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ABSTRACT

The production rate of gene expression data is noth-
ing less than astounding. However, with the benefit
of hindsight we can assert that, since we completely
ignored the non-coding part of the transcriptome, we
spent the last decade to study cell mechanisms hav-
ing few data in our hands. In this scenario, microR-
NAs, which are key post-trascriptional regulators, de-
serve special attention. Given the state of knowledge
about their biogenesis, mechanisms of action and
the numerous experimentally validated target genes,
miRNAs are also gradually appearing in the formal
pathway representations such as KEGG and Reac-
tome maps. However, the number of miRNAs anno-
tated in pathway maps are very few and pathway
analyses exploiting this new regulatory layer are still
lacking. To fill these gaps, we present ‘micrographite’
a new pipeline to perform topological pathway analy-
sis integrating gene and miRNA expression profiles.
Here, micrographite is used to study and dissect the
epithelial ovarian cancer gene and miRNA transcrip-
tome defining and validating a new regulatory circuit
related to ovarian cancer histotype specificity.

INTRODUCTION

In the last years, genome-wide expression studies of genes
and microRNAs (miRNAs) have given a strong impulse
in the comprehension of the cell regulatory mechanisms.
Moreover, it has been increasingly clear that the integration
of different omic data, although challenging, is a successful
approach to have a wider perspective of the complexity of
the biological systems.

Currently, miRNA and gene circuits are identified
through the combination of binding prediction and expres-
sion correlation analyses (1–4). Although effective in many
cases the simple correlation does not imply a causal rela-

tionship and a lot of false positive miRNA–mRNA inter-
actions are still found. Moreover, miRNA and target genes
are characterized by many-to-many relationships and they
should be considered as part of a much more complex sys-
tem of cellular interactions. On the contrary, correlation
analyses are based on one-to-one relationships, one miRNA
and one gene and they ignore the biological context of these
cell signals.

Notwithstanding the defective analysis procedures, since
their discovery, miRNAs have been extensively studied and
hundreds of target genes have been found. However, despite
all these efforts, signaling pathways that are the formal de-
scription of biological circuits, contain very few miRNAs.
This penalizes pathway analyses, widely used and essential
approaches to enhance transcriptome measurements inter-
pretations.

To overcome this limitation we developed a new com-
putational pipeline, called micrographite, able to inte-
grate pathway information with predicted and validated
miRNA–target interactions and to perform integrated
topological analyses of miRNA and gene expression pro-
files to identify miRNA–gene circuits.

The advantage of our approach is two-fold: (i) it performs
integrated pathway analyses to better describe the cellular
scenario shaped by the underlying expression data, (ii) it se-
lects and refines predicted miRNA–target interactions ex-
ploiting the biological context. With these features, micro-
graphite is a helpful tool to guide the researcher in the in-
terpretation of the expression measurements.

Here, we used our pipeline to study the regulatory circuits
in the early stage of Epithelial Ovarian Cancer (EOC). EOC
is the most common cause of death in gynecological dis-
eases, with a 5-year survival rate virtually unchanged for the
past 30 years (5,6). Despite the enormous effort which has
been invested in understanding this malignancy, the causes
of its pathogenesis are still unknown, as well as the mech-
anism of disease in the early phases of the carcinogenesis.
In this context, a better characterization of the molecular
events of EOC subtypes can be potentially helpful to clar-
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ify the mechanism of the disease and to improve diagno-
sis. In this paper, gene and miRNA expression profiles of
73 snap-frozen stage I EOC biopsies have been studied to
understand the circuits that guide the mucinous histotype
specificities. Additionally, real time-Polymerase Chain Re-
action (PCR) expression measurements of a portion of the
identified circuit were provided showing the reliability of the
method.

MATERIALS AND METHODS

micrographite pipeline

Wiring miRNA to pathway. Pathway topologies derived
from graphite, a Bioconductor package that we recently de-
veloped to store, manage and convert pathway annotations
(from BioPax or KGML formats) into gene–gene networks.
graphite is a pathway data interpreter that, following bio-
logically driven rules, is able to solve the complexity of the
pathway modules to generate interaction networks suitable
for topological pathway analyses (7). The current version of
graphite gathers pathway annotations from Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) (8), Reactome (9),
Nature Pathway Interaction Database (NCI) (10) and Bio-
carta databases. micrographite expands a gene-based path-
way graph adding a miRNA into the pathway if, and only
if, at least one of its target gene is a node of the gene-
based network (Figure 1, step 1). Two different batches of
miRNA–target interactions are considered: the in silico pre-
dicted interactions and the validated ones. The validated
miRNA–target interactions are derived from mirTarBase
(11), miRecords (12) and a manual bibliographic research,
selecting only the interactions validated by reporter assay.
Due to the daily increase of the miRNA–target validated
data, public databases are not exhaustive, thus the man-
ual bibliographic research is a fundamental step to have
updated biological information. We strongly encourage the
users to manually update the list of validated targets at least
for those miRNAs known to be related to the studied con-
ditions. This step can be simplified using databases such as
miRbase (13), miRWalk (14) or miR2Disease (15). As an ex-
ample, we realized that some fundamental miRNA–target
interactions validated on ovarian cancer were missing, such
as some interactions involving miR-200 family. The pre-
dicted miRNA interactions are selected using prediction al-
gorithms scores filtered by expression correlation analyses,
therefore, the insertion of predicted miRNA–target interac-
tions is dataset dependent. Although a miRNA has the role
to down-regulate its target levels, the miRNA expression is
not always anti-correlated with the target expression, in fact
their relationship is dependent on the topology of the signal-
ing pathway in which this interaction occurs (16). For this
reason, in our setup, we consider miRNA–target with both
correlated and anti-correlated interactions.

Specifically in the ovarian cancer dataset we used Tar-
getScan predictions (with Pct ≥ 0.8) and predicted miRNA–
mRNA couples with a Pearson correlation coefficient |r| ≥
0.4 and q-value ≤0.05. See Supplementary Material S1 for
some statistics regarding the numbers of predicted and vali-
dated interactions included in the pipeline jointly with their
overlap.

Topological pathway analysis. The topological pathway
analyses used in micrographite is a modified version of
CliPPER. CliPPER is a Bioconductor package that im-
plements a topological pathway analysis based on Gaus-
sian graphical model theory and then it is able to deal with
data deriving from different sources with possibly differ-
ent measurement scales. Given the topological structure
of a pathway graph, the procedure implements a two-step
strategy: (i) it selects pathways with covariance matrices or
means significantly different between experimental condi-
tions; and (ii) on these selected pathways, it identifies por-
tions of the pathway (hereafter called ’paths’) mostly associ-
ated with the phenotype. The identification of paths within
a significantly altered pathway is one of the most innova-
tive CliPPER features. Briefly, path identification is based
on the graph decomposition into small-connected compo-
nents, called cliques. Each clique is tested independently (ac-
cording to the test on the means and/or concentration ma-
trices) and then a significant level (P-value) for each clique
is obtained. Following the Gaussian graphical model the-
ory, maximal cliques can be used to reconstruct a junction
tree. Junction tree is a hyper-tree having cliques as nodes
and satisfying the running intersection property according
to which, for any cliques C1 and C2 in the tree, every clique
on the path connecting C1 and C2 contains C1 ∩ C2. Using
the junction tree structure (that resembles the signal propa-
gation of the pathway) we are able to identify and score all
the paths in the graph. A path is a list of adjacent signifi-
cant cliques (allowing a maximum of one gap, where a gap
is a non-significant clique). The score of a path is a function
of all the P-values of the cliques contributing to the path
(significant P-value enhances the score, while a gap penal-
izes it); higher the score, better the path. For more technical
and methodological details see (17).

Working pathway-by-pathway, the high degree of over-
lap of pathway annotations is not considered and this may
lead to redundant results or truncated paths (a path that
starts in a pathway and ends into another one) (18). To cope
with these drawbacks micrographite implements a recursive
procedure as follows: (i) selection of pathways – pathways
are selected according to the significance levels obtained
from the test on the mean or/and on concentration ma-
trices of the whole pathway graphs (Figure 1, step 2); (ii)
best path identification–– for each of the previously selected
pathways the path with the highest score is selected (Fig-
ure 1, step 3); (iii) meta–pathway construction –– all the top-
scored paths identified in the previous steps are combined
generating a meta–pathway. The combination is the non-
redundant union of all the top-scored paths, in an effort
to reduce redundancy and to unify truncated paths (Fig-
ure 1, step 4) and (iv) meta–pathway analysis –– the meta–
pathway paths are analyzed and ranked according to their
involvement in the phenotype (Figure 1, step 5).

Implementation details

micrographite is available as R functions under the AGPL-3
license. Code and guideline about micrographite pipeline is
available at http://romualdi.bio.unipd.it/micrographite. The
latest version of Bioconductor, graphite and CliPPER pack-
ages are required. micrographite can be used with validated
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Figure 1. Graphical outline of the computational approach.

and/or predicted miRNA–target interactions. Depending
on the amount of expression data analyzed, it could take
several hours on an entire pathway database. Specifically,
using an Intel(R) Xeon(R) 3.30GH processor, the presented
analysis on ovarian cancer data with 10 000 permutations,
using validated and predicted miRNA–mRNA interactions
and the KEGG pathway database took 20 hours.

Permutation is used to estimate the significance levels of
the test on the mean and on the concentration matrices ei-
ther for the whole pathway or for the cliques. Under the null
hypothesis the two groups have equal multivariate means
(for the test on the means) and equal covariance matrices
(for the test on the concentration matrices). Thus, using
a classical permutational approach, we randomly permute
samples across groups.

Patient collection

A cohort of 151 snap-frozen tumor biopsies was collected
from a frozen tissue bank, located at the Department of On-
cology, IRCCS-Mario Negri Institute, Milano, Italy. Biop-
sies were collected from patients who underwent surgery for
EOC at the Obstetrics and Gynaecology Department, San
Gerardo Hospital, Monza, Italy between September 1992
and March 2010, as described by Marchini et al. (19). Tu-
mor tissue samples, collected at the time of surgery, were
sharp-dissected and snap frozen in liquid nitrogen within
15 min from resection, and then stored at −80◦C. The pa-
tients underwent a complete staging procedure, according
to the International Federation of Gynecological and Ob-
stetrics criteria (FIGO). All biopsies selected for the study
belonged to patients naive to chemotherapy and with diag-

nosis of stage I EOC. Tumor histological types were deter-
mined following World Health Organization (WHO) stan-
dards. A written informed consent was obtained from all
the patients enrolled in the study, which has been performed
following the Declaration of Helsinki set of principles. The
local scientific ethical committee approved the collection
and the use of tumor samples. Seventy-three patients of the
entire cohort have been used to perform matched miRNA
and mRNA expression profiles using microarrays. The ar-
ray set of biopsies are composed of 15 mucinous, 23 serous,
19 endometrioid and 16 clear cell histotypes. The remain-
ing 78 samples (27 mucinous, 22 serous, 22 endometrioid
and seven clear cell histotypes) have been used as external
and independent validation set.

Gene and miRNA expression measurements

Frozen tissues specimens (30 mg) were homogenized in an
TissueLyser LT (Qiagen, Milan, Italy) and total ribonu-
cleicacid (RNA) purified using RNeasy Mini Kit isolation
system (Qiagen), following manufacturers protocols. To-
tal RNA concentration and proteins contamination were
determined by Nanodrop spectrophotometer (Nanodrop
Technologies, Ambion). Only samples with a RNA integrity
number (RIN) larger than six and a Nanodrop A260:280 ra-
tio between 1.8 and 2.1 were further processed and aliquots
stored at −80◦C until use. Array experiments were per-
formed using standard procedures as previously published
by (20). Briefly, 100 ng of total RNA was reverse transcribed
into Cy3-labeled cRNA using LowInput QuickAmp label-
ing kit (Agilent Technologies, Palo Alto, CA, USA) and hy-
bridized with a RNA labeling and hybridization kit accord-
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ing to the manufacturer’s instructions (Agilent Technolo-
gies). miRNA extraction, labeling and hybridization using
commercially available G4470B human miRNA Microar-
ray kit (Agilent) were performed as previously described
(20), raw data have been submitted to ArrayExpress (E-
MTAB-1067). For gene expression measurements we used
the commercially available G4851B human whole GE Mi-
croarray kit (SurePrint G3 Human Gene Expression 8 ×
60K v2 Microarray Kit Agilent Technologies) which con-
sists of 60K features printed in an 8-plex format (8 × 60
array). The arrays were washed and scanned with a laser
confocal scanner (G2565B, Agilent Technologies) accord-
ing to the manufacturer’s instructions. mRNA microarrays
underwent standard post-hybridization processing and the
intensities of fluorescence were calculated by Feature Ex-
traction software v11 (Agilent Technologies). Gene expres-
sion raw data have been submitted to ArrayExpress (E-
MTAB-1814). Raw data (mRNA and miRNA) were pre-
processed to filter out those probes with more than 40% of
measurements below the signal-to-noise threshold. Filtered
data were normalized using quantile normalization (21).

qRT-PCR validation

Gene and miRNAs expression levels were validated by qRT-
PCR on both training (array set) and validation set of pa-
tients. qRT-PCR have been performed using Sybr Green
protocol (Qiagen, Milano, Italy) on an Applied Biosys-
tems 7900HT instrument. Experiments were run in tripli-
cate, using 384-well reaction plates in an automatic liquid
handling station (epMotion 5075LH; Eppendorf, Milano,
Italy). Raw data was generated with Sodium dodecylsul-
phate (SDS) Relative Quantification software (version 2.3;
Ambion-ABI), data were normalized using the geometric
mean of the four independent housekeeping controls (for
miRNAs: RNU6B, SNORD61, SNORD72, SNORD68;
for genes: ACTB, B2M, PPIA and HPRT1). Two-sided Stu-
dent’s t-test were used to verify among groups mean differ-
ences; P-value ≤0.05 was considered statistically significant.

RESULTS AND DISCUSSION

Pipeline overview

micrographite pipeline, briefly summarized in Figure 1,
is based on the use of two bioinformatic tools that we
have recently developed in the context of pathway analysis:
graphite (7) and CliPPER (17).

The method starts combining pathway topology and
miRNA–target gene interactions (see Figure 1 step 1).
Then, using these new set of networks it applies a modified
and recursive version of CliPPER analysis (Figure 1, steps
2–5 and ’Implementation Details’ section) on matched gene
and miRNA expressions profiles (17). The final outcomes
are (i) a list of pathways composed of genes and miRNAs
associated to the phenotype (Figure 1, step 2) and (ii) a list
of scored circuits composed by nodes, both genes and miR-
NAs and interactions that are strictly involved in the biolog-
ical problem studied (Figure 1, step 5). See ’Materials and
Methods’ section for details.

Wiring miRNAs to pathway

Pathway analyses are manually annotated and derived by a
long and careful process of curation produced by experts in
the field. Thus, in micrographite we decide to be respectful
of the pathway curation philosophy adding prevalently the
miRNA–target interactions validated with reporter assays.
Using this criterion we avoid the high-rate of false positives
that characterize other experimental methods such as high-
throughput techniques, as well as text mining guided by
abstract co-occurrences. In addition, we decide to include
the good and conserved TargetScan predictions filtered by
expression correlation analysis. This approach leads to the
selection of a small set of predicted interactions reducing
false positives. Finally, we ended with 2118 validated in-
teractions, 57 predicted interactions and six both predicted
and validated (see Supplementary Material S1 for details).

However, since miRNA interactions are included in path-
ways only if the target gene is a pathway member, only a part
of the collected interactions can be used. Respectively 1285,
1320, 1413 and 848 miRNA–target interactions are inte-
grated in KEGG, Reactome, NCI and Biocarta pathways.
In Table 1, the mean and median numbers of miRNAs,
genes, miRNA–gene and gene–gene interactions per path-
ways are reported. As expected, the number of miRNAs in-
tegrated in pathway annotations is proportional to the di-
mension of the pathway; of consequence KEGG database,
which is characterized by large pathways, contains also the
pathways with the highest number of miRNAs. Table 2 re-
ports the top 20 KEGG pathways ordered by the ratio be-
tween the number of miRNAs and the original size of the
pathway (with only genes). The pathways with the high-
est number of inserted miRNAs are disease related path-
ways that in some cases quadrupled their original size. Ac-
cordingly, the top target genes ranked by the number of
experimentally validated miRNAs are disease associated
genes, such as CDKN1A (39 validated targets), VEGFA
and BCL2. These results testify the dominant role of medi-
cal research in the field of miRNA target discovery.

Epithelial ovarian cancer

The ovarian cancer can be divided in at least 15 types of
tumors, each of them characterized by specific histopa-
tological features, molecular alterations, risk factors, dif-
ferent chemotherapy responses and resistances. However,
the main classification criterion is in histologic subtypes.
Low-grade serous, mucinous, endometrioid and clear cell
histotypes represent the great majority of stage I ovarian
cancers. Given this scenario, the identification of subtype-
specific biomarkers and the understanding of mechanisms
that characterize the tumors might allow the development
of more efficient diagnosis and treatment strategies. EOC is
characterized by alterations of the epidermal growth fac-
tor receptor (EGFR), PI3K/AKT/mTOR signaling and
by mutations or epigenetic losses of BRCA1/2, PTEN
and TP53 (22,23). EOC shows loss of E-cadherin expres-
sion compared to epithelial cells resulting in a decreased
cell–cell adhesion and nuclear localization of beta-catenin,
which further promotes the invasive phenotype. The TGF-
beta/SMAD signaling is one of the best candidate pathway
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Table 1. Summary statistics of pathway composition after the integration of validated miRNAs

Database No. of pathways
No. of miRNAs per
pathwaya

No. of miRNA–gene
interactions per
pathwaya

No. of genes per
pathwaya

No. of gene–gene
interactions per
pathwaya

KEGG 220 34.71 (18) 52.03 (20) 89.89 (59) 329.58 (162)
Reactome 1210 17.25 (6) 23.47 (6) 59.50 (26) 844.19 (95)
Biocarta 247 18.47 (13) 30.21 (25) 21.43 (14) 39.00 (28)
Nci 782 15.06 (5) 18.28 (5) 30.35 (14) 187.70 (24)

aMean (median) numbers.

Table 2. Summary statistics of the top 20 KEGG integrated pathways ranked by the ratio between no. of miRNAs and no. of genes

Pathway name No. of genes No. of miRNAs + genes No. of miRNAs
No. of genes

Bladder cancer 29 127 4.3
Viral carcinogenesis 6 26 4.3
Dorso-ventral axis formation 12 42 3.5
Rheumatoid arthritis 19 65 3.4
Malaria 11 35 3.1
Glioma 65 189 2.9
Thyroid cancer 28 80 2.8
Melanoma 69 196 2.8
Colorectal cancer 49 138 2.8
Chronic myeloid leukemia 73 204 2.7
Endometrial cancer 45 124 2.7
Pancreatic cancer 69 189 2.7
p53 signaling pathway 68 181 2.6
Non-small cell lung cancer 52 138 2.6
Prostate cancer 87 230 2.6
Renal cell carcinoma 60 145 2.4
Acute myeloid leukemia 57 133 2.3
ErbB signaling pathway 88 197 2.2
Small cell lung cancer 83 181 2.1
VEGF signaling pathway 67 146 2.1

involved in the aberrant regulation of the epithelial to mes-
enchymal transition in EOC (24,25). Using micrographite,
we focused on the cell signaling characterization of muci-
nous histotypes. Mucinous ovarian carcinomas (MucEOC)
is one of the four main subtypes of EOCs mostly diagnosed
at early stages. MucEOCs develop almost always within
the ovary and histologically it is indistinguishable from the
mucinous non-ovarian carcinoma or the metastatic carci-
noma with mucinous differentiation (cervix, colon/rectum,
appendix cancers) (26). The numerous commonalities be-
tween ovarian and non-ovarian mucinous carcinoma, such
as colorectal cancer have driven hypotheses about a shared
aetiology and a possible common treatment of the two
tumors. MucEOC is characterized by high frequencies of
KRAS and BRAF mutations and ERBB2 amplifications.
The pathway of mitogen activated protein kinase (MAPK),
the WNT (18% of tumors) and TP53 pathways are altered
(26). Moreover, mucEOC is characterized by high levels of
miR-192 and miR-194, as well as mucinous non-ovarian
cancer samples (20).

micrographite results: the mucinous pathway

Using EOC dataset, KEGG pathways were enriched by
1285 validated miRNA–target interactions and 63 Tar-
getsScan predictions (Supplementary Material S1). Tar-
getScan predictions were selected using a correlation-based
cut-off (|r|≥0.4). We tried different correlation thresholds
(Supplementary Material S4) in order to test the robust-

ness of the approach. Our results show that the inclusion
of a large number of miRNA–target interactions (e.g. using
a loose threshold such as |r|≥0.2) gives worse results than in-
cluding lower but well refined interactions. This is in agree-
ment with the idea that the inclusion of noise in the graph
reduces the efficiency of the method hiding real biological
signals.

Comparing mucinous versus non-mucinous samples we
obtained a list of 22 significant pathways (micrographite
step 2) reported in Table 3. All the pathways showing P-
values ≤0.1 for both mean and variance tests were fur-
ther considered for the follow analysis steps. The results at
the pathway level are coherent with the biological knowl-
edge characterizing mucinous subtype: the similarity of
MucEOC with colorectal cancer, the involvement of the epi-
dermal and transforming growth factors signals, such as
the ErbB and the TGF-beta signaling and, moreover, the
p53 signaling pathway. Also, the involvement of ’One car-
bon pool by folate’ metabolic pathway is interesting in the
light of the registered association between the high-risk of
colorectal carcinoma and the folate depletion, which af-
fects the mechanisms of DNA methylation, integrity and re-
pair (27). Moreover, it is worth to note that melanoma and
bladder cancer pathways share genes such as PI3K, TP53,
MDM2, ERBB2, E-caderin, that seem to be associated also
to MucEOC.

All the significant pathways listed in Table 3 were ana-
lyzed looking for the best scored path inside each pathway
(portion of the whole pathway see Supplementary Material
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Table 3. Pathway level analysis. Pathway with adjusted P-value ≤0.1 for both mean variance tests are reported

Pathway name q-value mean q-value variance

Amyotrophic lateral sclerosis (ALS) 0 0
Arachidonic acid metabolism 0 0
Bacterial invasion of epithelial cells 0 0.09
Bladder cancer 0 0
Calcium signaling pathway 0 0.09
Chemical carcinogenesis 0 0.09
Colorectal cancer 0 0
Dilated cardiomyopathy 0 0
Drug metabolism - cytochrome P450 0 0.09
Epstein-Barr virus infection 0 0
ErbB signaling pathway 0 0
Ether lipid metabolism 0 0
Folate biosynthesis 0 0
Glycerophospholipid metabolism 0 0.09
Hypertrophic cardiomyopathy (HCM) 0 0
Melanoma 0 0.09
Metabolism of xenobiotics by cytochrome
P450

0 0.09

One carbon pool by folate 0 0
p53 signaling pathway 0 0
TGF-beta signaling pathway 0 0
Type II diabetes mellitus 0 0
Viral myocarditis 0 0

S2). All the main paths of each pathway were then combined
into a new non-redundant meta–pathway (Supplementary
Material S3). As mentioned before, this path combination
reduces redundant information due to pathway overlaps
and connects disjoint paths due to the artificial subdivision
of cellular processes into discrete entities (paths that start
in a pathway and end in another one). The union of all the
paths has produced two separated networks (Supplemen-
tary Material S4 Figure 1), in which the color of edges rep-
resents the pathways of origin. The meta–pathway was then
analyzed in order to identify and rank its paths (See Sup-
plementary Material S4 Figure 2 and Supplementary Ma-
terial S5). This procedure allows the finding of chains of
genes and miRNAs that are differentially involved in the
mucinous compared to other histotypes. Figure 2A shows
the meta–pathways that contains the maximum scored path
hereafter called the mucEOC pathway.

The mucEOC pathway, composed of 61 elements (45
genes and 16 miRNAs), contains many EOC and MucEOC
related genes, such as miR-192 and miR-194 that have a
mucEOC expression specificity. Interestingly, in this rep-
resentation of the cell signaling it is clear that miR-192
and miR-194 act as bridges across multiple cellular sig-
nals of ovarian cancer interest. Specifically, miR-192 con-
trols the signaling of RB1/E2Fs and, together with miR-
194, the MDM2/TP53 signaling. Both the signaling paths,
RB1/E2Fs and MDM2/TP53, are controllers of cell cy-
cle that seems to be deeply affected as suggested by the
presence in the mucEOC pathway of cyclins (CCND1,
CCNA2), cyclin-dependent kinase (CDK2, CDK4, CDK6)
and cyclin-dependent kinase inhibitors (CDKN2A) (28–
30). The signaling involving CDKN2A, MDM2, TP53,
miR-192/194, has already been studied in detail for the
characterization of the mucEOC (20). Moreover, in the
mucEOC pathway, both miR-192 and miR-194, together
with miR-200c and miR-141, regulate ACVR2B, a growth
and differentiation factor which belongs to the transform-

ing growth factor-beta (TGF-beta) superfamily. Both miR-
200c and miR-141 are miRNA associated to EOC survival
(19,31) together with the TGF-beta signaling that, acting on
cell growth and differentiation, is considered crucial for the
understanding of EOC molecular mechanism (32). In this
context, the results of mucEOC pathway suggest an inter-
play of miR-192, miR-194, miR-200c and miR-141 in the
down-regulation of ACVR2B, this scenario is already ob-
served in other type of cancers associated with an aberrant
regulation of the TGF-beta pathway (33). Then, miR-194
regulates both THBS1, the gene for the Thrombospondin,
and ITGA9, a gene coding for an Integrin. These two pro-
teins, being part of a system to regulate the cell-to-cell
and cell-to-matrix interactions, are key elements to regulate
apoptosis, cell proliferation and angiogenesis and, more-
over, THBS1 is a gene already associated to EOC (34,35).
Another interesting relation is the regulation of RAC1 op-
erated by miR-194. In fact, RAC1, together with RAL-
GDS, represents the signal downstream KRAS, an impor-
tant gene that is known to be mutated and involved in
mucEOC. KRAS mutations are deeply investigated for col-
orectal cancer, which is the pathway of origin of these in-
teractions (36,37). Finally, two miRNA–target gene interac-
tions of the mucEOC pathway are part of the initial batch of
miRNA–target relations inserted in the pathways because in
silico predicted couples with correlated expressions. These
two in silico predictions are also already validated interac-
tions (38), suggesting that micrographite could be used also
to efficiently select the predicted miRNA–target couples for
the assay validations.

micrographite results using only gene expression: gaining
power from miRNAs

The inclusion of miRNAs within a pathway analysis frame-
work is by itself a great improvement since at the moment
there are no methods able to topologically combine mRNA
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Figure 2. Mucinous ovarian cancer circuit and qRT-PCR validations. (A) The path with the maximum score: the mucinous path. As described in the legend,
miRNA–target validated interactions can be achieved from both manual curation (literature mining) and public databases. Predicted interactions are
obtained from Targetscan predictions filtered by expression correlations. (B) qRT-PCR boxplot for specific genes and miRNA of the best path. Mucinous
(M), clear cell (C), serous (S), endometrioid (E): ***≤0.005, **≤0.05, *≤0.1.
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and miRNA within regulatory signals. However, to quantify
this enhancement we performed micrographite pipeline us-
ing only gene expression data. The meta–pathway identified
by the pipeline using only mRNA data is smaller and it is
completely contained in the meta–pathway obtained using
mRNA and miRNA datasets. The final best path obtained
by mRNA data, is contained in the sixth path (ranked by
max score) of the analysis using both mRNA and miR-
NAs (see Supplementary Material S6). These findings fur-
ther suggest that the inclusion of miRNAs improves and
expands the gene analysis results. This is not a surprising
conclusion at least for two reasons: from a methodological
point of view, the more complete the pathways, the more ac-
curate the analysis; from an applicative point of view, miR-
NAs are known to play a key role in tissue specificity and in
regulation of cancer circuits (39–41). Thus, at least for our
case study, miRNA inclusion in the pathway analyses is a
necessary and a major improvement.

Expression validations

In addition to numerous literature confirmations on the ac-
curacy of our results, we performed some additional mea-
surements by qRT-PCR. For the validation, we focused
on miR-192 and miR-194 and their action on the cir-
cuit upstream p53 composed by CDKN2A and MDM2,
plus some elements closed to this circuit (CDK6, CDK4,
E2F3, ACVR2B, INHBB,INHBA, miR-195-5p, miR-20a-
5p, miR-30a) for a total of eight genes and five miRNAs.
Specifically, the expression of miR-192/194 cluster is di-
rectly controlled by wild type TP53 that, enhancing their
transcriptions, is able to arrest cell cycle (42). Among the
targets of miR-192/194 is MDM2, a negative regulator of
TP53 (43). These relationships define a positive feed back
loop involving TP53 that, through miR-192/194, inhibits
its own inhibitor. Another interesting element linked to this
circuit is CDKN2A (44), which prevents the degradation
and inactivation of p53 operated by MDM2 (45). All qRT-
PCRs on these genes confirm the differential involvement
of this circuit in MucEOC samples in respect to the other
EOC histotypes (Figure 2C and Supplementary Material
S7). Specifically, miR-192, miR-194 and CDKN2A results
up-regulated in MucEOC and their target MDM2 down-
regulated. Furthermore, ACVR2B, CDK4, CDK6, E2F3,
miR-195-5p, miR-20a-5p and miR-30a were differentially
expressed in mucinous versus all the other histotypes, while
INHBA, INHBB show expression levels significantly higher
in mucinous with respect only to serous and clear cell sam-
ples. These results confirm the involvement of this regula-
tory circuit in the characterization of mucinous subtype.

CONCLUSION

The micrographite pipeline allows integrated analyses of
gene and miRNA expression profiles within a pathway-
based context. At our knowledge this is the first attempt
in this direction. We applied successfully micrographite to
dissect the complexity of regulatory networks in epithelial
ovarian cancer. The circuit obtained conforms to the exist-
ing knowledge and adds new insights for the comprehension
of the mucEOC subtype.

For researchers working with miRNAs, the advantages of
our approach are several: (i) the possibility to integrate and
(ii) analyze miRNA and mRNA expression profiles using
pathway information and (iii) to biologically contextualize
miRNA–mRNA validated and predicted interactions. The
micrographite results allow the biologist to have a clear and
more complete overview of cell behavior, this is fundamen-
tal in the understanding of cellular processes and to formu-
late new hypotheses during the interpretation of expression
data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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