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Alzheimer’s disease (AD) is a multifactorial disease which involves both the periphery and central ner-
vous system (CNS). It has been recently recognized that gut microbiota interacts with the gut and brain
(microbiota-gut-brain axis), contributing to the pathogenesis of neurodegenerative diseases, such as AD.
Dysbiosis of gut microbiota can induce increased intestinal permeability and systemic inflammation,
which may lead to the development of AD pathologies and cognitive impairment via the neural, immune,
endocrine, and metabolic pathways. Toll-like receptors (TLRs) play an important role in the innate
immune system via recognizing microbes-derived pathogens and initiating the inflammatory process.
TLRs have also been found in the brain, especially in the microglia, and have been indicated in the devel-
opment of AD. In this review, we summarized the relationship between microbiota-gut-brain axis and
AD, as well as the complex role of TLRs in AD. Intervention of the gut microbiota or modulation of
TLRs properly might emerge as promising preventive and therapeutic strategies for AD.
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1. Introduction

Modern medicine has achieved great victory in life span
expanding. As the incidence of numerous geriatric diseases
increases with age, the new challenges include alleviating symp-
toms, reducing the complications of diseases, and delaying the
onset with the intervention of risk factors. Dementia is one of these
diseases, which exerts heavy burden on both the family and soci-
ety. The prevalence of dementia increases exponentially with
age. The global prevalence of dementia is about 0.7–1.8% in popu-
lation aged 60–64 years, while in people aged over 90 years the fig-
ure is between 28.7% and 63.9% [1]. Alzheimer’s disease (AD) is the
most common type of dementia accounting for 50–60% of all cases.
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Extracellular senile plaques and intracellular neurofibrillary tan-
gles are the main pathological hallmarks of the disease. The bio-
marker framework has been established for clinical diagnosis,
including amyloid b-42 (Ab42) level, total tau and phosphorylated
tau (p-Tau) level in cerebrospinal fluid (CSF), positron emission
tomography (PET) amyloid imaging, Fluorodeoxyglucose (FDG)
uptake on PET and structural magnetic resonance imaging (MRI)
[2,3].

Although great efforts have been made targeting the two patho-
logical hallmarks, there still remains no disease modifying treat-
ment for AD. To date, therapeutic strategies targeting against Ab,
including active vaccines, passive immunization, as well as b-
and c-secretases inhibitors, were fraught with failure and confus-
ing results [4–10]. Clinical trials focused on tau protein
immunotherapy are still pending [11]. Several hypotheses other
than amyloid cascade hypothesis have been raised [12–16]. It is
considered that the imbalance between Ab production and clear-
ance leads to Ab accumulation and subsequently neuronal dys-
function. Accumulating studies have implicated that
neuroinflammation might participate in the clearance of Ab and
even promote the pathological process of AD [17–19]. Epidemio-
logical and observational studies indicate that non-steroidal anti-
inflammatory drugs (NSAIDs) users had a lower risk of developing
dementia [20–22]. Genome-wide association studies (GWAS)
revealed that some genes involved in immune response were asso-
ciated with AD risk [23]. Acute systemic inflammation events
including various infections, surgical interventions, myocardial
infarction and so on, could boost neuroinflammation and exagger-
ate cognitive decline [24]. In animal experiments, it has also been
shown that systemic inflammation could accelerate AD-like patho-
logical changes [25]. All these evidences indicate a close relation-
ship between AD and inflammation. It is assumed that infection
event could exaggerate neuroinflammation, promote Ab
production, and then resulting in exacerbation of cognitive
impairment.

In recent years, a large number of studies revealed that dysbio-
sis or the localized intestinal infection may trigger systemic
immune response, resulting in exacerbated inflammatory response
in AD brain [26]. Dysbiosis refers to microbial imbalance on or
inside the body. Intestinal microbiota can bidirectionally interplay
with the central nervous system (CNS) through neural, immune,
endocrine, and metabolic signals, which is regarded as the
microbiota-gut-brain axis [27]. There were over 150,000 microbial
genomes reconstructed from global, body-wide metagenomes [28].
The human gastrointestinal (GI) tract is the largest reservoir and
harbors approximately 1014 microorganisms. Gut microbiota not
only has metabolic and trophic functions, but also promotes host
defense and immune homeostasis [29,30]. As numerous lymphoid
tissues locate in the intestinal mucosa, GI tract incessantly moni-
tors the pathogens and the dynamic microenvironment of the
gut. The alteration of gut microbiota may lead to intestinal infec-
tion or inflammatory bowel disease, and prime the immune
response [31,32].

Toll-like receptors (TLRs), the crucial sentinels, are the first
line of defenders, participating in recognizing molecules broadly
shared by pathogens and the activated immune system. TLRs
are involved in commensal colonization, maintenance of the
homeostasis, and integrity of the intestinal barrier [33]. Apart
from an assortment of gut bacteria and their excreta, Ab is also
a ligand of TLRs, which, under certain conditions, can initiate
the inflammatory process in the gut and the brain, leading to
the development of neurodegenerative diseases, including AD.
Here, we review the current knowledge concerning the relation-
ship between TLRs and microbiota-gut-brain axis in AD, and dis-
cuss the potential mechanisms underlying the role of TLRs in AD
(Fig. 1).
2. Toll-like receptors signaling

TLRs are a family of transmembrane pattern recognition recep-
tors. TLRs initiate the downstream signaling transduction upon
recognition of damage- and pathogen-associated molecular pat-
terns (DAMPs and PAMPs). To date, 11 human and 13 mouse TLRs
have been identified. The TLRs can roughly be classified into two
groups referring to their space distribution. TLR1, TLR2, TLR4,
TLR5, TLR6, and TLR11 are expressed on the plasma membrane,
which recognize microbial products such as lipids, lipoproteins,
and proteins, whereas TLR3, TLR7, TLR8, and TLR9 are localized
in cytoplasmic compartments, which can be activated by nucleic
acid species [34].

TLRs are composed of three major domains, a leucine-rich
repeat (LRR) ligand-binding domain, a single membrane spanning
helix, and a signaling Toll-interleukin-1 receptor (TIR) domain.
Upon recognizing PAMPs or DAMPs, TLRs undergo conformational
changes following dimerization to recruit the downstream signal-
ing adaptors, which triggers the activation of specific transcription
factors and the subsequent innate immune responses. A total of
four adaptor proteins have been identified, including myeloid dif-
ferentiation primary response protein 88 (MyD88), TIR domain–
containing adaptor molecule (TIRAP, also known as MyD88-
adaptor-like protein, MAL), TRIF-related adaptor molecule (TRAM,
also known as TIR-domain-containing molecule 2, TICAM2), TIR
domain–containing adaptor protein inducing interferon-b (TRIF,
also known as TIR-domain-containing molecule 1, TICAM1) [35].
MyD88 is a universal adaptor protein for all TLR-mediated signal-
ing pathways except for TLR3 [36]. MyD88-dependent pathway
can induce the activation of nuclear factor kappa B (NF-jB) and
activator protein 1 (AP-1), leading to the expression of pro-
inflammatory cytokines, such as tumor necrosis factor-a (TNF-a),
interleukin (IL)-1, and IL-6. Both TLR3 and TLR4 are capable of
recruiting TRIF, resulting in the production of type-I interferon
(IFN). TRAM is specifically necessary for TRIF-dependent signaling
pathway through TLR4, but not TLR3 [37]. Besides, TLR7, TLR8, and
TLR9 can also induce the production of type-I IFN through the
MyD88-dependent pathway [36].

The activation of TLRs can be regulated by sialic acid-binding
immunoglobulin superfamily lectin receptors (Siglecs), which are
known to inhibit the immune response. Extensive Siglec-TLR inter-
actions negatively regulate the activation of TLRs [38]. Disruption
of their interactions can result in the activation of TLRs and the
immune responses [38]. Siglec-3 (CD33) has been shown to regu-
late the presentation of LPS to TLR4, leading to down-regulation
of TLR4-mediated signaling [39]. Besides, triggering receptors
expressed on myeloid cells-1 (TREM-1) also acts synergistically
with receptors for PAMPs, including TLRs. TREM-1 amplifies the
TLR-mediated immune response to microbial products, resulting
in a dramatic upregulation of pro-inflammatory cytokines secre-
tion [40].
3. TLRs in Alzheimer’s disease

Broad expression of TLRs have been found in human CNS. TLR1-
9 encoding mRNA were detected in primary cultures of microglia
from postmortem human brain. Astrocytes and oligodendrocytes
were also found to express TLR2 and TLR3, and to some extent,
TLR1 and TLR4 [41]. Besides, certain TLRs were also found in neu-
rons [42,43].

Microglia are the resident macrophages and primary immune
cells in the CNS, responsible for the elimination of invading patho-
gens and injured neurons. As early as in the 1990s, microglia had
been revealed can be activated by Ab [44,45]. TLRs are also the
endogenous binding sites for Ab. It has been revealed that CD14,



Fig. 1. Potential implications of TLRs and gut-brain-axis for AD. In healthy subjects, the gut epithelium is guaranteed by tight junctions between the cells. TLRs are expressed
on macrophages, dendritic cells (DCs), and intestinal epithelial cells, serving as sentinels to monitor the pathogens in gut. Vagus nerve appears to modulate communication
between the gut and the brain. The whole microenvironment maintains in homeostasis. During aging, the tight junction of intestinal and BBB become permeable. In AD
patients, the diversity of gut microbiota decreased, while the population of pro-inflammation bacteria increased. Bacteria and their excretions could cross the leaky gut and
then activate the TLRs in epithelium, IECs and macrophages, leading to production of pro-inflammation cytokines. These cytokines make their way through circulation or
vague nerves to the brain, enlarge the neuroinflammatory responses, and promote neurodegeneration in CNS.
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TLR2, and TLR4 are required for the activation of microglia by Ab
[46]. Overexpression of TLR2, TLR4, and CD14 (the lipopolysaccha-
ride (LPS) receptor) have been found in the brains of both AD
patients and AD mouse models [47,48]. AD mouse models, mostly
generated by over-expression of mutated human PS1, APP and/or
tau, are valuable tools to investigate the mechanisms of AD. These
transgenic mouse models generally develop amyloid plaques and/
or neurofibrillary tangles in the brain, resembling the hallmarks of
AD. Triple-transgenic AD (3xTg-AD) mouse, APP/presenilin 1 (APP/
PS1) mouse, and tau transgenetic mouse are the commonly used
AD mouse models to investigate the role of TLRs in AD [49].

The role of TLR2 in AD is controversial. TLR2 can recognize
Ab42, triggering the release of pro-inflammatory cytokines, includ-
ing TNF-a, interleukin-6 (IL-6), and interleukin 1-b (IL-1b), which
are detrimental to the CNS, promoting the pathogenesis of AD
[50,51]. Inhibiting TLR2 by anti-TLR2 antibody could attenuate
Ab-induced pro-inflammatory cytokines release and amyloid accu-
mulation, leading to improved performance in spatial learning in
AD mouse models [52,53]. Additionally, TLR2 deficiency enhanced
phagocytosis and clearance of Ab in cultured microglia [54]. All
these evidences indicate that inhibition of TLR2, which participates
in Ab deposition and Ab-induced neuroinflammation, might be
beneficial for AD. However, Richard et al. reported that TLR2
knockout APP/PS1 mice had lower amyloid burden, but higher
toxic Ab1-42 species and more heavily cognitive damage [55]. This
was supported by another study, which demonstrated a markedly
increased uptake of Ab42 by microglia via the activation of TLR2
[56]. These discrepancies might be due to different animal models
used, as well as their representing disease stages. Thus, the role of
TLR2 in AD still needs further investigation.

Similar to TLR2, TLR4 seems to play a dual role in the pathogen-
esis and progression of AD as well. On one side, microglial TLR4
mediates Ab-induced neurotoxicity [48]. Cytokines, including IL-
1b, IL-10, IL-17, and TNF-a, were upregulated in a TLR4-
dependent way in AD mice [57]. On the other side, TLR4-mutant
AD mice had less microglial activation, and as a result, more Ab
accumulation and severer cognitive deficits than TLR4 wild type
AD mice, suggesting that activation of microglia via TLR4 signaling
could enhance the clearance of Ab and preserve cognitive function
from Ab-induced neurotoxicity [58]. Another study found that neu-
roinflammation could promote neuronal autophagy, and that
chronic mild stimulation of TLR4 was associated with a reduction
in cerebral p-Tau levels and improved cognitive function of tau-
transgenic AD mice [59]. However, activation of microglia by LPS,
a TLR4 ligand, was markedly blunted in 12-month-old APP/PS1
mice compared to their 2-month-old counterparts, indicating
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TLR4 signaling dysfunction due to chronic exposure of microglia to
Ab deposits [60]. Collectively, these studies suggest that TLR4 sig-
naling is essential for the clearance of Ab by microglia. However,
persistent chronic activation of microglia by Ab exposure would
dampen the TLR4 signaling, leading to further Ab accumulation
and neurodegeneration. Thus, modulating the activation of TLR4
towards facilitating Ab clearance without activating neuroinflam-
mation should be a promising treatment target for AD.

In addition to TLR2 and TLR4, TLR9 can also be detected in both
microglia and neurons. TLR9 polymorphism has been reported to
be associated with a decreased risk of AD [61]. Activation of TLR9
signaling could protect neurons from stress [62]. TLR9 knockout
mice showed impaired synaptic function [63]. Targeting CpG
motifs, which function as TLR9 agonists, can reduce both Ab and
tau pathologies in various AD transgenic mouse models, and rescue
their cognitive deficits [64–66]. These studies provide valuable evi-
dence in support of immunomodulation via TLR9 as a potential
therapeutic approach for AD.
4. Gut microbiota and aging

Human aging is an intrinsic physiological process with a gradu-
ally function decline in the organs, including intestine, brain, and
gut microbiota. The normal intestinal barrier is comprised of tight
junctions between epithelial cells, mucus, bicarbonate, and anti-
microbial peptides secreted from Paneth cells [67].

An integrated and healthy gut wall is essential to protect the
host from the attack of pathogenic bacteria. Disorders of the GI
tract are prevalent amongst the elderly population. For example,
chronic constipation is common in the elderly and reaches an inci-
dence rate of 30–40% among those over 65 years of age [68]. The
underlying mechanism is poorly understood, but impaired intes-
tine mobility, intrinsic aging of the cells in the gut, and some
extrinsic factors like gut microbiota, may influence the physiolog-
ical function of the GI tract [69]. Age related loss of enteric neurons
by about 38% was found in old man [70]. Animal studies also
demonstrated neuronal loss and degenerative changes with age
in the enteric nervous system (ENS), which might be associated
with a age-related phenotypic shift of macrophages and altered
neural response to inflammatory signals, resulting in increased
apoptosis and loss of enteric neurons and neural stem cells [71].
Besides, intestinal epithelial stem cells (IESC), which are responsi-
ble for the renewal of the intestinal epithelium, have also been
shown to experience age-related dysfunction in mice, such as
hyper-proliferation and expansion, and increased expression of
genes associated with cellular stress, DNA damage and apoptosis
[72].

Gut microbiota transmission occurs during the peri-partum per-
iod from mothers to their infants, which could be affected by sev-
eral perturbations, including birth by Cesarean section and the use
of antibiotics during pregnancy [73,74]. The composition and
diversity of the infant microbiota is highly dynamic during the first
year of life, and gets to resemble those of adult microbiota by
around 3 years old [75]. Thereafter, the gut microbiota generally
maintains stable. However, the increasing disappearances of
microbiota and its diversity due to decreased vertical transmission
frommother to child, decreased horizontal acquisition of commen-
sal microbiota from other humans, and disrupted maintenance of
key microbiota taxa in the early life by multiple insults like antibi-
otics exposure have exerted cumulative effects over generations,
particularly the development of immunity in the gut [76–79].
Gut microbiota has been suggested to be associated with the devel-
opment and organization of ENS, and the formation of gut immune
system, although little is known about how the balance between
immune response and host health is maintained [76,80]. In terms
of aging, age-dependent, microbiome-modulated immunosenes-
cence have been identified. The diversity and configuration of
microbiota in the elderly can be affected by factors including resi-
dence location, diet, and health status, leading to the incidence of a
wide variety of aging-related diseases [81,82].
5. The blood brain barrier during aging

The blood brain barrier (BBB) is a highly selective barrier that
acts to separate the circulating blood from the brain in the CNS.
It is composed of the continuous capillary endothelium connected
by the tight junctions, astrocytic end feet, and basal membrane.
The physical function of BBB is selectively impermeable to the
microscopic objects (e.g., bacteria), large or hydrophilic elements
diffusing into the CSF [83]. However, BBB dysfunction and leakage,
associated with tight junction impairment and pericytes loss, are
common during aging [84,85]. BBB needs much more mitochon-
drial volumes than tissues from non-BBB area to maintain its
unique structure and the corresponding function [86]. However,
this high mitochondrial content makes it vulnerable to accumu-
lated oxidative stress and damage during aging, such as reactive
oxygen species (ROS). The compromised BBB allows pathogens to
get into the brain, leading to neuronal damages.

Cross-talks exist between the gut and brain, though the exact
mechanisms have not been fully elucidated. The impact of gut
microbiota on gut-brain axis is proposed to involve neural,
immune, neuroendocrine, and metabolic systems [87]. The vagus
nerve is the longest cranial nerve in the body and has afferent (sen-
sory) and motor (efferent) nerves. Neurochemical and behavioral
changes induced by bacteria exposure to the gut were not found
in vagotomized mice, suggesting the vagus as a modulatory com-
munication pathway between the gut and brain [88]. The spread
of certain pathologies between the gut and brain have also been
identified in animal studies via the vagus nerve [89]. Certain live
bacteria may be beneficial to the establishment of BBB defense
[90]. Germ-free mice showed significantly increased permeability
of BBB, as well as lowered levels of endothelial tight junction pro-
teins [91]. On the other hand, overresponse of the immune system
due to gut dysbiosis can result in increased intestinal permeability,
gut-vascular barrier (GVB) disruption, and systemic inflammation,
which may further lead to the impairment of BBB integrity and
neuroinflammation [92]. The existence of GVB was firstly identi-
fied by Spadoni et al, who demonstrated the disruption of GVB
by pathogenic bacteria, leading to a systemic immune response
[67]. Additionally, metabolic products produced by microbiota,
such as short-chain fatty acids (SCFAs), can be sensed by vagus
nerve. They can modulate the function of cholinergic neurons of
the gut and neuronal activity in the brain after crossing the BBB,
resulting in behavioral and cognitive changes.

Environmental and dietary influences, including chronic bacte-
rial or viral infections can progressively alter BBB permeability and
thereby facilitate cerebral colonization by opportunistic pathogens
as we age. Given the existence of the gut wall, gut microbiota,
immune system, and BBB dysfunction during aging, the
microbiota-gut-brain axis may play an important role in age
related neurodegenerative diseases such as AD.
6. The gut microbiota in Alzheimer’s disease

Early in 1989, Ab protein deposits were detected in the intestine
[93]. Amyloid-b protein precursor (AbPP) from which Ab is derived,
and total tau, are also expressed in the enteric neurons, making it
plausible that AD pathophysiology could involve the ENS [94,95].
However, this concept still needs further verification due to contro-
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versial reports which showed similar amount of Ab and tau
pathologies between AD patients and elderly controls [96,97].

Animal studies have shown a direct effect of gut microbiota on
AD pathologies. Intestinal inflammation induced by gut microbiota
perturbation has been identified contributing to the pathogenesis
and progression of AD. The local gut inflammation induced by
infection significantly enhanced microglia activation and neuroin-
flammatory response in 3xTg-AD mice [26]. A lower level of pro-
inflammatory cytokine IL-17 was found in gut-associated lym-
phoid tissue (GALT) cells of aged AD mice compared to their con-
trols, suggesting that the surveillance to gut microbiota and
immune barrier were impaired in AD [98]. Altered gut microbiota
composition in the fecal samples from AD patients and AD mouse
models have been reported [99–101]. The altered microbial com-
position could influence the levels of Ab42, amyloid deposition,
and pro-inflammatory cytokines in the brain [99]. A recent report
revealed different genera abundance of fecal microbiota between
AD patients and cognitively normal controls (increased in AD:
Dorea, Lactobacillus, Streptococcus, Bifidobacterium, Blautia, and
Escherichia; decreased in AD: Alistipes, Bacteroides, Parabacteroides,
Sutterella, and Paraprevotella) [102]. A significantly negative rela-
tionship between amyloid burden and relative abundance of Lacto-
bacillus in AD feces was observed [102]. In another study,
cognitively impaired patients with brain amyloidosis showed
lower abundance of the anti-inflammatory E. rectale and higher
abundance of pro-inflammatory Escherichia/Shigella in their fecal
samples compared to healthy controls or amyloid negative con-
trols. Besides, amyloidosis-positive patients had increased serum
levels of the pro-inflammatory cytokines, including IL-6, CXCL2,
NLRP3 and IL-1b, and lower serum levels of anti-inflammatory
cytokine IL-10 [103]. These findings support that there is an asso-
ciation between gut-microbiota-related inflammation and brain
amyloidosis in AD.

Although great efforts have been made focusing on the role of
gut-brain-axis in AD, the relationship between antibiotic treatment
and the development of AD in humans has not been identified. Ani-
mal studies have demonstrated that antibiotic-induced perturba-
tions in gut microbiota could influence neuroinflammation and
amyloidosis in the brain. Antibiotic treatment over 6 months
induced distinct alterations in microbial diversity in APP/PS1 mice,
alongside alterations in peripheral inflammatory cytokines and
chemokines, which coincided with attenuated Ab plaque deposi-
tion and neuroinflammatory responses [104]. The same group also
found that 1 week postnatal antibiotic treatment of APP/PS1 mice
resulted in altered gut microbial diversity and reduced Ab deposi-
tion at 6.5 months of age [105]. The underlying mechanism has not
been elucidated. However, these findings indicate the close rela-
tionship between altered host innate immunity and amyloidosis
in AD.
7. Microbiota-gut-brain axis and TLRs: potential implications
for AD

It is well known that TLRs are expressed on numerous cell types
in gut, including macrophages, dendritic cells (DCs), T lympho-
cytes, and intestinal epithelial cells (IECs). Intestinal epithelial cells
are located on the front line of a microbial-rich environment,
therefore, TLRs act as the essential mediators between microbiota
and the host.

A broad spectrum of compounds are excreted by GI microbiota,
including bacterial amyloids and LPS. The alterations of gut micro-
biota composition might induce perturbation of bacterial amyloids
and LPS. Both of them can directly activate TLRs. Bacterial amyloids
have been detected in both gram-negative and gram-positive bac-
teria, like Proteobacteria, Bacteriodetes, Chloroflexi, Actinobacteria,
and Firmicutes [106,107]. There are a variety of bacterial amyloids
which contribute to numerously different functions [108]. It has
been known that bacterial amyloids are involved in biofilms for-
mation and host defense [109]. However, bacterial amyloids also
function as toxins, triggering apoptosis in some human cell lines
[110]. The existence of vast quantities of amyloids imply that
human physiology may be potentially exposed to a tremendous
systemic amyloid burden. It is remarkable that amyloids produced
by human microorganisms are biologically similar to CNS amy-
loids, such as CsgA, Ab42 [111]. When bacteria invade the intesti-
nal mucosa, following interaction with a receptor complex of TLR1/
TLR2, bacterial amyloids can initiate a robust release of inflamma-
tion cytokines, including IL-17 and IL-22 [112].

Higher bacterial LPS level was found in AD brains than that of
the controls [113]. The mean LPS levels varied from 2 to 26 folds
increases in brain samples from AD over age-matched controls,
depending on the brain area and the severity of the disease
[114]. Infusion of bacterial LPS into the fourth ventricle of rat
brains reproduced AD-like pathological alterations and cognitive
impairment, which did not recover with time [115]. Administra-
tion of LPS peripherally led to prolonged elevation of Ab and cogni-
tive deficits [116]. Besides, AD mice exhibited enhanced expression
of microglial LPS receptor, CD14, the blockade of which reduced
excessive microglial activation and toxicity [117]. Additionally,
an in vitro study demonstrated that LPS could potentiate Ab fibril-
logenesis [118]. These results suggest that bacterial infection
events are potential catalyst to promote the progression of AD.
On the other hand, Ab has also been reported to be an innate
immune protein, which protects the brain from invading patho-
gens by entrapping and neuralizing them within the b-amyloid
[119]. Ab has been shown to exert antimicrobial activity in vitro
[119]. The antimicrobial activity was significantly higher in brain
homogenates from AD than in samples from age matched controls,
which can be ablated with the treatment of anti-Ab antibodies
[119]. However, chronic sustained activation of this protective
antimicrobial pathway leads to excessive Ab deposition and tangle
formation, and subsequently neurodegeneration and dementia
[120].

Under physiological conditions, despite constant exposure to
microbial-derived TLR ligands, IEC is in a state of hypo-
responsiveness with low expression of TLRs. If the intestine is
infected by pathogenic bacteria or when inflammatory bowel dis-
ease occurs, TLRs are upregulated in an inflammation-dependent
way in IECs and macrophages [121,122]. As a result, tremendous
pro-inflammation cytokines and chemokines are released into
the blood. Altered gut microbiota profile has been found associated
with elevated levels of plasma LPS, inflammatory cytokines (IL-6,
IL-8, IL-12, and TNF), and activated T-cells [123]. Gut infection
could also enhance systemic pro-inflammatory response, charac-
terized by the production of pro-inflammatory cytokines and
chemokines such as TNF-a, IL-6, CCL5, and CXCL-1, which was
associated with increased activation of microglia in 3xTg-AD
mouse brain [124]. Once the pro-inflammatory cytokines are
released by TLRs, they make their way to the brain by crossing
the BBB via both diffusion and cytokine transporters, especially
during aging when the GI epithelial barrier and BBB become signif-
icantly more restructured and permeable. In the brain, these
cytokines act on receptors expressed by neurons and glial cells,
particularly microglia, altering their activation status and physiol-
ogy [125]. A recently published work byWang et al. observed accu-
mulation of Ab in the brains of 5xFAD mice, which is accompanied
by shifts in gut microbial population [126]. Besides, as activated
M1 microglia increased in the brain, so did the number and pattern
of peripheral pro-inflammatory T helper 1 (Th1) cells, indicating
that gut dysbiosis alters peripheral inflammation, promoting the
activation of microglia and amyloidosis, and eventually cognitive
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impairment. A drug named GV-971, remodeled the gut microbiota,
could reduce Th1 cell proliferation in the blood and harness neu-
roinflammation and cognitive impairment, which has also been
demonstrated effective in a phase 3 clinical trial [126].
8. The potential therapeutic targets

To date, there is no disease modifying therapy available for AD.
Therefore, novel insights into AD pathologies are imperative to dis-
cover new therapeutic strategies. The existing interactions
between TLRs and the gut-microbiota-brain axis in AD might pro-
vide opportunity for intervention. Emerging studies are focusing
on regulating inflammatory response in the gut and brain to delay
the progression of AD.

Administration of probiotics appears to be a novel and safe
method to preserve a healthy intestinal microbiota and intestinal
barrier, reducing the initiation of pro-inflammatory responses
and propagation of neuroinflammation in neurodegeneration dis-
eases [125]. Cell surface macromolecules in probiotics, such as
peptidoglycan, cell wall teichoic, and lipoteichoic acid (LTA),
exopolysaccharides, surface layer associated proteins (SLAPS),
and fibronectin binding proteins are able to interact directly with
the intestinal epithelium, mucus, and TLRs of the GI mucosa
[127–132]. It has been found that LPS-induced neuroinflammation
and memory impairment could be attenuated by consumption of
probiotics [133]. In animal experiments, treatment of probiotics,
including Bifidobacterium and Lactobacillus, could ameliorate cogni-
tive impairment, decrease the size and number of amyloid plaques,
and reduce the immune response and neuroinflammation
[134,135]. Clinical trials also demonstrated that probiotics admin-
istration could significantly increase the mini-mental state exami-
nation score of the AD patients [136,137]. Antibiotic treatment and
fecal microbiota transplantation are potential options, but still
need further investigation. As mentioned above, TLRs might be
the possible therapeutic targets for AD. Although the role of TLR2
in AD brain is still controversial, studies have demonstrated the
association of TLR2 signaling with the activation of microglia and
the clearance of Ab. Further investigations are needed to better
characterize the TLR2 signaling, which would shed light on how
to target TLR2 as a therapy for AD. Activation of TLR4 signaling
have been found to promote microglia-mediated Ab clearance.
Besides, TLR4 activation could also be probably beneficial due to
its autophagy effect. However, LPS-induced TLR4 signaling activa-
tion was dampened in AD mice during aging, suggesting TLR4 sig-
naling might become tolerant to persist Ab exposure in the brain
[60]. Chronic and systemic administration of Monophosphoryl
lipid A (MPL, a non-pyrogenic TLR4 agonist), through enhancing
phagocytic capacity without inducing immune tolerance of innate
immune cells, can attenuate the cerebral Ab load [138]. What’s
more, TLR9 could be another possible therapeutic target. Intraperi-
toneal injection of TLR9 agonist significantly reduced Ab and tau
pathologies, as well as levels of toxic oligomers in AD mouse mod-
els [64,66,139]. TLR9 stimulation also effectively ameliorated the
cognitive deficits of these mice. These beneficial effects might
result from increased phagocytic activity and upregulation of
anti-inflammatory cytokines [66]. Given the complexity of the
roles of TLRs in AD, a more profound understanding of the TLR sig-
naling pathway and their association with AD pathologies are
essential for the development of effective treatments.
9. Summary and outlook

In conclusion, we summarized the role of microbiota-gut-brain
axis and TLRs in the pathogenesis of AD. It can be assumed that
when gut dysbiosis occurs, microbial amyloids, LPS and other small
compounds segregated can disrupt the gut wall and increase its
permeability, which further undermine the BBB via blood or ENS
pathway. TLRs can be activated by microbial amyloids or LPS in
the gut, leading to the release of pro-inflammatory and/or anti-
inflammatory cytokines, which results in the imbalance of the
immune system, contributing to the progression of AD pathologies
and cognitive decline. Attempts to restore the gut microbiota to a
composition that found in healthy adults may slow down the pro-
gression of AD. However, interventions directly targeting TLRs still
have a long way to go before more extensive studies carried out to
elucidate the TLR signaling pathway and its impact on the immune
system.
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