under the curve (AUC) data presented as percent yields of total of the compounds identified in each strain and in
each carbon source.

Identified
compounds

5% grape-
seed oil

5% glucose 5% grape-
seed oil

5% glucoseþ5% grapeseed oil

Grapeseed oil
Fischer ester-
ification (%)

L. theo-
bromae UCD
256 Ma (%)

L. theo-
bromae UCD
256 Ma (%)

L. theo-
bromae UCD
256 Ma (%)

N. parvum
UCD646So
(%)

F. oxy-
sporum (%)

T. asper-
ellum (%)

Methyl
hexadecanoate

1.9 0.0 2.7 0.0 0.0 0.0 0.0

Ethyl hexadecanoate
(PAEE)

2.5 16.8 1.6 6.1 6.0 44.8 2.8

Hexadecanoate,
2-methylpropyl
ester

0.0 0.0 0.0 0.0 0.0 0.0 0.0

9-Octadecenoate
(Z)- methyl ester

31.2 0.0 44.0 0.7 5.2 0.0 20.9

Octadecanoate ethyl
ester (SAEE)

1.0 0.0 0.2 3.9 2.1 4.9 0.0

9-Octadecenoate (Z),
ethyl ester (OAEE)

41.9 0.0 0.0 70.4 59.9 15.3 69.5

9-Octadecenoate
(E) ethyl ester

0.3 0.0 0.0 0.9 0.9 0.0 0.0

9,12-Octadecadieno-
ate (Z,Z)-, methyl
ester

9.2 0.0 9.4 0.1 1.5 0.0 0.0

9,12-Octadecadieno-
ate (Z,Z) ethyl
ester (LAEE)

11.7 0.0 40.9 16.2 23.7 35.0 6.8

9,12,15-Octadeca-
trienoate (Z,Z,Z)-
ethyl ester)

0.2 0.0 1.2 1.7 0.7 0.0 0.0

2H-1-Benzopyran,
3,4-dihydro-
(R7mellein)

0.0 83.2 0.0 0.0 0.0 0.0 0.0
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Fig. 6. Morphology of Lasiodiplodia theobromae (UCD256Ma). A: Lasiodiplodia theobromae incubated in 5% glucose in Vogel's
salts. B: Lasiodiplodia theobromae incubated in 5% glucose and 5% grapeseed oil in Vogel's salts.

Fig. 7. Seed germination in Nicotiana tabacum exposed to 100 μg/mL free palmitate, palmitate ethyl ester or linoleate ethyl
ester emulsified with 0.08% kolliphor P-188 in Murashige and Skoog salts with Gamborg vitamins, supplemented with 3%
sucrose, and 0.4% PPM. A: negative control. B: 0.1 mg/mL LAEE. C: 0.1 mg/mL PA. D: 0.1 mg/mL PAEE.
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2. Experimental design, materials and methods

For purification, mass spectrometry and nuclear magnetic resonance (NMR) [2,3], a modified Folch
extraction [4] was standardized as described in [1], (Supplementary Data Set A and Fig. 1A, B). Carbon
source effects were then studied in L. theobromae using the standardized Folch extraction. Fatty acid
ester production was studied in the other fungal species N. parvum, F. oxysporum and T. asperellum for
comparison. All samples, including the positive controls, were analyzed for naturally produced fatty



Fig. 8. Morphology of Nicotiana tabacum germinated in FAE and grown 45 days in Murashige–Skoogþ3% sucrose. A; three
biological replicates of N. tabacum without FAE. B; 0.2 mg/mL PAEE. C; 0.2 mg/mL LAEE. D; 0.2 mg/mL SAEE. E; 3.13 μg/mL SAEE.
F; 0.2 mg/mL crude extract of Lasiodiplodia theobromae incubated in 5% grapeseed oilþ5% glucose.

Fig. 9. High concentration ranges of ethyl linoleate (LAEE) and ethyl stearate (SAEE) in Nicotiana tabacum seedling germination,
showing a concentration dependent transition from growth inhibition to growth induction in each compound.
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acid ethyl esters by gas chromatography/mass spectrometry (GC–MS) as described in [1] (Figs. 2–5).
The data was expressed as percent yield of each compound from the total compounds identified
(Table 1). Morphology of L. theobromae incubated in 5% glucose was documented by photography and
compared to the morphology in 5% glucoseþ5% grapeseed oil (Fig. 6). With the aim to test the effect
of the isolated compounds in planta, we chose tobacco (Nicotiana tabacum), a well-studied plant
model [5] to measure growth as described in [1]. The length of the seedling was measured after 7–10
days post-sowing using calibrated Image J software [6] from cotyledon tip to root tip for each
experimental condition. Morphology was also assessed and documented 45 days post-dosing and
sowing (Figs. 7–8). A high concentration gradient for the most physiologically active fatty acid esters
found and described in [1] was performed by germinating the plant model N. tabacum in SAEE from
100 to 3.1 μg/mL and LAEE from 200 to 3.1 μg/mL (Fig. 9).
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2016.05.003.
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