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Artificial intelligence and digital 
solutions for myopia
Yong Li1,2, Michelle Y. T. Yip1, Daniel S. W. Ting1,2, Marcus Ang1,2*

Abstract:
Myopia as an uncorrected visual impairment is recognized as a global public health issue with an 
increasing burden on health-care systems. Moreover, high myopia increases one’s risk of developing 
pathologic myopia, which can lead to irreversible visual impairment. Thus, increased resources are 
needed for the early identification of complications, timely intervention to prevent myopia progression, 
and treatment of complications. Emerging artificial intelligence (AI) and digital technologies may 
have the potential to tackle these unmet needs through automated detection for screening and risk 
stratification, individualized prediction, and prognostication of myopia progression. AI applications 
in myopia for children and adults have been developed for the detection, diagnosis, and prediction 
of progression. Novel AI technologies, including multimodal AI, explainable AI, federated learning, 
automated machine learning, and blockchain, may further improve prediction performance, safety, 
accessibility, and also circumvent concerns of explainability. Digital technology advancements 
include digital therapeutics, self-monitoring devices, virtual reality or augmented reality technology, 
and wearable devices – which provide possible avenues for monitoring myopia progression 
and control. However, there are challenges in the implementation of these technologies, which 
include requirements for specific infrastructure and resources, demonstrating clinically acceptable 
performance and safety of data management. Nonetheless, this remains an evolving field with the 
potential to address the growing global burden of myopia.
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Introduction

Myopia is one of the major growing 
public health challenges. Currently, 

over 2 billion people worldwide have 
myopia (which is defined as ≥ −0.5 dioptres), 
15% of whom have high myopia (defined 
as ≥ −5 dioptres).[1] In 2020, an estimated 
161 million people globally suffered from 
blindness or moderate‑to‑severe vision 
loss from uncorrected refractive errors, 
cementing it as the leading cause of vision 
impairment.[2] By 2050, myopia is expected 
to affect almost 5 billion individuals 
worldwide, nearly half of the projected 
global population [Figure 1],[1] which will 
pose a huge burden on health services 
to diagnose, including providing optical 

corrections, diagnosing and treating 
vision‑threatening complications caused 
by high myopia. Uncorrected myopia and 
myopic macular degeneration (MMD), a 
common complication of high myopia, were 
responsible for causing nearly US$250 billion 
loss of productivity worldwide in 2015.[3,4]

High myopia and pathologic myopia are 
largely responsible for myopia‑related 
irreversible visual impairment, for example, 
glaucoma, retinal detachment, myopic 
maculopathy, and macular choroidal 
neovascularization (CNV).[5] Therefore, 
early identification of children “at‑risk” 
of developing high myopia, followed by 
regular follow‑up to monitor the progression 
of myopia to allow for early intervention, 
is essential to reduce the potential risk of 
irreversible blindness.[6] However, current 
health‑care resources may have difficulty 
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coping with this growing burden.[6,7] Recently, the 
emergence of artificial intelligence (AI) and digital 
technology, such as telemedicine, has the potential to 
address this global health need. To date, many studies have 
been described applying AI and digital technology into 
different aspects of the clinical management of myopia, 
and some have achieved significant results.[8] In this review, 
we summarize the current applications and advances in AI 
and digital technology for myopia, and discuss the current 
challenges in implementation into clinical practice.

Clinical Unmet Needs in Myopia

For the diagnosis and detection of myopia, the current clinical 
practice requires visual acuity and refractive assessment, 
and may require comprehensive eye examinations to 
diagnose pathologic myopia and related complications, 
which may require sophisticated imaging systems and 
skilled workforce.[9,10] This may be circumvented using AI 
and digital technology by developing screening or risk 
stratification tools for the automated detection of myopia 
with its related complications.

Currently, to monitor and predict the myopia progression 
of patients, multiple follow‑up visits are required 
to document patients’ progression of myopia or the 
development of pathological changes associated with 
myopia, putting extra burden on existing strained 
medical resources. With robust AI models that can predict 
childhood myopia progression or the development of 
pathological changes in highly myopic patients, this 
may reduce the economic burdens caused by myopia.

Current interventions for childhood myopia control 
include environmental interventions such as increasing 
time outdoors;[11] optical interventions such as peripheral 

myopic defocus spectacles and orthokeratology;[12] 
pharmaceutical interventions such as atropine eye 
drops.[13‑15] The management of pathologic myopia 
may also include surgical treatment and anti‑vascular 
endothelial growth factor therapy.[5] AI models based 
on big medical data, however, have the potential for 
individualized treatment and assisting in achieving 
precision medicine in myopia.[16,17]

Artificial Intelligence in Myopia

Background of artificial intelligence
AI was conceptualized in 1956.[18] The term “machine 
learning” (ML) was coined in 1959, which would entail 
that “the computer should have the ability to learn using 
various statistical techniques, without being explicitly 
programmed.”[19] Using ML, algorithms can learn and 
make predictions based on the data that has been fed 
into the training process, using either a supervised 
or un‑supervised approach. ML has been widely 
adopted in applications such as predictive analytics and 
computer vision using complex mathematical models. 
With the advent of graphic processing units (GPUs), 
the availability of big data and low‑cost sensors, and 
deep learning (DL) techniques, this area has sparked 
tremendous interest and has been applied across many 
industries.[20] In particular, DL has emerged recently as an 
AI technique facilitating the analysis of unstructured data, 
such as language, images, and video. In ophthalmology, 
DL has been most commonly applied to ocular imaging 
analysis with fundus photography and optical coherence 
tomography (OCT) images.[21,22] Algorithms trained with 
DL have demonstrated expert or even above expert‑level 
diagnostic accuracy for diabetic retinopathy, age‑related 
macular degeneration (AMD), glaucoma, retinopathy of 
prematurity (ROP), refractive error especially myopia,[23] 
cataract, and anterior segment diseases.[24]

Artificial intelligence in myopia
Current potential artificial intelligence applications in 
myopia
The application of AI in myopia in children includes 
detection, prediction, and treatment [Table 1]. Based 
on the ocular appearance images, Yang et al.[25] built DL 
models that can be used for large‑scale myopia screening 
in children, which could potentially relieve the burdens 
imposed by myopia. With baseline demographics and 
clinical variables such as age, spherical equivalent, AL, 
keratometry, and visual acuity, ML models have achieved 
robust performances for the prediction of childhood 
myopia progression and the onset of high myopia in 
later adulthood.[26‑29] Foo et al.[30] were the first to use 
childhood fundus images to build DL models to predict the 
development of high myopia. Their models can used as a 
clinical assistive tool to identify “at‑risk” children for early 

Figure 1: Prevalence of Myopia Estimated for Each Global Burden of Disease Region 
between 2000 and 2050[1]
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intervention. Furthermore, ML models utilizing corneal 
parameters and DL models based on corneal topographical 
maps have been able to evaluate the treatment of 
orthokeratology in children,[31‑33] leading to more accurate 
lens fitting and individualized treatment planning.

In adults, the application of AI in myopia has been mainly 
focused on the detection and classification of high myopia, 
pathologic myopia, and myopia‑related complications, 
including myopic maculopathy, MMD, myopic CNV, 
myopic tractional maculopathy, retinoschisis, macular 
hole, and retinal detachment [Table 2].

Most of these DL models were built based on fundus 
photographs,[35‑37,39,41‑44] while some were based on OCT 
images.[38,40,45‑47] Notably, some of these DL models 
have achieved very powerful performances, even 

outperforming human experts in the detection of 
MMD and high myopia,[36] which suggests that the DL 
algorithms could potentially replace human graders in 
these tasks. DL models based on fundus photos or OCT 
images can also be used to predict refractive errors or high 
myopia,[48,49] which may facilitate the evaluation of myopia 
without overlooking the associated risks during ocular 
imaging assessment and potentially reduce the global 
burden of myopia. In addition, ML models have also 
been shown to be able to predict the surgical outcomes 
or complications of corneal and intraocular refractive 
surgery to correct myopia,[50,51] which can potentially be 
used as one of the preoperative assessment tools.

Advances in artificial intelligence technology for myopia
In addition to the above‑mentioned ML and DL methods, 
there are emerging advances in AI technology which 

Table 1: Artificial  intelligence  in myopia  in children
Tasks Authors and year Main predictors AI model Aims Main findings
Diagnosis 
and detection

Yang et al., 
2020[25]

Ocular appearance images DL Large-scale myopia 
detection

AUC - 0.9270, sensitivity - 81.13%, 
specificity - 86.42%

Prediction Lin et al., 2018[26] Electronic health records: Age, 
SE, annual progression rate

ML Predict the onset of high 
myopia over 10 years 
and at 18 years

High myopia over up to 10 years 
AUC: 3 years 0.874–0.976, 5 years 
0.847–0.921, 8 years 0.802–0.886; 
high myopia by 18 years old AUC: 
3 years 0.940–0.985, 5 years 
0.856–0.901, 8 years 0.801–0.837

Tang et al., 
2020[27]

Demographics, SE, 
keratometry, WTW, CCT

ML AL elongation prediction Best model: Robust linear 
regression R2 0.87, 0.003–0.116 
mm/year

Yang et al., 
2020[28]

Family history, gender, indoor 
and outdoor activities, axial 
length, keratometry

ML Myopia prediction at 6th 
grade

AUC - 0.98, accuracy - 93%, 
sensitivity - 94%, specificity - 94%

Li et al., 2022[29] Uncorrected distance visual 
acuity, SE, AL, flat keratometry, 
gender and parental myopia

ML Myopia progression for 
all 5 years

Combined weight of 77% and 
prediction accuracy over 80%

Foo et al., 2023[30] Retinal fundus imaging DL Prediction of the 
development of high 
myopia by teenage years

Image models AUC: 0.91–0.93, 
clinical models AUC: 0.93–0.94, 
mixed models AUC: 0.97–0.98

Treatment Fang et al., 
2022[31]

Age, baseline AL, pupil 
diameter, lens wearing time, 
time spent outdoors, time spent 
on near work, WTW, anterior 
corneal flat keratometry, 
posterior corneal astigmatism

ML Predict the treatment 
effect of orthokeratology

C-statistic of the predictive model 
0.821

Fan et al., 2022[32] Sex, age, horizontal visible 
iris diameter, spherical 
refraction, cylindrical 
refraction, eccentricity value, 
flat keratometry and steep 
keratometry readings, ACD, AL

ML Estimating the alignment 
curve curvature in 
orthokeratology lens 
fitting

R2 values for AC1K1, AC1K2 and 
AC2K1 values 0.91, 0.84, and 0.73

Tang et al., 
2021[33]

Corneal topographical maps DL Evaluation of corneal 
treatment zone after 
orthokeratology

Identified the treatment zone 
boundaries IoU of 0.90±0.06; 
identified the treatment zone 
centers average deviation 
0.22±0.22 mm

Wu et al., 2020[34] Baseline IOP, recruitment 
duration, age, total duration and 
previous cumulative dosage

ML Evaluating the effect of 
topical atropine use for 
myopia control on IOP

XGBoost is the best predictive 
model, and baseline IOP is the 
most accurate predictive factor

ML=Machine learning, DL=Deep learning, AUC=Area under the receiver operating characteristic curve, SE=Spherical equivalent, WTW=White to white, 
CCT=Central corneal thickness, AL=Axial length, ACD=Anterior chamber depth, IoU=Intersection over Union, IOP=Intraocular pressure, AI=Artificial intelligence
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include but are not limited to, multimodal AI models, 
explainable AI (XAI), automated ML (AutoML), 
federated learning (FL), blockchain technology, and 
synthetic AI technology such as generative adversarial 
networks (GANs) that have been applied to the field of 
ophthalmology and myopia.

With the increasing quantity and availability of 
biomedical data, including biometric data, refraction 
data, treatment response, and different modalities of 

ocular imaging data, this has allowed for multimodal 
AI solutions to capture the complexity of myopia. Foo 
et al.[30] developed the multimodal AI models based on 
fundus photographs and different clinical variables, 
which demonstrated good prediction of 5‑year risk of 
developing high myopia in children.

One of the main barriers limiting the implementation 
of AI in the real world is the lack of explainability and 
the fear of its “black box” nature. The emergence of 

Table 2: Artificial  intelligence  in myopia  in adults
Tasks Author (year) Main predictors AI model Aims Main findings
Diagnosis 
and 
detection

Lu et al., 2021[35] Fundus images DL Detection of pathologic myopia AUC - 0.979, accuracy - 0.963
Tan et al., 2021[36] Fundus images DL Detection of high myopia and 

MMD
Detection of high myopia: AUC - >0.913; 
detection of MMD: AUC - >0.969

Lu et al., 2021[37] Fundus images DL Detection of pathologic 
myopia, classification of 
myopic maculopathy

AUC - 0.995, accuracy - 97.36%, 
sensitivity - 93.92%, specificity - 98.19%

Choi et al., 2021[38] OCT images DL Detection of high myopia AUC - 0.86–0.99
Wan et al., 2021[39] Fundus images DL Grade the risk of high myopia AUC - 0.9968 for low-risk high myopia, 

AUC - 0.9964 for high-risk high myopia
Li et al., 2022[40] OCT images DL Detection of retinoschisis, 

macular hole, retinal 
detachment, mCNV

AUC - 0.961–0.999, sensitivity and 
specificity - >90%

Tang et al., 
2022[41]

Fundus images DL Grade myopic maculopathy, 
diagnose pathologic myopia, 
identify and segment 
myopia-related lesions

Grading accuracy - 0.9370, diagnosing 
pathologic myopia - 0.9980, segmentation 
model F1 values - 0.80–0.95

Hemelings et al., 
2021[42]

Fundus images DL Detection of pathologic 
myopia; fovea localisation; 
segmentation of optic disc, 
retinal atrophy and retinal 
detachment

Detection of pathologic myopia: 
AUC - 0.9867; foveal localisation: 58.27 
pixels

Rauf et al., 
2021[43]

Fundus images DL Detection of pathologic myopia AUC - 0.9845, accuracy - 95%

Du et al., 2021[44] Fundus images DL Detection of pathologic 
myopia and myopic 
maculopathy (diffuse atrophy, 
patchy atrophy, macular 
atrophy, mCNV)

Diffuse atrophy AUC - 0.970, 
sensitivity - 84.44%; patchy atrophy 
AUC - 0.978, sensitivity - 87.22%; macular 
atrophy AUC - 0.982, sensitivity - 85.10%; 
mCNV AUC - 0.881, sensitivity - 37.07%

Du et al., 2021[45] OCT images DL Detection of myopic 
maculopathy

mCNV AUC - 0.985; MTM AUC - 0.946; 
DSM AUC - 0.978

Sogawa et al., 
2020[46]

OCT images DL Detection of myopic macular 
lesions (mCNV, retinoschisis)

AUC - 0.970, sensitivity - 90.6%, 
specificity - 94.2%

Ye et al., 2021[47] OCT images DL Detection of myopic 
maculopathy

AUC - 0.927–0.974

Prediction Varadarajan et al., 
2018[48]

Fundus images DL Estimate refractive error MAE - 0.56–0.91 diopters

Yoo et al., 2022[49] Posterior segment 
optical coherence 
tomography images

DL Estimate uncorrected 
refractive error; detect high 
myopia

SE prediction: MAE 2.66 diopters; 
detect high myopia: AUC - 0.813, 
accuracy - 71.4%

Treatment Shen et al., 
2023[50]

ICL size, ACD, pupil 
size, ACA, CT, AL, etc.

ML Predict the vault and the 
EVO-ICL size

Random forest R2=0.315, 
accuracy=0.828, AUC=0.765

Kim et al., 2022[51] Fundus photography, 
preoperative ACD, 
planned ablation 
thickness, age, 
preoperative CCT

ML Identify high-risk patients for 
refractive regression

Combined model AUC=0.753, single 
model AUC=0.673

DL=Deep learning, ML=Machine learning, AUC=Area under the receiver operating characteristic curve, MMD=Myopic macular degeneration, OCT=Optical 
coherence tomography, mCNV=Myopia choroidal neovascularization, MTM=Myopic tractional maculopathy, DSM=Dome-shaped macula, MAE=Mean absolute 
error, ACD=Anterior chamber depth, CCT=Central corneal thickness, ACA=Anterior chamber angle, CT=Corneal thickness, AL=Axial length, AI=Artificial 
intelligence, ICL=Implantable collamer lens
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XAI technology could potentially solve this barrier.[52,53] 
An XAI is one that produces details or reasons to make 
its functioning clear or easy to understand.[52] Studies 
have been done using an XAI framework for the 
diagnosis of macular diseases based on OCT images.[54] 
Further, in order to make ML techniques easier to apply 
and to reduce the demand for coding expertise, 
AutoML has emerged as a growing field that seeks to 
automatically select, compose, and parametrize ML 
models to achieve optimal performance on a given task 
or dataset.[55] Studies have been done with AutoML by 
ophthalmologists without coding experience to build a 
predictive model of proliferative vitreoretinopathy.[56] 
Moreover, FL is a promising approach to circumvent 
the need for large clinical datasets while preserving data 
privacy.[57] It is a distributed ML approach that aims to 
build comprehensive DL models without the need for a 
centralized database.[58] One of the successful applications 
of FL for multicentre collaboration in ophthalmology is in 
the improvement of classification performance in ROP.[59] 
However, to our knowledge, there have not been any 
studies using FL, XAI, and AutoML in myopia.

Blockchain technology offers a shared ledger for 
data management in a secure decentralized manner 
while preserving traceability when reporting results, 
addressing the concerns regarding privacy preservation 
during cross‑institutional and cross‑collaborator data 
transfer,[60,61] and facilitating the building of models 
by combining sensitive data from different sources 
to form larger training datasets.[62] Tan et al.[36] have 
demonstrated the implementation of a blockchain‑based 
AI platform that enabled secure data sharing of fundus 
photographs and DL algorithms for myopia between 
China and Singapore, securely facilitating multinational 
cooperation. GANs are a set of deep neural network 
models used to generate synthetic data.[63] With its 
generative and discriminative features, GANs can be 
used to enhance the existing training datasets, which 
in turn optimizes parameters for improved image 
classification or segmentation while reducing patient 
identification risks to preserve data privacy.[64,65] In 
ophthalmology, GAN models have been built to 
synthesize fundus photos to improve the performance 
of classification and diagnosis of AMD,[65] glaucoma,[66] 
OCT images for retinal diseases,[67] and indocyanine 
green angiography images for lesion segmentation in 
high myopia.[68]

Digital Solutions for Myopia

Background
The simultaneous maturation of multiple digital 
and telecommunications technologies has created 
an unprecedented opportunity for the field of 
ophthalmology to adapt to new models of care using 

telehealth supported by digital innovations.[69] The scope 
of digital health is broad, with components such as AI, 
big data, cloud computing and analytics, electronic 
health records, mobile health (mHealth), wearables, 
and virtual or augmented reality (AR) tools, and these 
can be used to complement each other and supplement 
telehealth services. Despite many aspects of digital 
health, there has been a greater interest and focus on 
AI recently. However, other major elements of digital 
health, such as wearables, could also substantially assist 
in improving patient‑centered care but this is an area that 
has yet to be fully explored.[70]

Digital solutions to myopia
Digital technology that has been applied to myopia 
includes digital therapeutics, self‑monitoring devices 
and applications, virtual reality (VR) or AR technology, 
and wearable devices.

Digital therapeutics uses evidence‑based software as 
therapeutic interventions, which has the potential to offer 
innovative treatment strategies for childhood myopia 
control beyond traditional treatment methods.[71] For 
example, SAT‑001 is a software algorithm that modulates 
the level of neuronal–humoral factors and has been 
proposed to retard the progression of childhood 
myopia.[71] However, further clinical studies involving 
myopic children may be warranted to validate the 
proposed strategy. Although many digital therapeutics 
products and technologies are still in the early stages, 
with the increase of research and development efforts 
combined with results achieved through clinical 
evidence, this could potentially provide promising 
solutions to myopia.

Self‑monitoring devices and applications, such as 
mHealth applications and web‑based tools, are able to 
continuously monitor diseases remotely. For example, 
the SVOne, a portable Hartmann‑Shack wavefront 
aberrometer that can be attached to a smartphone to 
examine the refractive error of the eye objectively,[72] 
has been shown to be able to provide measurements of 
refractive error that are similar to other subjective and 
objective methods. In addition, Wisse et al.[73] developed a 
web‑based test that measures visual acuity and spherical 
and cylindrical refractive errors, which was comparable 
with the standard subjective refraction results. These 
applications can provide individualized frequent 
monitoring of patients’ myopia status, building on the 
large database while providing an avenue to cultivate 
precision medicine in myopia.

VR is useful in assessing an individual’s task performance 
by simulating environmental conditions and task types 
generated by computer graphics.[69] Currently, VR 
technology has been used to help detect visual field 
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deficits in glaucoma patients,[74] and for the evaluation 
and treatment for strabismus and amblyopia.[75,76] With 
regard to myopia, there have been proposals that VR 
devices might be a possible approach to myopia control 
by maintaining peripheral defocus or simulating an 
outdoor environment.[77] Recently, researchers have 
also designed AR‑based optical systems with peripheral 
defocus for myopia control.[78] Regarding the outcomes 
of these interventions, studies have shown that choroidal 
thickness markedly increased after wearing a VR 
headset in young adults.[79] However, further studies 
are warranted to determine whether this change could 
influence myopia progression in young adults.

Wearable devices such as Clouclip have been designed for 
myopia control, which are able to detect activity and light 
intensity exposure levels in children at risk of developing 
myopia. Wen et al.[80,81] evaluated the difference in daily 
behaviors between myopic and nonmyopic participants 
using Clouclip, and found that protective factors of 
myopia include exposure to greater light intensity for a 
longer time, and involvement in near‑work activities at 
a further distance. Similarly, Cao et al.[82] reported that 
Clouclip could act as a potential strategy for managing 
myopia by encouraging the modification of unhealthy 
near‑work behaviors in children.

Challenges and Future Directions

Challenges
There are several challenges to developing and 
implementing clinical AI and digital health tools for 
myopia. First, hesitance from public and governing bodies 
to accept AI and novel digital technology is common, given 
concerns of accountability, privacy, and safety.[83] This 
contributes to the difficulty in implementing these models 
in real‑world clinical practices. As such, among the many 
innovations that have been described in this review, very 
few are used in daily clinical practice despite publication 
and validation.[84] Second, the lack of infrastructure 
support and resource limitations, especially in less 
developed regions, including poor Internet connectivity, 
and lack of eye care professionals with skills in digital 
health literacy, impede the adoption of new digital 
technologies. Third, AI and digital technology systems 
are often dependent on expensive hardware and software, 
such as high‑resolution fundus cameras for image 
acquisition, GPUs for building DL algorithms, and VR/
AR headsets or wearable devices. The direct and indirect 
costs imposed by the development, implementation, 
and maintenance of these equipment could also become 
significant barriers for less developed areas.[85] Fourth, 
there are concerns that the implementation of AI and 
digital technology could lead to potential risks for leaking 
private patient data. Enhancing cybersecurity protocols 
may be required to reduce these potential risks.

Future directions
Intensive collaborative research efforts and substantial 
investments will be necessary to overcome the challenges 
in the development and implementation of AI and 
digital tools for myopia. Establishing a global myopia 
consortium task force with nation‑level representatives 
from different regions, including eyecare professionals 
and institutions, may facilitate organized coordination 
of efforts toward integrating these digital health tools 
into clinical workflows. Global collaboration may 
allow for large‑scale prospective clinical and imaging 
data collection and creation of standardized datasets 
for developing AI models. Adequate funding and 
infrastructure support are critical for the development 
and implementation of AI and digital tools. Eye 
services need to be prioritized in national health policy 
planning and budgeting.[6,86] In addition to public health 
care policies, collaboration with nongovernmental 
organizations and private sector companies can also 
play a role to drive cost‑effective eye care services to be 
available to the public. Development and implementation 
of AI systems with lower technical requirements, such as 
smartphone‑based screening, may also serve as an initial 
economic tool to sieve patients through high‑volume 
mass screening. Further research into privacy‑preserving 
digital technology, including FL, blockchain technology, 
and GANs may help potentially strengthen AI models 
without compromising patient data confidentiality 
and ownership regulations, improving the public’s 
confidence in AI and digital tools.

Conclusion

Emerging AI and digital technologies may have the 
potential to provide solutions to tackle the unmet needs 
in myopia through rapid, efficient data processing, 
automated detection for screening and risk stratification, 
individualized prediction and prognostication of myopia 
progression. AI applications in myopia in children and 
adults have been developed for the detection, diagnosis, 
and prediction of progression. Novel AI technologies, 
including multimodal AI, XAI, FL, AutoML, and blockchain, 
may further improve prediction, circumvent concerns of 
explainability, safety, and improve accessibility. Digital 
technology advancements include digital therapeutics, 
self‑monitoring devices and applications, VR/AR 
technology, and wearable devices, which also provide 
possible avenues for monitoring myopia progression 
and control. However, there are still challenges in the 
implementation of these technologies into clinical practice, 
which include requirements for specific infrastructure and 
resources for set up, demonstrating clinically acceptable 
performance, and addressing concerns of accountability 
and safety of data management. Nevertheless, it remains 
an evolving field with the potential to address the growing 
global burden of myopia.
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