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Abstract

Background: To initiate infection, Bacillus anthracis needs to overcome the host innate immune system. Anthrax toxin, a
major virulence factor of B. anthracis, impairs both the innate and adaptive immune systems and is important in the
establishment of anthrax infections.

Methodology/Principal Findings: To measure the ability of anthrax toxin to target immune cells, studies were performed
using a fusion of the anthrax toxin lethal factor (LF) N-terminal domain (LFn, aa 1–254) with b-lactamase (LFnBLA). This
protein reports on the ability of the anthrax toxin protective antigen (PA) to mediate LF delivery into cells. Primary immune
cells prepared from mouse spleens were used in conjunction with flow cytometry to assess cleavage and resulting FRET
disruption of a fluorescent b-lactamase substrate, CCF2/AM. In spleen cell suspensions, the macrophages, dendritic cells,
and B cells showed about 75% FRET disruption of CCF2/AM due to cleavage by the PA–delivered LFnBLA. LFnBLA delivery
into CD4+ and CD8+ T cells was lower, with 40% FRET disruption. When the analyses were done on purified samples of
individual cell types, similar results were obtained, with T cells again having lower LFnBLA delivery than macrophages,
dendritic cells, and B cells. Relative expression levels of the toxin receptors CMG2 and TEM8 on these cells were determined
by real-time PCR. Expression of CMG2 was about 1.5-fold higher in CD8+ cells than in CD4+ and B cells, and 2.5-fold higher
than in macrophages.

Conclusions/Significance: Anthrax toxin entry and activity differs among immune cells. Macrophages, dendritic cells, and B
cells displayed higher LFnBLA activity than CD4+ and CD8+ T cells in both spleen cell suspension and the purified samples
of individual cell types. Expression of anthrax toxin receptor CMG2 is higher in CD4+ and CD8+ T cells, which is not
correlated to the intracellular LFnBLA activity.
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Introduction

Bacillus anthracis is a gram-positive, spore forming bacterial

pathogen. Anthrax infection occurs when dormant spores enter an

animal and germinate, resulting in growth and dissemination of

vegetative bacteria. Anthrax infections can occur in three forms,

inhalational, gastrointestinal, and cutaneous, depending on the

route by which spores enter the host [1]. Inhalational anthrax is

the most severe form of infection, often leading to mortality unless

rapidly diagnosed and treated.

After spore invasion, innate immunity is the front line of defense

against infection. Early histopathological studies showed that in

inhalational anthrax, spores in the lungs are efficiently taken up by

phagocytic cells and transported to the regional lymph nodes [2].

There are contradictory reports on the fate of spores in

macrophages. Some studies suggested that macrophages act as

Trojan horses, allowing spores to germinate and grow into vege-

tative cells [3,4]. Other researchers have shown that phagocytic cells

can take up and kill spores or the newly germinated vegetative cells

[5–7]. Mice depleted of macrophages are more susceptible to

anthrax infection [8], supporting a protective role for these cells.

Dendritic cells (DCs) are also capable of taking up spores [9] and

lung DCs can transport spores to regional lymph nodes [10].

Human neutrophils can also engulf and effectively kill intracellular

spores [11]. Neutrophil depletion in mice, however, does not alter

the infection process [8].

To initiate infection, B. anthracis produces virulence factors to

counter the host immune system. Anthrax toxin is an important

virulence factor in the pathogenesis of anthrax. This three-part

toxin consists of protective antigen (PA), edema factor (EF) and

lethal factor (LF) [12]. PA (83 kDa) first binds to its cellular

receptors, CMG2 and/or TEM8, and then furin or furin-like

proteases cleave PA and release the N-terminal 20-kDa fragment

[13–17]. The resulting 63-kDa species (PA63) assembles into an

oligomeric complex having binding sites for LF and EF. After

assembly of PA63 bound to EF (called edema toxin, ET) or LF
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(called lethal toxin, LT), the toxin complex enters cells by

endocytosis. The low pH in endosomes triggers a conformational

change in the complex which in turn allows LF/EF translocation

to the cytosol of mammalian cells (for review see [18]). LF is a

metalloproteinase that cleaves and inactivates the mitogen-

activated protein kinase kinases (MEKs) 1–4, 6 and 7, and thereby

blocks three pivotal mitogen-activated protein kinase (MAPK)

pathways [19–21]. By targeting these important cell signaling

pathways, LT suppresses cellular components of innate immunity.

LT causes macrophages necrosis and apoptosis as well as blocking

the production of pro-inflammatory cytokines and chemokines.

LT also targets DCs, which bridge innate immunity and adaptive

immunity. LT not only induces apoptosis of DCs so as to

physically remove them from the system, but also blocks

maturation of DCs so as to interrupt their ability to activate B

cells and T cells [22]. The adaptive immune system is also attacked

directed by LT, by blocking B cell proliferation and antibody

production as well as T cell activation and proliferation [23]. EF is

a calmodulin-dependent adenylate cyclase that elevates intracel-

lular cAMP levels, thereby activating cAMP-dependent protein

kinases and perturbing many cellular systems [24].

The small amounts of anthrax toxin that enter cells cannot

easily be detected by direct visualization. Thus our lab previously

developed a system utilizing a fusion protein, LFnBLA, consisting

of the N-terminal region of LF (LFn) and b-lactamase (BLA),

which together with the substrate coumarin cephalosporin

fluorescein acetoxymethyl ester (CCF2/AM), allows imaging of

the toxin delivery into cells [25]. CCF2/AM is a membrane

permeable cephalosporin derivative that has fluorophores attached

to opposite sides of the b-lactam ring of cephalosporin, resulting in

fluorescence resonance energy transfer (FRET). The molecule

normally shows an emission at 520 nm (green fluorescence) when

excited at 409 nm. Cleavage of CCF2/AM by b-lactamase

releases one fluorophore, disrupting the FRET, and shifting the

emission to 440 nm (blue fluorescence). In this report we

employed the LFnBLA system to assess the entry of LF into

primary immune cells isolated from mouse spleens by measuring

FRET disruption, allowing us to make predictions of the relative

amounts of anthrax toxin entering various immune cells.

Results

Microscopic visualization of LFnBLA activity in spleen
cells

The spleen is an immunologic filter of the blood and contains

macrophages, DCs, and B and T lymphocytes. Therefore we

used mouse spleens as our source of immune cells. Although the

b-lactamase activity of LFnBLA could be easily visualized in cell

lines such as CHO cells and HeLa cells [25] (and data not shown),

it was difficult to see significant differences between LFnBLA + PA

treated and untreated spleen cells by microscopy after CCF2/AM

staining (Figure 1). A Victor fluorescence reader (Perkin Elmer,

Shelton, CT) also did not detect substantial differences in treated

and untreated spleen cells (data not shown).

Flow cytometric analyses of LFnBLA activity in spleen
immune cells

We next examined the more sensitive flow cytometric method

for its ability to detect LFnBLA activity. Single spleen cell

suspensions were treated with LFnBLA + PA and stained with

CCF2/AM before they were subjected to flow cytometry. We

found that 54.6+/2 10.0% of spleen cells underwent FRET

disruption after 1 h of LFnBLA + PA treatment, compared to the

untreated control cells or those treated with LFnBLA alone

(Figure 2B–2D). To further study the response of each type of

immune cell to LFnBLA + PA treatment, cells were labeled with

APC or PE-Cy7 conjugated antibodies specific for cell type-

specific surface markers following CCF2/AM staining, so the

FRET disruption of individual cell populations in the spleen cell

suspension could be distinguished. DCs, macrophages and B cells

showed about 75 to 80% FRET disruption, significantly greater

than what was observed for both CD4+ and CD8+ T cells. CD8+
cells showed about 52% FRET disruption, and CD4+ cells had

42% FRET disruption (the lowest compared to the other four

types of cells tested) (Figure 2E).

Flow cytometric analyses of LFnBLA activity in purified
cell populations

To test the activity of the LFnBLA fusion protein in purified

immune cells, Miltyni microbeads were used to separate

macrophages, B cells, CD4 cells and CD8 cells from the single

spleen cell suspensions before LFnBLA/PA treatment. In purified

immune cells, macrophages and B cells displayed about 65% and

80% of FRET disruption, respectively (Figure 3), higher than the

activity detected in CD4+ and CD8+ T cells (32% and 25% of

FRET disruption, respectively). This is similar to what was

observed with the mixed spleen cell suspension. CD8+ cells,

however, responded significantly higher than CD4+ cells in the

mixed population (Figure 2), but responded similarly to CD4+ cells

after purification. DCs indicated 86% FRET disruption, similar to

macrophages and B cells (data not shown).

Figure 1. Fluorescence imaging of LFnBLA activity in spleen cells. Single cell suspensions were attached to polylysine-treated plates and
then subjected to treatment with LFnBLA + PA followed by CCF2/AM staining. (A) Phase contrast photo showing the single cells in the spleen cell
suspension. (B) Spleen cells treated with LFnBLA alone before CCF2/AM staining. (C) Spleen cells treated with LFnBLA + PA followed by CCF2/AM
staining. The arrows point to cells with significant FRET disruption.
doi:10.1371/journal.pone.0007946.g001
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Receptor expression level measurements by real-time PCR
To test if the enzymatic activity of the LFnBLA fusion protein in

the cytosol was proportional to PA receptor levels expressed on

immune cells, RT-PCR was performed to assess TEM8 and

CMG2 levels in each cell population. Expression levels of TEM8

in all immune cells was much lower than that of CMG2, which

recent evidence suggests is the more important and physiologically

relevant receptor in mice [17]. Expression of CMG2 in CD8+ cells

was about 1.5-fold higher than that in CD4+ and B cells, and

2.5-fold higher than in macrophages (Figure 4). DCs had the

lowest CMG2 expression among all the immune cells isolated from

mouse spleen, at about half the level in macrophages.

Discussion

Anthrax toxin is important in the establishment of anthrax

infection. Both LT and ET are produced very early after spore

germination [26]. Toxin impairment of the host immune system

allows vegetative bacteria to replicate, disseminate and eventually

kill the host. It is important to determine the relative activities of

the toxins in various immune cell types in order to better

understand the interaction of this pathogen and the immune

system. Direct measurement of the LF and EF proteins in cells is

technically challenging, because receptor levels on most cell types

average 20,000/cell [27]. Because the heptameric PA channel

probably uses 7 receptor molecules to internalize at most 3 LF or

EF molecules, and the process is unlikely to be error-free, it can be

expected that cells on average internalize fewer than 10,000

molecules of LF or EF [25]. Furthermore, although the anthrax

toxin receptors CMG2 and TEM8 are widely expressed in various

animal tissues, the mouse spleen has a lower amount of receptors

compared to the heart and liver [17]. While it may be possible to

measure the consequences of LF and EF internalization (MEK

cleavage and cAMP increases), these measurements each have

Figure 2. Flow cytometric analysis of LFnBLA activity in spleen cells. Spleen cells were treated with LFnBLA + PA and then stained with CCF2/AM. Cell
specific markers were used to differentiate each immune cell type after CCF2/AM staining. (A) Unstained spleen cells showing autofluorescence. (B) Untreated
spleen cells stained with CCF2/AM. (C) Spleen cells treated with LFnBLA alone followed by CCF2/AM staining. (D) Spleen cells treated with LFnBLA + PA
followed by CCF2/AM staining. (E) Response of various types of immune cells to LFnBLA + PA treatment in a spleen cell suspension. Experiments were repeated
three times, each time with a different mouse spleen, with error bars showing 61 SD (standard deviation). (P = 0.008 comparing macrophages and CD8 cells).
doi:10.1371/journal.pone.0007946.g002
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features that make them inconvenient. In this study we used a

fusion of the N-terminal domain of LF with b-lactamase to assess

the ability of various cell types to internalize LF. b-lactamase

fusions have been widely used as reporters to study bacterial and

viral internalization by host cells [28,29], and are also an effective

tool to study the entry of bacterial effector proteins [30,31]. The

LFnBLA fusion protein presented in this work provides a useful

tool to indirectly assess the entry/activity of toxin in various cells.

In this study, we titrated the concentrations of LFnBLA and PA

in preliminary experiments and chose the lowest concentrations

that consistently produced high FRET disruption. The selected

concentration of 1 ug/ml PA (12 nM) is near the concentration

needed to saturate the CMG2 and TEM8 receptors, which have

apparent Kd values of about 1 and 10 nM, respectively [17].

These PA and LF concentrations were used because the objective

was to assess the capacity of each cell type to internalize toxin, and

it was therefore desirable to saturate the uptake system. These

concentrations are probably not present in the early stages of an

infection, but concentrations .200 ng/ml have been reported to

occur late during an infection [32,33].

To successfully establish an infection, B. anthracis needs to

combat the host immune system. The innate response mounts a

rapid defense after spores enter the host. Macrophages and DCs

sequester the spores by phagocytosis. Previous research indicated

that most intracellular spores germinate inside macrophages

within the first hour [3,7], but there are contradictory results on

the fate of the germinated spores. Some reports show that spores

grow into vegetative bacteria and escape from the macrophages,

while other research suggests that macrophages efficiently kill

germinated spores [4,6,7,34]. DCs have been shown to be capable

of transporting spores to regional lymph nodes [9,10]. For the

spores to initiate infection, they need to kill the phagocytic cells

that sequester them soon after germination. Escape from

phagocytic cells probably takes place before the adaptive immune

response is initiated. Anthrax toxin is synthesized in the log phase

after spores germinate and grow as vegetative cells [26,35] and its

accumulation following the germination of a few initial spores is

required for other spores to escape phagocytic cells [36]. It would

be consistent with this view if the DCs and macrophages were

among the most toxin-sensitive immune cells, as they are the front

line of the host defense, and sequestered spores escaping from

these cells at the correct time is the most important step early in

anthrax infection. In fact, our results show that macrophages, DCs

and B cells have higher b-lactamase activity than T cells in both

purified cells and mixed cell suspension, suggesting that these three

cell types are more sensitive to anthrax LT.

In addition to countering innate immunity, B. anthracis also

appears to target components of adaptive immunity through

attacking B cells and antigen-presenting cells. DCs are the major

antigen presenting cells that bridge the innate and adaptive

immune systems [37]. DCs take up microbial pathogens, process

them and display a specific portion of the pathogen on the surface

to present to T cells. LT decreases DCs’ ability to prime naı̈ve T

cells [38]. Since T cells can only recognize processed antigen in the

context of the MHC, it may be that B. anthracis has evolved to

efficiently impair the adaptive immunity by attacking DCs, which

are fewer than 3% of the white blood cells in the spleen/blood,

rather than attacking T cells directly.

The differences in LF activity towards various immune cell types

observed in this work are not likely to be due only to differences in

receptor levels. CMG2 binds to PA with up to 10-fold higher

affinity than TEM8, and is the principal receptor contributing to

in vivo toxicity of anthrax toxin [17]. We show here that

expression of CMG2 is much higher than TEM8 in all types of the

spleen immune cells tested, and the expression levels of CMG2 do

not correlate with the intracellular b-lactamase activity observed.

Macrophages, DCs and B cells, which exhibit the highest

enzymatic activity, actually have lower amounts of receptor

expressed. The internalization of LFnBLA (and therefore LF) to

the cytosol involves a number of steps following receptor binding,

including furin cleavage of PA, migration to lipid rafts,

endocytosis, trafficking through endocytic vesicles, and transloca-

tion across membranes [39]. Each of these processes could differ in

efficiency between the cell types studied here. Thus, it is not

surprising that no correlation was observed between the expres-

sion levels of the major receptor CMG2 and the intracellular

b-lactamase activity.

The use of LFnBLA for monitoring LF activity is not only

important in studying disease initiation, but may facilitate cancer

treatment in the future. Anthrax toxin-based variants have been

shown to have an antitumor effect for several types of tumor, such

as melanoma, fibrosarcomas and lung carcinoma [40]. The uptake

Figure 3. Flow cytometric analysis of LFnBLA activity in each
type of immune cell from mouse spleens. Spleen cells were purified
by magnetic beads and each type of cell was treated with LFnBLA + PA
before CCF2/AM staining. Experiments were repeated three times.
(P = 0.026 comparing macrophages and CD4 cells, P = 0.011 comparing B
cells and CD4 cells, and P = 0.049 between CD4 and CD8 cells).
doi:10.1371/journal.pone.0007946.g003

Figure 4. Real-time PCR result showing the relative expression
levels of anthrax toxin receptors in immune cells. CMG2 and
TEM8 expression levels in immune cells isolated from mouse spleens
were normalized to those of b-actin in the same cell type. The data are
reported as mean of amounts relative to b-actin 61 SD.
doi:10.1371/journal.pone.0007946.g004

LFnBLA Activity in Immune Cell

PLoS ONE | www.plosone.org 4 November 2009 | Volume 4 | Issue 11 | e7946



and stability of the toxins in targeted cells is pivotal for the success

of treatment. The method described here can assess the potency of

toxin treatments against cancer cells [41,42] and may also

potentially be adapted for use in animal studies in the future.

Materials and Methods

Bacterial strains and protein purification
The LFnBLA fusion protein was purified from Escherichia coli

BL21(DE3) [25] and PA was purified from B. anthracis as described

previously [43].

Spleen cell isolation
Mouse spleens were obtained from C57BL/6J mice (Jackson

Laboratory, Bar Harbor, ME). Single cell suspensions were

obtained by mechanical disruption and passage through a 70-mm

cell strainer (BD Biosciences, San Jose, CA). Red blood cells were

lysed by incubating the single cell suspension in 0.83% KHCO3-

0.1% NH4Cl-0.01 M EDTA (pH 7.4), a hypotonic buffer, on ice for

10 min. After three washes with PBS (Invitrogen, Carlsbad, CA)

cells were resuspended in DMEM (Dulbecco’s Modified Eagle

Medium without phenol red, Invitrogen) and counted using a

Cellometer (Nexcelom, Lawrence, MA).

Spleen cell labeling and separation
Single spleen cell suspensions (108 cells) from multiple mouse

spleens were incubated in 1 ml blocking buffer (PBS, pH 7.4, 0.5%

BSA, 2 mM EDTA). Magnetic beads conjugated with the cell-type

specific markers CD11b, CD4 (L3T4), B220, or CD8 (Ly-2)

(Miltenyi, Auburn, CA) were used to purify individual cell types

using the protocols suggested by the manufacturer. Sorted cells

were subjected to fluorescent labeling to check for purity by flow

cytometry. Macrophages were .80% pure, while purities of other

cell types were .90%.

Microscopic visualization of LFnBLA activity
Tissue culture-treated, clear-bottom black-wall 96-well plates

(Corning Inc., Corning, NY) were treated for 15 min with 0.1 mg/

ml polylysine (50 ml/well) (Sigma Chemical Co., St. Louis, MO)

prepared in PBS. After removal of polylysine, wells were washed

with 100 ml PBS three times. Spleen cells were added (105/well,

suspended in DMEM + 2% FBS) and then treated with LFnBLA

(2 mg/ml) plus PA (1 mg/ml) at 37uC for 1 h. Cells were then washed

three times with PBS before adding Alternative Substrate Loading

Solution (6 ml solution A containing CCF2/AM, 60 ml solution B,

925 ml solution C, and 2 mM probenecid). CCF2/AM and loading

solution components were purchased from Invitrogen and proben-

ecid was purchased from MP Biomedicals Inc. (Solon, OH). Cells

were incubated with CCF2/AM at room temperature, avoiding

light, for 4 h. Microscopy was performed using a Nikon TE2000-U

Eclipse fluorescence microscope with BV-2A filter (excitation at

409 nm and emission at 447/520 nm) (Nikon, Melville, NY).

Flow cytometric analysis of LFnBLA activity
Spleen cells were resuspended at 106 per 0.5 ml in DMEM +

2% FBS, and treated with LFnBLA (2 mg/ml) plus PA (1 mg/ml)

at 37uC for 1 h. After three washes with PBS, the cells were

resuspended in 500 ml DMEM, and 100 ml modified loading

solution (6 ml solution A, 60 ml solution B, 904 ml PBS and

0.1 mM probenecid) was added to cells. After 4 h of incubation at

room temperature, cells were washed three times with PBS/

probenecid (PBS supplemented with 0.1 mM probenecid). Cells

were then resuspended in PBS/probenecid before flow cytometric

analyses. To examine LFnBLA activity in individual cell types,

after the CCF2/AM incubation and washes, spleen cell suspen-

sions were stained with APC-anti-mouse CD11b, PE-Cy7-anti-

mouse CD11c, PE-Cy7-anti-mouse B220, APC-anti-mouse CD4,

or PE-Cy7-CD8a (BD Pharmingen, San Jose, CA). Antibodies

were titrated to identify optimum concentrations. Staining was

performed in PBS/probenecid with the optimized dilution of the

labeled antibodies at 4uC for 20 min, followed by three washes

with PBS/probenecid. The BD LSRII flow cytometer (BD

Biosciences, San Jose, CA) was used to detect CCF2/AM FRET

disruption by assessing emission at 440/40 nm for blue light and

525/50 nm for green light using excitation at 405 nm. The same

method was used to treat the purified individual immune cells.

Briefly, cells were resuspended with DMEM + 2% FBS after

purification by Miltenyi magnetic beads, and treated with the

same concentration of LFnBLA/PA. After three washes with PBS,

the cells were stained with CCF2/AM with modified substrate

loading solution and subjected to flow cytometric analysis. Flowjo

software (TreeStar Inc., Ashland, OR) was used for data analysis.

Real-time PCR
Total RNA isolated from purified mouse spleen immune cell

populations using Trizol (Invitrogen) was subjected to reverse

transcription to generate cDNA with the SuperScript II Reverse

Transcriptase kit (Invitrogen). Real-time PCR analyses were

carried out using the Applied Biosystems 7000 sequence detection

system and the TaqMan gene expression master mix (Applied

Biosystems, Foster City, CA). Primers for detection of CMG2 (Cat.

No. Mm01196014_g1), TEM8 (Mm00712952_m1), and b-actin

(Mm00607939_s1) were purchased from Applied Biosystems.

TEM8 and CMG2 expression levels are presented as amounts

relative to those of b-actin in each cell type.

Statistical analysis
Student t-test analyses were performed using Graphpad Prism

version 5.00 for Windows (GraphPad Software, San Diego

California USA, www.graphpad.com).
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