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Abstract: Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic 

malignancies and has a poor prognosis due to relatively unspecific early symptoms, and thus 

often advanced stage, metastasized cancer at presentation. Metastasis of EOC occurs 

primarily through the transcoelomic route whereby exfoliated tumor cells disseminate within 

the abdominal cavity, particularly to the omentum. Primary and metastatic tumor growth 

requires a pool of proangiogenic factors in the microenvironment which propagate new 

vasculature in the growing cancer. Recent evidence suggests that proangiogenic factors other 

than the widely known, potent angiogenic factor vascular endothelial growth factor may 

mediate growth and metastasis of ovarian cancer. In this review we examine the role of some 

of these alternative factors, specifically cathepsin D and cathepsin L. 
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1. Introduction 

Epithelial ovarian carcinoma (EOC) is the leading cause of death among gynecological cancers in the 

western world. Worldwide, approximately 200,000 women are diagnosed with this malignancy, with 

125,000 disease related deaths each year [1]. The high mortality of this disease can be explained by late 

diagnosis at an advanced disease state, with widespread metastasis within the peritoneal cavity [2]. 

Symptoms are vague at the primary stage, and hence early diagnosis is difficult. Approximately, 70% of 

patients are diagnosed with the International Federation of Gynecology and Obstetrics (FIGO) stage III 

or IV, with a poor five year survival rate. Although the ideal primary cytoreductive surgery and 

combination chemotherapy with platinum have improved the prognosis of patients with malignant 

ovarian cancer, the 5-year survival rate remains ~40% [3,4]. 

Approximately 90% of human ovarian cancers are thought to originate from the epithelium [5]. 

Initially, EOC cells tend to undergo epithelial-to-mesenchymal (EMT) transition which weakens the 

attachment of epithelial cells to the basement membrane and loosens the intercellular adhesion between 

neighboring epithelial cells. Loss of expression of E-cadherin correlates with EMT and the acquisition 

of an invasive phenotype, and cells with low E-cadherin expression have been found in ascites and at 

metastatic sites [6–8]. As a part of a feedback loop, other cadherins are upregulated in these cells e.g., 

N-cadherin and P-cadherin [9,10]. These transformed cells are shed as single cells or clusters into ascites 

or peritoneal fluid and spread through the peritoneum, especially to the omentum [11]. At the omentum, 

the tumor cells undergo mesenchymal-to-epithelial transition into an epithelial phenotype; a transformation 

that is vital to allow them to respond to paracrine growth factors and sustain rapid growth [11]. The 

disseminated cancer cells first interact with the mesothelial layer that covers the omentum. Alpha and 

beta integrins on both cancer and mesothelial cells have been shown to bind to each other, initiating 

attachment of cancer cells to the omentum [12,13]. This attachment induces upregulation of matrix 

metalloproteinases (MMPs) 2 and 9 in cancer cells that cleave the extracellular matrix proteins 

fibronectin, vitronectin and collagens [11]. Early metastasis is well-coordinated via adhesion and 

proteolysis, which provides a niche for EOCs to establish secondary foci in the omentum by invading 

the basement membrane. 

In order for the secondary tumor to grow and survive, angiogenesis is vital. In the tumor 

microenvironment the balance between pro- and anti-angiogenic factors favors the proangiogenic 

process, leading to activation, proliferation and migration of the endothelial cells lining vasculature and 

excessive genesis of new blood vessels from the existing ones. To date, several proangiogenic factors 

have been identified to be secreted by EOCs which could potentially drive angiogenesis and metastasis; 

these include various isoforms of the major pro-angiogenic mediator vascular endothelial growth factor 

(VEGF) as well as angiopoietin-2, basic fibroblast growth factor (bFGF), heparin-binding EGF-like 

growth factors (hb-EGF), and cytokines such as interleukins 6 and 8, and transforming growth factor-�1 

(TGF�1) [14–17]. 

Although these factors are now known to be secreted from EOCs, their involvement in inducing 

metastatic angiogenesis in secondary locations such as the omentum is not fully understood. Indeed, 

recent evidence suggests that omental metastasis of EOC may primarily occur via non-VEGF dependent 

pathways [18]. Further to this observation, several other potential proangiogenic factors were identified 

to be secreted from EOCs. These included cathepsin D (CathD) and cathepsin L (CathL) which were 
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shown to induce proangiogenic responses in disease-relevant human omental microvascular endothelial 

cells [18]. These data suggest that these proteases may play an important role as alternative mediators 

of metastasis of EOC to the omentum. Since the clinical prevention and treatment of this pathological 

event is so critical to patient well-being, understanding the function of alternative mechanisms of 

angiogenesis may be important in targeting future therapies. In this review we aim to summarize the 

biological and clinical significance of CathD and CathL, initially in physiological cell regulation and 

then as potential pro-tumorigenic factors regulating progression steps in both primary and metastatic 

tumors including cell detachment, proliferation and migration, apoptosis and angiogenesis. In particular 

we will summarize what is known about their role in the etiology of both primary and secondary EOCs. 

2. Cathepsin D 

CathD is a soluble lysosomal aspartic endopeptidase primarily involved in degrading unfolded or 

non-functional proteins intracellularly. The protein is synthesized in rough endoplasmic reticulum as 

inactive preprocathepsin D (43 kDa), which is in turn cleaved and glycosylated to form 52 kDa 

procathepsin D (pCathD) containing two N-linked oligosaccharides modified with mannose 6-phosphate 

(M6P) residues. pCathD is then targeted to intracellular vesicular structures such as lysosomes, 

endosomes and phagosomes both by M6P receptor (M6PR)-dependent and-independent pathways 

(reviewed in [19]). The latter pathway of targeting is not fully understood; however the sphingolipid 

activator precursor protein pro-saponin has been suggested to be involved [20]. 

Once pCathD enters the late endosome, the low pH induces its dissociation from M6PR and 

subsequently the phosphate group is removed. Proteolytic cleavage of propeptide (44aa) on pCathD 

generates active intermediate enzyme [21]. The propeptide (also known as activation peptide) is essential 

for the correct folding, activation and delivery of the protein to lysosomes [22,23]. This peptide, which 

is expressed in, and secreted from, cancer cells, has also been demonstrated to act as a growth factor for 

tumor cells [24]. The intermediate CathD is further processed by cysteine proteases and autocatalysis to 

generate mature CathD (48 kDa) containing a heavy chain (34 kDa) and a light chain (14 kDa) [25]. The 

optimum pH for CathD activity is 3.5 at which it is highly proteolytically active [26]. However, 

proteolytic activity has also been reported at neutral pH in the cytosol of apoptotic cells and in 

neurofibrillary degeneration [27,28]. 

2.1. Physiological Roles of CathD as Both AN Intracellular and Extracellular Protein 

CathD has been shown to play a significant role during fetal development. The lysosomal system 

matures gradually which correlates with increased CathD levels in all tissues [29]. A reduction of CathD 

expression or its catalytic activity results in neurodegenerative disorders. CathD knockout mice die 

shortly after birth and display significant neurodegeneration [29]. Congenital mutations in the CathD 

gene lead to a reduction in expression and subsequent production of enzymatically inactive protein that 

results in typical neuronal ceroid lipofuscinoses in dogs and humans [30–35]. Recently, it has been 

shown that CathD deficiency is associated with Parkinson’s disease [36]. Interestingly, increased CathD 

expression and activity in cardiac cells induces heart failure in postpartum female mice [37]. Higher 

CathD levels have also been suggested to play an important role in the pathogenesis of autism [38]. 
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Several physiological functions of CathD have been suggested based on its proteolytic activity to 

cleave structural and functional proteins and peptides. These include metabolic degradation of 

intracellular proteins, activation and degradation of polypeptide hormones and growth factors such as 

plasminogen, prolactin, endostatin, osteocalcin, thyroglobulin, insulin-like growth factor binding 

proteins (IGFBP) and secondary lymphoid tissue chemokine (SLC); activation of enzymatic precursors 

of CathL, CathB and transglutaminase 1; and processing of the enzyme activators and inhibitors 

prosaposin and cystatin C (reviewed in [19]). 

Although CathD is a lysosomal enzyme and its enzyme activity is usually regulated within the acidic 

compartment of lysosomes, it has been shown to be enzymatically active and biologically relevant  

extra-lysosomally at cytosolic pH, for instance in the control of apoptosis as discussed later. 

Unlike other aspartic endopeptidases, under normal physiological conditions, pCathD is sequestered 

to the lysosome and not secreted extracellularly. However, in some conditions, pCathD/CathD escape 

the normal targeting pathway and are secreted from the cells. Most probably, over-expression of pCathD 

saturates the limited number of M6PR binding sites available and the protein accumulates in the cytosol, 

and is subsequently secreted via an as yet unknown mechanism [39]. Indeed pCathD has been found in 

human, bovine and rat milk and serum and the presence of both pCathD and CathD (34 kDa) was 

observed in human eccrine sweat and urine [40–43]. CathD in human eccrine sweat was found to be 

proteolytically active at sweat pH 5.5 [44]. Interestingly, there is increasing evidence that extracellular 

CathD may act via both proteolytic dependent and independent mechanisms. 

2.2. Expression of CathD in Ovarian Cancer 

In many cancer microenvironments, pCathD is a major secreted protein. In the last 2 decades, studies 

have shown increased overexpression and hypersecretion of CathD in numerous cancer types including 

ovarian cancer, but also in breast cancer, endometrial cancer, lung cancer, malignant glioma, melanoma 

and prostate cancer (Table 1) [18,45–58]. Early studies investigating ovarian carcinoma suggested that 

the expression level of CathD was associated with increased cell differentiation and with histological 

type [59,60]. Additionally, numerous immunohistochemistry studies have indicated that enhanced 

CathD expression is an indicator of malignancy in serous ovarian cancer [61–63], for instance Losch  
et al. observed that over 70% of invasive ovarian cancers express CathD [62]. Intriguingly, however, it 

has also been shown that in ovarian tumors that do express CathD, a high expression level was associated 

with a favorable survival prognosis [63]. More recently, in an investigation into omental metastasis of 

ovarian cancer we have observed a significantly higher expression of CathD in the omental lesion of 

serous ovarian carcinoma compared with omentum from patients with benign ovarian cystadenoma and 

that high omental mesothelial expression of CathD was associated with poor disease-specific survival 

(DSS) [64]. This stronger expression of CathD in mesothelial cells was observed close to the metastatic 

tumor, suggesting a paracrine effect for factors secreted from the tumor cells contributing to the 

increased CathD expression. 

A number of studies have also examined CathD expression in breast cancer. CathD overexpression 

is correlated with increased risk of clinical metastasis and short survival in breast cancer [45–47]  

and increased serum pCathD levels were detected in the plasma of patients with metastatic breast 
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carcinoma [65]. Additionally, total CathD concentration in breast cancer tissue was much higher than in 

other tissues including normal mammary cells [66]. 

Table 1. Involvement of cathepsin D in the stages of tumor progression in different  

cancer types. 

Cancer Type Metastasis Invasion Angiogenesis References 
Breast � � � [45–48] 

Ovarian ND ND � [18] 

Prostate � � � [49–51] 

Endometrial ND � ND [58] 

Melanocytic � � ND [53] 

Glioma � � ND [54] 

Lung ND � ND [57] 

�, increase in effects; �, reduction in effects; ND, not determined. 

2.3. Role of CathD in Tumor Progression 

It is now recognized that CathD has a potential role in multiple tumor progression steps, both in its 

intracellular and extracellular form. 

As indicated above, a role for intracellular cytosolic CathD has been identified in apoptosis. Here the 

lysosomal enzyme is translocated to the cytosol due to lysosomal membrane permeabilization [28,67,68]. 

Subsequently, CathD actively cleaves the BH3-interacting domain (Bid) to form truncated Bid (tBid) 

which in turn triggers the insertion of Bax into the mitochondrial membrane [69,70], and leads to the 

release of cytochrome c from mitochondria into the cytosol [71]. Inhibition of enzymatically-active 

cytosolic CathD, using the inhibitor pepstatin A (pepA), partially delayed apoptosis induced by  

IFN-gamma or oxidative stress and when pepA was co-microinjected with CathD [68–70]. The role of 

CathD in inducing apoptosis has also been shown to be associated with caspases; the pan caspase 

inhibitor Z-VAD-FMK added in combination with pepA, induced a significant reduction in cell death 

compared to individual inhibitor treatments. This suggested a strong association between caspases and 

proteolytically active cytosolic CathD [72,73]. Additionally, CathD has been shown to cleave tau  

protein in vitro at pH 7 [27]. These studies suggest that, intracellularly, CathD is proteolytically active 

at cytosolic pH. However, this has been contested by other studies indicating that the effect of a mutant 

CathD, deprived of its catalytic activity, was indistinguishable from that of the normal enzyme [74,75]. 

Although, a role for intracellular CathD in apoptosis suggests that the protein may be anti-tumorigenic; 

this is in contrast to the functions observed for extracellular CathD. 

For instance CathD is secreted by EOC cancer cell lines (SKOV3 and A2780) [18], is present in the 

ascites of patients suffering from ovarian cancer (unpublished data), and exogenous CathD induced 

migration of human omental microvascular endothelial cells; a key step in angiogenesis during omental 

metastasis [18]. In a separate study pCathD and CathD have been reported to induce proliferation and 

migration of cancer cells, fibroblasts and endothelial cells in both a proteolytic dependent and 

independent manner [76] (Figure 1). While secreted pCathD is generally considered to be proteolytically 

inactive, it has been proposed that the acidic pH in the tumor microenvironment promotes the conversion 

of pCathD into mature, biologically active CathD. This was supported by data indicating that pCathD, 
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collected from tumor-conditioned media, became auto-activated if the pH was lowered and was 

subsequently able to degrade ECM proteins and release growth factors such as bFGF [48,77,78], steps 

important for cancer cells to invade surrounding tissue [79]. 

There is evidence that CathD may induce mitogenic responses via both proteolytic-dependent  

and—independent mechanisms. Both the wild type and mutant form of CathD were shown to induce 

fibroblast proliferation via a mechanism whereby they acted as a protein ligand [80]. In the latter study, 

the authors demonstrated an interaction between M6PR and pCathD. Co-incubation with excess M6P 

partially prevented fibroblast proliferation. Although an unknown receptor molecule has been suggested 

to be involved, the identity of this potential receptor has not yet been resolved. 

CathD actions on tumor growth were further reported in studies showing that 3Y1-Ad12 rat tumor 

cells transfected with human CathD cDNA grew more rapidly at low or high cell densities in vitro and 

presented an increased experimental metastatic potential in vivo [81–83]. Additionally, both wild-type 

and mutated (Asn 231, proteolytically inactive) CathD stimulated proliferation of 3Y1-Ad12 cells 

embedded in Matrigel or collagen 1 matrices, colony formation in soft agar and tumor growth in athymic 

nude mice [84,85]. Again, an unknown receptor, other than M6PR, was suggested to be involved in 

CathD mediated cell growth as no inhibition of cell outgrowth was observed when excess M6P was 

added, suggesting that M6P did not compete with CathD interacting with M6PR. In the same study the 

propeptide (27–44aa) of pCathD was found not to be mitogenic, contradicting studies which found 

otherwise [24,66,86–89]. 

The role of CathD has also been extensively studied in human primary breast cancer. Upregulation 

of CathD expression was observed in estrogen receptor (ER) positive breast cancer cell lines treated  

with estrogen [90]. In vitro experiments with the MCF7 cell line supported these data and revealed that 

pCathD/CathD were overexpressed and hyper-secreted from these cells into the media. Further studies 

have reported that as a mitogen pCathD acts as a protein ligand rather than enzymatically and that 

purified pCathD from MCF-7 breast cancer cells stimulated MCF-7 cell growth on plastic via an 

autocrine mechanism [91]. Intriguingly, CathD has also been shown to selectively degrade macrophage 

inflammatory protein (MIP)-1� (CCL3), MIP-1� (CCL4), and SLC (CCL21) that, in turn, may affect 

the generation of the anti-tumoral immune response, the migration of human breast cancer cells, or  

both processes [92]. 

In recent years studies have emerged that suggest that CathD can induce angiogenesis in vivo and  
in vitro. In vivo, overexpression of CathD in xenografts in an athymic mice model correlated with 

increased vascular density. The number of microvessels was significantly increased by 1.5-fold and  

1.9-fold in the CathD and CathD-Asn 231(proteolytically inactive) groups respectively, suggesting that 

CathD induces angiogenic effects via an unknown mechanism other than its proteolytic activity [85]. 

CathD has also been shown to induce blood vessel formation in the chick chorioallantoic membrane 

(CAM) model [93] and a role for CathD in angiogenesis was further illustrated by the observation that 

migration of human umbilical vein endothelial cells (HUVECs) and in vitro angiogenic tube formation 

were increased when cells were treated with active pure CathD. CathD was proteolytically active in these 

experiments as complete inhibition of angiogenesis, tube formation and migration was achieved by 

addition of pepA [93]. Proteolytically active CathD has also been suggested to induce angiogenesis in 

breast cancer by cleaving and releasing ECM-bound pro-angiogenic bFGF [48]. 
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Figure 1. Potential roles of tumor cell-secreted procathepsin/cathepsin D (pCathD/CathD) 

on extracellular matrix (ECM), tumor, fibroblast and endothelial cells in the tumor 

microenvironment. pCathD is synthesized and processed in the rough endoplasmic reticulum 

(rER) and Golgi bodies (G), and subsequently transported to early endosome (EE), late 

endosome (LE) and finally lysosome (LY). Overexpressed pCathD/CathD is secreted into 

the extracellular space by tumor cells. Mature CathD cleaves ECM and releases basic 

fibroblast growth factor (bFGF) that may induce angiogenesis. Both pCathD and CathD 

induce tumor cell proliferation, and hence invasion via an autocrine mechanism. CathD 

induces proliferation of fibroblasts and migration of endothelial cells. Mannose-6-phosphate 

receptor (M6PR) may be involved in inducing the proliferative effects. C and N denote 

cytoplasm and nucleus, respectively. 

In contrast it has also been suggested that CathD activity may be anti-angiogenic For instance, pCathD 

secreted by prostate cancer cells was shown to have a possible role in generating angiostatin via 

proteolysis—a specific inhibitor of angiogenesis in vitro as well as in vivo [51]. 

3. Cathepsin L 

CathL is a lysosomal ubiquitous cysteine proteinase that plays an important role in degrading 

endocytosed proteins as well as intracellular proteins [94,95]. CathL is translated as preprocathepsin L 

(ppCathL), processed into procathepsin L (pCathL) in the rough endoplasmic reticulum with a  

molecular mass of 30 kDa and a two-chain form with molecular masses 25 kDa and 5 kDa [96–99],  

and then transported to endosome/lysosomes in M6PR pathway [100]. It has been reported that 1,  

10-phenanthrolin and pepstatin partially inhibited the processing of the proenzyme form of CathL to the 

mature enzyme and it has been speculated that metallo-proteinases or an aspartic protease such as CathD 

are involved in the proteolysis-mediated activation of CathL in the lysosome [101,102]. CathL can also 

be produced by autocatalysis of pCathL at pH 3 as demonstrated in an in vitro study of pCathL collected 

into conditioned medium of cultured murine fibroblasts [103]. 
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3.1. Physiological Roles of CathL 

The key functional role of CathL is to degrade proteins in lysosomes and it has been shown to be 

highly active at physiological pH 5.5–6 in lysosomes in several studies [103,104]. However, it is also 

known that CathL is secreted in different forms into the extracellular space in both physiological and 

pathological conditions, and retains its function as a protease. In physiology, CathL has been shown to 

degrade the Ii peptide of major histocompatibility complex II (MHC II) that in turn allows peptides 

derived from the proteolytic degradation of foreign or self-proteins to then bind to class II molecules and 

appear on the cell surface [105]. Interestingly, it has been shown that CathL is essential for MHC II 

mediated antigen presentation in cortical thymic epithelial cells but not in bone marrow-derived  

antigen-presenting cells in vivo. This was reflected in CathL deficient mice with a reduction in CD4+ T 

cells [105]. CathL has also been shown to degrade and process MHC II molecule-mediated antigen 

presentation [106]. CathL is essential for epidermal homeostasis and regular hair follicle morphogenesis 

and cycling; indeed, CathL-deficient mice develop periodic hair loss and epidermal hyperplasia, 

acanthosis, and hyperkeratosis [107]. 

It has also been reported that CathL null mice showed reduced bone mass compared to wild type mice 

suggesting a role for CathL in bone remodeling. CathL null mice showed significant reduction in bone 

volume in travecular, but not cortical, bone compared to wild type. Bone loss was exacerbated in null 

mice (compared to wild type) following ovariectomy suggesting that CathL is stimulated by external 

stimuli (e.g., estrogen) and is likely to play a role in controlling bone turnover during normal development 

and in pathological states [108]. 

3.2. Cathepsin L Secretion 

A secreted form of CathL was first identified as a major secreted protein from a transformed mouse 

fibroblast cell line [103]. However, the mechanism of CathL secretion is still a mystery. pCathL has only 

one single chain carbohydrate, and hence it has low affinity for M6PR [109–111]. This observation 

suggests that not all CathL binds to M6PR and therefore is secreted from the cell by default protein 

trafficking [100]. M6PR saturation, downregulation or redistribution to the plasma membrane has also 

been suggested [112,113]. Interestingly, hypoxia was shown to induce secretion of CathL from the 

murine fibrosarcoma cell line KHT-LP1 which may accelerate the metastatic process in these cells [114]. 

CathL has also been shown to be protective against bacterial infection in airways of mice [115]. 

3.3. Expression of CathL in Ovarian Cancer 

CathL has been linked to tumor invasion and metastasis, particularly by degrading ECM components 

such as proteoglycans, aggrecan, elastin, laminin, fibronectin and collagens I, II, IX, XI [116–121]. In 

ovarian cancer an increased level of secreted CathL was observed in the sera of epithelial malignant 

EOC patients compared to those with benign ovarian tumors and normal ovarian tissue [122,123]. These 

studies also showed that there was a significant increase in the tumor expression of CathL mRNA levels 

which correlated with its protein levels in serum. CathL has been suggested to be involved in the invasion 

and metastasis of EOC, and hence maybe a marker of advanced stage ovarian cancer [123]. This is 

supported by our own data demonstrating that the endothelium of vessels within omentum hosting 
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metastatic ovarian high-grade serous carcinoma expressed significantly increased CathL in vivo 
compared with omentum from control patients with benign ovarian cystadenoma [64]. 

3.4. Role of CathL in Tumor Progression 

CathL may play a role in the proliferation of ovarian cancer cells, although the data are contradictory. 

CathL had little effect on cell growth and proliferation of the A2780 ovarian cancer cell line [123], 

whereas downregulation of CathL significantly inhibited the proliferative and invasive capability of 

SKOV3 ovarian cancer cells [124]. 

Over-expression of CathL has been linked to metastasis following ras transformation of NIH/3T3 

cells [125] and non-metastatic melanoma cells were converted to a metastatic state by over-expression 

of CathL [126]. An extra-lysosomal role for CathL has been suggested in human and murine melanoma 

cells in the context of metastasis [127]. Recently, it was shown that CathL is involved in B16F10 

melanoma cell invasion, particularly through cell migratory influences. There was approximately a 70% 

reduction in CathL anti-sense clone invasion and migration compared to control after 24 h. However, 

when CathL-induced proliferation was tested in these cells, no difference was found between the rate of 

proliferation of antisense cell and control cell colonies. Overall, the results suggested that secreted CathL 

has direct effects on cell motility and contributes, via its proteolytic action, to the active invasion of 

melanoma cells [128]. CathL-induced pancreatic cancer cell invasion was also observed in RT2 mice. 

CathL null mice had a significant reduction in tumor volume and invasion, suggesting extracellular 

proteolytic activity. In contrast to the melanoma cell study discussed above, the latter work demonstrated 

significant proliferative effects of CathL on pancreatic cancer cells, with a 58% decrease in proliferation 

in CathL knockout cells [129]. 

Recently, CathL derived from skeletal muscle cells transfected with bFGF has been shown to promote 

migration of HUVECs [130]. Cell migration was examined in the presence of the cell impermeable 

CathL-proteolytic activity inhibitor Z-Phe-Tyr-Cho and CathL for 12 hours. The data revealed a 

significant reduction in HUVEC migration, suggesting that CathL influences cell migration in a manner 

dependent on its proteolytic activity. Subsequently, CathL was found to activate c-Jun N-terminal kinase 

(JNK) in migratory HUVECs [130]. However, the exact role of CathL in activating the JNK pathway 

has not been elucidated. 

Evidence for a role for CathL in angiogenesis is also contradictory. Recently SKOV3 and A2780 

EOC cells were shown to secrete CathL. Exogenous addition of CathL to human omental microvascular 

endothelial cells used as an in vitro model of omental angiogenesis, induced migration and in vitro tube 

structure formation [18] (Figure 2). Together, these data suggest that CathL may trigger a proangiogenic 

phenotype in these endothelial cells. 

In contrast to the pro-angiogenic role of CathL discussed above, both secreted and intracellular CathL 

has been shown to release endostatin, a potent inhibitor of angiogenesis, by cleaving ECM collagen [131]. 

Since the tumor microenvironment provides an acidic milieu, CathL can efficiently cleave collagen even 

outside the cells. However, in other studies, CathL had no effect on angiogenesis. For instance,  

Gocheva et al. (2006) demonstrated that CathL had no significant effects on microvascular density in 

pancreatic cancer in mice [129]. When evaluating the role of CathL in angiogenic switching in 

homozygous cathepsin knockout RT2 mice compared to control mice, the authors found that there was 
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no significant effect on the development of these precursor lesions, suggesting that CathL did not 

contribute to angiogenic switching. However, other cathepsins, i.e. cathepsins B and S, were found to be 

very important in inducing angiogenesis in the same study [129]. 

 

Figure 2. Potential proangiogenic role of cathepsin L in EOC. Procathepsin L (pCathL) is 

synthesised and processed in the rough endoplasmic reticulum (rER) and Golgi bodies (G), 

and subsequently translocated to early endosome (EE), late endosome (LE) and finally 

lysosome (LE). Mature CathL is secreted by epithelial ovarian cancer (EOC) cells and 

induces migration in endothelial cells via an unknown receptor. Tumor-secreted CathL may 

also degrade extra cellular matrix (ECM) components, facilitating new vessel formation. 

Intriguingly, endothelial progenitor cells (EPCs) have been reported to produce CathL which in turn 

induces angiogenesis. Urbich et al. showed that EPCs were able to stimulate neovascularization and 

blood flow in the ischemic murine hind leg after injection into the affected leg [132]. These EPCs 

displayed significantly enhanced expression of CathL compared to mature endothelial cells as revealed 

by mRNA array analysis. It has been suggested that in the neovascularization process CathL activity 

may be extra- or pericellular. Indeed, mature CathL has been shown to maintain its proteolytic activity 

in the extracellular environment at neutral pH by the chaperone action of a p41 splice variant of the 

MHC class II-associated invariant chain [133], which also is strongly expressed in EPCs [132]. Such 

activity may facilitate EPC invasion and neovascularization and, interestingly, CathL deficient mice 

suffered from impaired neovascularization. Furthermore, mice treated with CathL-deficient bone 

marrow cells demonstrated a significant reduction in angiogenesis [132]. These data are supported by 

the observation that CathL expressed in EPCs cells plays a critical role in intraocular angiogenesis [134]. 

However, although CathL has been suggested to induce angiogenesis in these studies, its mechanism of 

action has not been elucidated. 
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4. Conclusions 

Proteases such as CathD and CathL had long been known for their intracellular protein-degrading 

activities. However, a key role in cancer biology is now recognized, particularly their proteolytic 

function in ECM breakdown and thus facilitation of invasion. Interestingly, it is now becoming accepted 

that these proteases may also promote tumorigenesis and metastasis via non-proteolytic actions, although 

there is still a relative lack of understanding regarding their receptors and downstream intracellular 

effectors and signaling pathways. In EOC the urgent need to develop effective therapeutic approaches 

to improve patient outcomes highlights the importance of better understanding the role of key factors, 

such as the cathepsins, in driving ovarian tumor progression and metastasis in order to identify potential 

molecular therapeutic targets. 
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