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Immune checkpoint inhibitor (ICI) responses vary, and biomarkers for predicting responders are urgently needed. Growing
evidence points to the association between programmed cell death protein ligand 2 (PDL2) and ICI benefits, while clinical
evidences were lacking. Thus, we consolidated five public ICI-treated cohorts to investigate the association between PDL2
expression and ICI treatment prognosis. Immune cell signatures and IFN-γ signatures are investigated in The Cancer Genome
Atlas (TCGA) dataset and later in ICI-treated cohorts to explore the association between PDL2 and antitumor immunity in
the tumor microenvironment (TME). We found that immune cell signatures and IFN-γ signatures were enriched in the PDL2-
high group in TCGA pooled cohorts and most cancers. Consistently, in ICI-treated cohorts, patients with high PDL2
expression experienced longer overall survival time (OS) and were more likely responsive to ICIs than patients with low PDL2
expression. Immune cell scores of the high PDL2 expression patients were significantly higher (P < 0:05) than those of the low
PDL2 expression patients in ICI-treated cohorts. In conclusion, our findings suggest that PDL2 is a potential predictive
biomarker for ICIs.

1. Introduction

ICIs, which combine the proteins of programmed cell death
protein 1 (PD-1) axis or cytotoxic T lymphocyte-associated
protein 4 (CTLA-4), are capable of improving the clinical
prognosis of patients with various forms of cancers [1–4].
However, the low response rate in unselected populations
limits their clinical efficacy. The active PD-1 signature in
the tumor microenvironment is attributable for the escape
of tumor immunity [5, 6]. Binding of PD-1 to its ligands,
programmed cell death protein ligand 1 (PDL1) and PDL2,
can result in a failed CD8+ T cell activation, which weakens
the signals produced by CD28 and T cell receptor [7, 8]. PD-
1 is mainly expressed by activated T cells, and PDL1 appears
on antigen-presenting cells (APCs) or tumor cells [9]. Thus,
PDL1 immunohistochemistry (IHC) is now the mainstay for
the clinical screening of ICI responders from nonresponders.

However, in previous studies, the responses to ICI treatment
were inconsistent; some PDL1-positive patients responded
poorly, while some PDL1-negative patients had considerable
response rates [10–12]. Even in many clinical trials, no cor-
relation was observed between the PDL1 expression and ICI
treatment benefits [13–15]. Therefore, new predictive bio-
markers are urgently needed for patients with cancer.

PDL2 is the other ligand for PD-1. Unlike PDL1, PDL2
was initially only observed in APCs [6]. Recently, after
microenvironmental stimulation, researchers found that
many immune cells and tumor cells could express PDL2
[16–19]. PDL2 is also considered a potential therapeutic tar-
get in prostate cancer [20]. One clinical study showed
incomplete expression between the PDL1 and PDL2 in head
and neck squamous cell carcinoma patients [21]. Consis-
tently, animal models indicated combined anti-PDL1 and
anti-PDL2 could abolish the tolerance after single anti-
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PDL1 treatment [22, 23]. Vivo trails show PDL1-specific and
PDL2-specific T cells represent different T cell antigens [24].
However, the investigation between PDL2 and the prognosis
of patients across multiple cancers receiving ICI treatment
was still lacking, and the possible behavior of PDL2 in the
TME remains unclear. Therefore, we conducted this study
using data collected from RNA-seq and clinical informa-
tion of published ICI cohorts to explore the effect of
PDL2 expression on the prognosis of patients receiving
ICI treatment for different cancers. We also used TCGA
database to explore the characteristics of PDL2 in the
TME.

2. Materials and Methods

2.1. Public Data Collection. The mRNA expression profiles
of TCGA patients were downloaded from the Genomic Data
Commons (https://portal.gdc.cancer.gov/) using the R pack-
age TCGAbiolinks (https://bioconductor.org/packages/
release/bioc/html/TCGAbiolinks.html). The samples that
had sequencing quality evaluated as “A” were retained.
GRCh38.homo (https://asia.ensembl.org/index.html) was
used for Gene ID conversion; the mRNA data of non-
protein-coding genes were excluded. Considering that
LAML is not a solid tumor, patients with LAML were
excluded. In each type of cancer, we divided samples into
two groups using the median of PDL2 expression.

Three melanoma cohorts (Gide cohort: n = 73; Liu
cohort: n = 121; and Van Allen cohort: n = 41), a bladder
cancer cohort (Mariathasan cohort: n = 348), and a clear cell
renal cell carcinoma cohort (Miao cohort: n = 33) with
detailed clinical information, response data, and mRNA-
seq data from published researches were analyzed [25–29].
All patients were treated with anti-PD-(L)1, anti-CTLA-4,
or anti-PD-(L)1 combined with anti-CTLA-4. The efficacy
of antitumor immunotherapy was evaluated by the Response
Evaluation Criteria in Solid Tumors (RECIST) version 1.1.
Patients who achieved complete response (CR) and partial
response (PR) or had stable disease (SD) that lasted for >6
months were considered to have response to ICI treatment.
All other patients were considered to have no response to
ICI treatment.

2.2. Gene Set Enrichment Analysis. We performed GSEA
(https://www.gsea-msigdb.org/gsea/index.jsp) to detect the
distribution of immune genes in TCGA cohorts. CD8+ T
cell signature, DC signature, Th1 signature, and IFN-γ gene
signatures were collected from published studies [30–33].
The immune infiltration scores of three cell types in each
ICI sample were calculated using Single Sample Gene Set
Enrichment analysis (ssGSEA) of GSVA of R package
(http://bioconductor.org/packages/release/bioc/html/GSVA
.html). The fragments per kilobase of transcript per million
mapped reads (FPKM) of protein-coding genes between
the high PDL2 expression and low PDL2 expression groups
were analyzed in each cancer and TCGA pooled cohort. The
results were considered statistically different when normal-
ized P values (P) were <0.05.

2.3. Statistical Analysis. Univariate Cox regression was used
to analyze whether high PDL2 expression is protective
(0 < hazard ratio ðHRÞ < 1) or increases the risk (HR > 1)
regarding the prognosis of ICI treatment. The overall sur-
vival (OS) was assessed and compared between different
groups using Kaplan-Meier (KM) method and a log-rank
test. Wilcoxon’s signed rank test was used to compare the
difference of infiltration scores between the PDL2-high
group and the PDL2-low group in each ICI cohort. P value
of <0.05 was considered to indicate statistical significance
in these analyses. All statistical analyses were performed on
R version 4.0.0.

3. Results

3.1. PDL2 Is Associated with an Activated Antitumor
Environment in TCGA. To investigate the possible effect of
PDL2 on immune cell infiltration, GSEA was performed in
TCGA pooled cohort. As shown in Figures 1(a)–1(c), CD8
+ T cell signatures (NES = 1:82, P = 0:0083), DC signature
(NES = 2:44, P < 0:0001), and Th1 signature (NES = 2:77, P
< 0:0001) were significantly enriched in the high PDL2
expression group. To evaluate the differences between differ-
ent tumor types, we performed GSEA in 32 separate cancers
(Figures S1–S3). Although NES was slightly different, CD8+
T cell signature and DC signature were enriched in the
PDL2-high group in most cancer types (Figures 1(d) and
1(e)). Th1 cell signatures of most cancers were enriched in
the PDL2-high group, but in the THYM group, the PDL2-
low group showed more intense Th1 cell signatures than
the PDL2-high group. Generally, PDL2 expression is
associated with CD8+ T cell, DC, and Th1 cell infiltration,
which critically operate in cancer immunotherapy.

Suppressed T cell activation is crucial to the tumor
immune escape mechanisms; we collected three IFN-γ sig-
natures to assess the level of T cell activation: Louis signature
(NES = 1:85, P < 0:0001), Mark signature (NES = 2:07, P <
0:0001), and Padmanee signature (NES = 2:10, P < 0:0001),
which were significantly enriched in the PDL2-high group,
suggesting that stronger T cell activation may exist in
patients of the PDL2-high group (Figures 1(g)–1(i)). Indi-
vidual analysis was performed (Figures S4–S6). Three IFN-
γ signatures tend to be enriched in the PDL2-high group
among cancers (Figures 1(g)–1(i)): DLBC, LUSC, COAD,
SARC, and TGCT were the leading cancers with the
highest NES by the Louis signature analysis (Figure 1(j)).
By the Mark signature and Padmanee signature analysis,
LUSC, READ, LUAD, HCC, and COAD were detected as
the top 5 NES rankings, but Mark signature rankings were
LUSC, COAD, LUAD, READ, and HCC; Padmanee
signature ranking was READ, LUSC, HCC, LUAD, and
COAD (Figures 1(k) and 1(l)). Generally, the PDL2-high
group showed a more intense IFN-γ signature than the
PDL2-low group. Better antigen presentation, T cell
activation, and stronger cytotoxicity may exist in the
PDL2-high group.

3.2. Association of PDL2 Expression with Prognosis of ICI
Treatment. Since PDL2 was related to the antitumor
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Figure 1: Continued.
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immune environment, we first aimed to determine whether
PDL2 affects the prognosis of ICI treatment. Higher
response rate of the PDL2-high group was observed in the
Gide cohort, Liu cohort, Mariathasan cohort, and pooled
cohort (Figure 2(a)). In the pooled cohort, the response rate
of the PDL2-high group was 53.6% compared to 39.4% in
the PDL2-low group (Figure 2(a)). Consistent with the result
of response rate, high expression of PDL2 is a positive factor
for survival in the ICI cohort (Figures 2(b) and 2(c)). The
patients in the PDL2-high group experienced longer OS than
those in the PDL2-low group when analyzing in the Liu
cohort, Miao cohort, and pooled cohort (Figures 2(e), 2(g),
and 2(i); Liu: HR ½95%CI� = 0:58 ½0:35 – 0:96�, P = 0:032;
Miao: HR ½95%CI� = 0:28 ½0:10 – 0:77�, P = 0:010; pooled:
HR ½95%CI� = 0:71 ½0:57 – 0:87�, P = 0:001). Longer OS was
also seen in patients in the PDL2-high group in the Gide
cohort, Mariathasan cohort, and Van Allen cohort; however,
those results were not statistically significant (Figures 2(d),
2(f), and 2(h); Gide: HR ½95%CI� = 0:52 ½0:24 – 1:12�, P =
0:091; Mariathasan: HR ½95%CI� = ½0:63 – 1:06�, P = 0:124;
Van Allen: HR ½95%CI� = ½0:25 – 1:16�, P = 0:108).

We next investigated the effect of PDL2 expression on
non-ICI treatment prognosis in TCGA database. We found

that there is no significant difference in OS between the
PDL2-high group and the PDL2-low group in TCGA pooled
cohort (Figure S7, HR ½95%CI� = 0:98 ½0:90 – 1:07�, P = 0:603
), suggesting that higher PDL2 expression was not a
prognostic factor in non-ICI treatment.

3.3. Verifying Association between PDL2 and TME in ICI
Cohorts. We explored the relationship between PDL2 and
TME in the ICI-treated cohorts. We first evaluated the
expression of Padmanee IFN-γ immune genes and PDL2
(Figure 3(a)). Thereafter, the immune cell infiltration of each
sample was quantified by ssGSEA in the ICI cohorts. In the
Gide cohort, the ssGSEA scores of CD8+ T cell, DC, and
Th1 cells were higher in the PDL2-high group than the
scores in the PDL2-low group (Figure 3(b)), and this is con-
sistent with the results of the analysis of other melanoma
cohorts (Figures 3(c) and 3(f)). In bladder cancer and the
Mariathasan cohort, higher ssGSEA scores were observed
in the PDL2-high group (Figure 3(d)). In the Miao cohort,
T cell infiltration and Th1 cell infiltration were still signifi-
cantly higher in the PDL2-high group; the DC infiltration
trends were also higher in the PDL2-high group, but not sig-
nificantly (Figure 3(e)). These results suggest that high
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Figure 1: Enrichment and summary plots of the immune-related signatures in TCGA. Enrichment plots of (a) CD8+ cell signature, (b)
dendritic cell signature, and (c) Th1 signature in TCGA pooled cohort, all cell signatures of the PDL2-high group were mostly enriched.
(d, e) Summary plots of cell signatures with enrichment NES and P values in each tumor type, except for the Th1 signature enrichment
in the PDL2-low group of THYM, all results are consistent with the results of TCGA pooled cohort. (g–i) Enrichment plots with IFN-γ
signatures in TCGA pooled cohort, all IFN-γ signatures were enriched in the PDL2-high group. (j–l) Summary plots of IFN-γ signatures
with enrichment NES and P value in each tumor type, all IFN-γ signatures were enriched in the PDL2-high group.
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Figure 2: Continued.
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expression of PDL2 is accompanied by an antitumor
immune environment in the ICI cohorts.

4. Discussion

This study investigated the potential use of PDL2 expression
as a prognostic marker of the effect of ICI treatment by inte-
grating published RNA-seq with clinical data. Our study
indicated that high expression of PDL2 is associated with
high rates of response to treatment by ICIs and long OS
for patients across multiple cancer types. The immune cell
analysis indicated that higher expression of PDL2 may be
accompanied with higher level of CD8+ T cell, DC, and
Th1 cell infiltration; additionally, IFN-r signature analysis
suggests better T cell activation may occur in patients with
high PDL2 expression. Our study is one of the first to pro-

pose PDL2 as a predictive biomarker for analyzing responses
to ICI treatment across multiple cancers.

CD8+ T cells directly participate in the killing of tumor
cells in TME [34]. PDL1 is expressed by tumor cells to resist
the antitumor immunity mediated by CD8+ T cells, which
prevents T cell activation [9]. This expression is induced
by the mutations of tumor cells and the IFN-γ secreted by
T cells [35]. IFN-γ from T cells is a major factor for most
cancers [36]. PDL1 expression usually reflects the high
IFN-γ secreted in the TME, which indicates the strong anti-
tumor immunity, such as CD8+ T cell response. Thus, PDL1
is a predictive marker of ICI treatment. However, in some
clinical experiments, high PDL1 expression was not associ-
ated with the clinical effect of ICI treatment, and PDL1-
negative patients benefited from ICI treatment, suggesting
that PDL1 cannot fully represent the antitumor immunity
[10–12]. PDL2 is another ligand that received less research
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Figure 2: Survival analysis between the PDL2-high group and the PDL2-low group in the ICI cohorts. (a) Histogram describing proportions
of responders in different groups of ICI cohorts; except the Miao cohort and Van Allen cohort, the PDL2-high group has more responders
than the PDL2-low group. (b) Univariate Cox analysis according to PDL2 expression median in the ICI cohorts; high PDL2 expression is
protective in ICI-treated patients. (c) The percentage decrease of HR caused by high PDL2 expression in the ICI cohort. (d–i) KM plot
of OS in ICI cohorts comparing patients with high and low PDL2 expressions and longer OS were observed in the PDL2-high group.
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Figure 3: Continued.
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attention in the early stages. Recent evidence proves that
PDL2 is closely associated with the TME [23]. The IHC
results of PDL2 in different cancers were inconsistent with
the IHC results of PDL1, in which PDL2-positive IHC and
PDL1-negative IHC patients responded to the ICI treatment
[21]. Animal models showed overexpression of PDL2, which
can induce a rapid tumor proliferation, and anti-PDL2 treat-
ment could eradicate the resistance to anti-PDL1 drugs [23].
Our results are in agreement with the above research, and we
found that high expression of PDL2 is associated with an
activated antitumor environment in both TCGA database
and the IO cohorts. The expression of PDL2 could be an evi-
dence of ICI treatment.

In previous research, the expression of PDL2 was
induced by the NF-κB pathway and the signal transducer
and activator of transcription- (STAT-) 6 pathway [37].
Knockout NF-κB cannot eliminate PDL2 expression [38].
After IFN-γ and LPS stimulation, DCs from NF-κB
p50−/−p65−/+ mice were incapable of upregulating PDL2
expression [38]. However, another study showed that
NF-κB p50−/− mice cannot produce IL-4 and IL-13, the
activators of STAT-6 [39]. STAT-6 is an important tran-
scription factor and signal transduction molecule for many
biological processes, especially for the Th2 immune
responses [40]. As it is induced by NF-κB and STAT-6,
PDL2 may be involved in the Th2 immune response
[37]. However, in our research, PDL2 expression was
strongly correlated with Th1 cell infiltration which may
be because PDL2 is coexpressed with PDL1. This was
investigated to reveal that PDL2 participates in the Th1
immune response. However, more investigation is needed
to clarify how PDL2 affects the TME.

This research has some limitations, the limited sample
size in one ICI-treated cohort that may have introduced
statistical bias. However, consistent results from numerous
cohorts may have minimized the bias. Secondly, the avail-
ability of limited information prevented us from verifying
the influences of functional PDL2 mutation on the prog-
nosis of ICI treatment. Considering that the IHC results
of PDL2 could provide a clear cut-off value, an investiga-
tion on the PDL2 mutation may clarify the immune func-
tions of PDL2. More molecular studies involving animal
models and cell lines are needed. Thirdly, the objective
response rate (ORR) of many ICI-treated patients was
not evaluated, which may have weakened the statistical

analysis; however, the pooled cohort analysis has mini-
mized such biases.

5. Conclusions

In summary, our results indicated that PDL2 was associated with
an antitumor effect and can be a potential predictive biomarker
to screen patients’ benefit from ICI treatment inmultiple cancers.
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