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The merit of RNASeq data relies heavily on correct normalization. However, most methods assume that
the majority of transcripts show no differential expression between conditions. This assumption may not
always be correct, especially when one condition results in overexpression. We present a new method
(NormQ) to normalize the RNASeq library size, using the relative proportion observed from RT-qPCR of
selected marker genes. The method was compared against the popular median-of-ratios method, using
simulated and real-datasets. NormQ produced more matches to differentially expressed genes in the sim-
ulated dataset and more distribution profile matches for both simulated and real datasets.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Background

RNASeq has become one of the most useful tools in molecular
biology, especially as it allows for the comparison of mRNA expres-
sion levels between different conditions [1]. However, to accom-
plish this, it is important that the raw counts of the mapped
transcripts are normalized correctly to compensate for innate
biases in the technology [2,3]. To minimize these effects, many
methods have been proposed on how to normalize the data, such
as by library size or adjusting the distribution of the individual
read counts [4,5]. However, each of these normalization methods
have their advantages and limitations, typically being appropriate
for certain experimental designs [2].

Most of these normalization methods are limited by their
assumption that the majority of the transcripts is not differentially
expressed. DESeq2, one of the most popular library-based tools,
abides by this assumption, and utilizes the median-of-ratios
method to normalize the library size by calculating a size factor
that can best fit the data [6]. This size factor is calculated using
either a spike-in control (control-based) or the gene counts from
the biological replicates (average-bulk). However, given this innate
assumption, in the case of global scale differential expression, the
average-bulk method may underestimate the true number of dif-
ferentially expressed genes (DEGs) [7]. Spike-in controls may help
to offset this bias, as it does not create any major assumptions for
the genes of interest. However, it requires that factors affecting the
spike-in controls are also equally affecting all the genes and that
the concentration of the spike-in is uniform between the samples,
which may not necessarily be true [2,8]. Other normalization tech-
niques, example RUVs, can also account for technical variability by
using validated stable non-DEGs [9]. However, the identification of
such stable homogeneously expressed genes can be very difficult.

There are several scenarios where a global shift in transcript
expression may be observed. This may be an issue affecting cancer
studies due to overexpression of master regulator genes or the
comparison between very different tissue types [7,10,11]. Another
type of RNASeq experimentation that may also demonstrate global
scale differential expression are those involving the use of TOMO-
Seq [12,13]. Spatial profiling with RNASeq, based on a defined sam-
ple, such as a single cell, dissected into segments offers very unique
challenges. Firstly, the amount of total RNA is not necessarily the
same in all sections [14]. Secondly, if the cell has compartmental-
ization of selected transcripts (See Fig. 1), the assumption that the
majority of genes between sections shows no differential expres-
sion is likely incorrect [12]. Therefore, given these limitations, most
software for assessing DEGs may not produce the best results when
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Fig. 1. Schematic of the localization profile of selected mRNAs representing the four major profiles observed in Xenopus laevis egg.
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analyzing cryosectioned eggs. These issues have perhaps not been
blatantly apparent since many of the historic approaches to TOMO-
Seq have been limited primarily to separating the egg into two
parts, for example the animal versus vegetal region [15]. It is pos-
sible that these types of issues have affected other RNASeq studies
but have gone undetected.

Our laboratory was one of the first to analyze sub-
compartmentalization of maternal transcripts in eggs [12,14,16].
To do this we developed approaches to deal with some of the cur-
rent limitations during normalization. Our study presents a new
method for size factor estimation based on RT-qPCR data obtained
from selected genes with known localization profiles (normaliza-
tion by RT-qPCR – NormQ method). NormQ should also be useful
for other RNASeq studies where a global shift in expression is
observed or where the total transcript abundance between sam-
ples is very different.

We compared the results from NormQ with those calculated
using DESeq2’s traditional average-bulk and control-based
median-of-ratios methods. We analyzed both a Simulated-
TOMOSeq dataset and also real datasets from TOMOSeq performed
on maternal transcripts from the Xenopus laevis and Acipenser
ruthenus egg models and present evidence in support for the use
of RT-qPCR normalization of RNASeq data under certain conditions.
2. Results

2.1. TOMOSeq simulation

2.1.1. Effect of normalization on distribution of sections
The simulation produced expected intra-sample gene counts

that had a mean expression ratio that was skewed relative to each
different section, reflective of the expected biased transcript popu-
lation per section (See Fig. 2). Only NormQ and DESeq2spike were
able to mimic the intra-section expected distribution. NormQ1

was also able to mirror most of the expected intra-section distribu-
tion, while DESeq2median was unable to provide comparable resolu-
tion (See Fig. 2). All normalization techniques were able to
normalize effectively between the inter-sections when compared
to the expected distribution and also showed good clustering of
inter-section replicates of the top 5000 variable genes. However,
only NormQ and DESeq2spike had similar intra-section separation
of the 5000 genes compared to the expected, while DESeq2median

had less separation and NormQ1 had more separation between sec-
tions A and B.
2.1.2. Effect of normalization on detected differentially expressed genes
More DEGs were detected when using the NormQ (7009) versus

the DESeq2median (3065) or DESeq2spike (6801) in the Simulated-
TOMOSeq experiments (See Fig. 3a). However, in regard to true
DEGs, DESeq2spike and NormQ were able to identify 47% and 48%
of the expected DEGs (11177) respectively while DESeq2median

was only able to identify 19% (See Fig. 3a). The AUC-ROC showed
an improved performance when using DESeq2spike and NormQ ver-
sus the DESeq2median (Table 1). Additionally, NormQ and
DESeq2spike were the only two methods that gave substantial gene
localization profile matches compared to the expected profiles for
the correctly identified DEGs, the DEGs that were shared by all nor-
malization methods and for all genes (DEGs and non-DEGs) (See
Table 1; Fig. 3d; Additional file 1: Table S1).

There was a higher correlation between the relative section
proportions as derived from NormQ (r2 = 0.61) marker genes and
those from the expected data for the Simulated-TOMOSeq relative
to those from the other normalization methods (See Fig. 3b).
The DESeq2spike produced the second best fit (r2 = 0.60) with
DESeq2median performing the worst (r2 = 0.20) (See Fig. 3b).

Analysis of the selection process for the marker genes when
using all genes for the calculation of the NormQ size factor, found
that on average there was a 0.24 probability of selecting an outlier
gene from the extreme animal, 0.22 from animal, 0.24 from vegetal
and 0.34 from extreme vegetal localization categories for all egg
sections. AUC-ROC analysis showed that varying the number of
genes used for calculating the size factor, to as low as three genes,
or selecting genes from a singular localization group, did not drop
the performance lower than 95% (see Additional file 2: Fig. 1S,
Additional file 1: Table S2).
2.2. Real dataset

2.2.1. Effect of normalization on distribution of sections
Similar to the simulation, the NormQ normalized data showed a

clearly distinct intra-section distribution while maintaining similar
mean inter-section distributions (see Additional file 2: Fig. 2S,
Fig. 3S). The DESeq2spike normalization which was performed only
on the A. ruthenus dataset, showed an inability to adequately nor-
malize between inter-sections (see Additional file 2: Fig. 3S). Both
X. laevis and A. ruthenus DESeq2median normalization showed no
intra-section separation (see Additional file 2: Fig. 2S, Fig. 3S).

Principle Component Analysis (PCA) of the 5000 most variable
genes from the normalized data showed better clustering between
replicates and separation between sections when using NormQ for
the X. laevis data (see Additional file 2: Fig. 2S). The cluster profiles
and distributions of replicates appeared consistent between all
normalization methods for the A. ruthenus data (see Additional file
2: Fig. 3S). However, two replicates showed good reproducibility,
while one replicate consistently remained deviated from the clus-
ters but only within one dimension (see Additional file 2: Fig. 3S).
2.2.2. Effect of normalization on detected differentially expressed genes
More DEGs were detected when using the NormQ normaliza-

tion technique versus the DESeq2median or DESeq2spike in both the
X. laevis (x2.8 DESeq2median) and A. ruthenus (x2.9 DESeq2median,
x1.1 DESeq2spike) experiments (see Additional file 2: Fig. 4S). Even
though almost all of the DEGs for the X. laevis DESeq2median nor-
malized data were identified using the NormQ, only 22% percent



Fig. 2. degCheckFactor analysis of the proportion of the normalized counts for each gene relative to its mean count across the different sections (intra-section) or all same
sections (inter-section) from the Simulated-TOMOSeq data and the resulting Principle Component Analysis for the 5000 genes showing the most variance. Replicate number
is represented as r, a given egg section as s and gene as z. Intra-section analysis shows how well the normalization technique maintains separation between the different
sections, while the inter-section analysis shows how well the median-of-ratios method can normalize between replicates.
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of these shared genes produced a similar gradient profile across the
sections after supervised clustering analysis (Additional file 1:
Table S3). A similarly relatively low proportion (62%) of genes
shared related gradient profiles for the DEGs common between
the NormQ and DESeq2median A. ruthenus normalized data (Addi-
tional file 1: Table S3). A larger proportion of the DEGs (91%)
shared between the DESeq2spike and NormQ methods were
observed to have similar profiles across the sections in A. ruthenus
(Additional file 1: Table S3). Many of the shared DEGS that were of
a different profile in the DESeq2median were shifted to the neighbor-
ing profile in NormQ (Additional file 1: Table S3). Additionally,
many of the shared DEGS with undefined profiles when using
DESeq2median were shifted to the animal profile when using the
NormQ method (Additional file 1: Table S3).

A larger proportion of the marker genes (X. laevis = 87.5%; A.
ruthenus=95.5%)were foundtomatch theexpected localizationpro-
file when using the NormQ method compared to the DESeq2median

and DESeq2spike methods (X. laevis DESeq2median = 50%; A. ruthenus



Table 1
Assessments of the Area under the Receiver Operating Characteristic (ROC) curve
(AUC) and also the number of profile matches for correctly identified DEGs after using
each normalization method on the Simulated-TOMOSeq data.

Normalization
method

AUC-ROC
of DEGs

Profile matches for
DEGs shared with
DESeq2expected

a

Profile matches for DEGs
shared amongst all
normalization methodb

DESeq2spike 0.995 90% (4667/5188)) 92% (1814/1978)
NormQ 0.989 92% (4907/5334) 94% (1853/1978)
DESeq2none 0.952 77% (4325/5630) 71% (1395/1978)
NormQ1 0.76 77% (4460/5818) 71% (1394/1978)
DESeq2mean 0.354 37% (771/2060) 37% (739/1978)

a (correct profile match
T

correctly identified DEGs with no missing replicate
data)/correctly identified DEGs with no missing replicate data.

b (correct profile match
T

correctly identified DEGs shared by all normalization
methods with no missing replicate data)/correctly identified DEGs shared by all
normalization methods with no missing replicate data.

Fig. 3. a) Differences in the number of significant (padj < 0.1) DEGs detected between sections when using different normalization techniques for the Simulated-TomoSeq. b)
Correlation between each section’s gene count proportion (relative to the egg) for the normalized data, versus those from the expected proportions in the Simulated-
TOMOSeq. c) Distribution of the size factors obtained from each marker gene for each replicate and section for the Simulated-TOMOSeq. d) Number of marker genes detected
within each profile after use of each normalization method. The localization profile comparison for the Simulated-TOMOSeq was assessed using genes that were commonly
detected in all three normalization methods. The bottom axis shows the number of genes that were correctly identified within the given profile while the top axis shows the
number of genes that were incorrectly profiled. The y-axis represents the log(10) of the number of detected genes. ‘‘Dm” represents DESeq2median while Ds represents
DESeq2spike.
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DESeq2median = 72.7%, A. ruthenus DESeq2spike = 86.4%) (t-test:
p-value < 0.05) (Additional file 1: Table S1, Additional file 2:
Fig. 5S, Fig. 6S). Similar to the shared DEGs, the marker genes that
had a differing localization profile when using the NormQ method,
only had a shift in localization profiles particularly from extremely
animal to animal (see Additional file 2: Fig. 4S). Additionally, the
majority of the marker gene localization profile mismatch observed
for DESeq2median was into the unclassified category in X. laevis but
also within the vegetal and animal categories in A. ruthenus (see
Additional file 2: Fig. 4S). The assessment of the published X. laevis
RT-qPCR profiles showed a higher localization profile match with
the NormQ (83%) versus the DESeq2median (73%) (t-test:
p-value < 0.05) (Additional file 1: Table S1, Additional file 2:
Fig. 7S). The expressionprofiles for the extra queriedgenes thatwere
assessed but not used for the NormQ normalization of the X. laevis
data are shown in the Additional file 2: Fig. 8S.

There was a higher correlation between the relative section pro-
portions as derived from the NormQ normalized data for the mar-
ker genes versus the RT-qPCR data for the X. laevis (r2 = 0.90) and A.
ruthenus (r2 = 0.95) data relative to those from the other normaliza-
tion methods (see Additional file 2: Fig. 9S). The DESeq2spike
produced the second best fit with DESeq2median performing the
worst (see Additional file 2: Fig. 9S).

There were minimal outlying size factors for the X. laevis NormQ
normalization (see Additional file 2: Fig. 9S, Additional file 1:
Table S4). Replicates from sections A to D showed an overall low
standard deviation from the mean size factor with very few out-
liers (see Additional file 2: Fig. 9S, Additional file 1: Table S4). On
the contrary, section E across all three replicates had a large varia-
tion with extreme outlying variables (see Additional file 2: Fig. 9S,
Additional file 1: Table S4). It appears that member in the extre-
mely vegetal profiles may not be as effective to normalize the



Fig. 4. Schematic showing the normalization steps used for the NormQ method.
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TOMOSeq data in X. laevis (see Additional file 2: Fig. 9S, Additional
file 1: Table S4). All assessed profiles for A. ruthenus contained
many outliers with most of them being concentrated within sec-
tions B and E (see Additional file 2: Fig. 9S). Only 12 out of the
29 outliers were unique with four being of extreme animal profile,
six vegetal, one extreme vegetal and one undefined (Additional file
1: Table S4).
3. Discussion

Normalization based on marker genes has historically been lim-
ited to genes that are expected to show no differential expression
between samples. However, genes displaying this stability can be
very difficult to identify between two very contrasting conditions.
Analysis of the shared non-DEGs between DESeq2median and
NormQ methods showed that the count data was too low for these
genes and the variance too high for them to be used effectively for
the calculation of size factors. Therefore, for our particular scenario
a homogeneously distributed transcript of adequate quantity may
not be available.

In such cases, artificial spike-ins like the ERCC sequences have
been recommended for use as an exogenous control. However,
the calculated size factor can be affected significantly by small-
unknown variations in the quantity of the spike-in between sam-
ples. This is potentially one of the issues that may have been
observed for the DESeq2spike normalization used for the A. ruthenus
data, as the size factor was unable to normalize the data ade-
quately between the same sections. Another, perhaps more rele-
vant explanation, may be the limitation of the TATAA spike used,
since it only represented fragments that were either 1000 bp or
2000 bp in length. However, other research have also encountered
issues when using spike-ins [9,17].

It was suggested by Chen and colleagues that the differences in
expression levels of specific marker genes between the different
cell lines may be used retrospectively to normalize old RNASeq
datasets that did not contain any spike RNAs [11]. However, we
have not found any research to date that have utilized the known
fold changes between DEGs as controls for normalization, even
though there have been several researches that have demonstrated
the correlation between fold changes of RT-qPCR and RNASeq data
[18,19]. It is understandable that the variation between gene
counts for highly expressed genes can be variable. However, as
observed it still allowed for a better representation of the data
when verified against the expected RT-qPCR profiles. The
DESeq2spike was able to capture more perturbation of genes than
the DESeq2median. However, the NormQ method was able to cap-
ture the majority of this data from both the DESeq2spike and also
the DESeq2median. In addition, unlike DESeq2median and DESeq2spike,
the NormQ was also able to adequately normalize between inter-
sections while maintaining the variation between intra-sections.
This intra-section variation is reduced when using DESeq2median

and results in the inability to detect the minor sub-localization
profiles. In addition, it results in a disproportion of the transcripts
per section as can be observed from the limited fit of the gene
localization profiles when compared to NormQ.

Other factors that favor NormQ over DESeq2median lies in the
innate requirements for the use of normalization based on the
average-bulk median-of-ratios method. One of these is the reliance
that the transcript quantity and composition should be relatively
the same between conditions. To ensure that this is achieved, the
total RNA is usually normalized to the same volume and concentra-
tion. This is essential for most differential analysis programs as
they typically assume that the total transcript number is the same
between conditions. However, this is not always the case, and has
been highlighted as a major issue especially when comparing
between two very different cell types or between two conditions
showing varying global expressions [7]. This issue also affects
TOMOSeq analysis, as each section is of a different volume and
therefore can contain more transcripts just through passive diffu-
sion [14]. Additionally, the active accumulation of transcripts
within a region will also create transcript asymmetry within the
egg, affecting the transcript composition per section [14]. The
library preparation methodology utilized in this experiment still
normalizes each section to have the same total RNA. However, by
using the scaling factors derived from the second part of the nor-
malization technique, we should have effectively scaled the library
back to the original section size. This unfortunately would not be
achieved using DESeq2median as the size factor would be unable
to scale back the data to compensate for the original section size
differences as it assumes an equal total transcript quantity.

Selection of an appropriate number and type of DEG to use for
normalization may significantly affect the normalization process.
The more marker genes from varying localization profiles that
can be included for size factor calculation will always be beneficial.
The Simulated-TOMOSeq data did not show a major decrease in
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the performance of detecting DEGs, even when varying the number
of selected marker genes to three. However, as shown from the
analysis of the outlying size factors (when using all genes) for
the NormQ analysis of the Simulated-TOMOSeq, the probability
of selecting a random gene that may contribute an outlying size
factor ranged between 0.22 and 0.34. Therefore, an adequate num-
ber of genes should be selected to prevent inadvertently choosing a
gene that contributes to an outlying size factor. Everaert and col-
leagues found that only a small proportion of their analyzed
gene-set showed discordance between RNASeq and RT-qPCR [19].
They found that on average these particular genes had lower
expression, shorter lengths, had fewer exons, lower read quality,
and mapped to multiple regions [19]. Therefore, these parameters
may also be useful when selecting for marker genes.

It is worth noting that there may be potentially other technical
and biological factors that are still hindering the normalization
process. These factors may include gene length, GC content and
over abundant transcripts that create a bias that cannot be effec-
tively captured and explained by the current normalization
method. The use of a completed genome with detailed annotation
should also be beneficial, especially for correct mapping and quan-
tifying the expressed genes. Both, X. laevis and A. ruthenus have
limited genome annotations, with A. ruthenus suffering from both
an incomplete genome sequence and no reference annotation. This
limitation of the absence of an annotated transcriptome for the A.
ruthenus, may reflect the marginal improvement of normalization
by both the NormQ and DESeq2spike.

The proposed method appears to work well on both the TOMO-
Seq for X. laevis and the Simulated-TOMOSeq while showing some
improvement for the A. ruthenus. This method may be most suit-
able for research assessing the distribution of transcripts during
spatial and temporal profiling, especially under conditions where
the transcripts are expected to show asymmetry or overexpression.
In theory, this technique should also be valid for other RNASeq
application even for experiments where the majority of the tran-
scripts are not differentially expressed. However, it would require
that the assessed differentially expressed transcripts show similar
relative ratios between conditions, with low variations between
biological repeats (Table 2). This may be difficult for conditions
that show DEGs but a high biological variation. However, it is pos-
sible that performing RT-qPCR on the same RNA extract as used for
the RNASeq may help to alleviate this issue. Another benefit of this
method is that many previous RNASeq data can be re-analyzed
without having to redo a completely new RNASeq experiment.
Additionally, it offers a simple approach for size factor calculation
when both spike-ins and average-bulk normalization methods fail.
Table 2
Recommendations for the selection of NormQ for RNASeq normalization.

Recommendations

1 Select well established marker genes that have a known distribution. If no
marker genes are known, use DESeq2median or DESeq2spike to select at least
five DEGs from each derived cluster profile, so as to reduce the probability
(<0.005) of selecting outlier marker genes.

2 Ensure that the marker gene count across all replicates and sample
section/condition are adequate (example >100).

3 Assess the relative abundance of the marker genes within each sample
section/condition using RT-qPCR.

4 Use NormQ to renormalize the data.

5 Use degCheckFactor to assess the effectiveness of the size factors used. If
the distribution between different sample sections/conditions are not
well separated, then DESeq2median or DESeq2spike may be more
appropriate methods as there is no asymmetry of your data.

6 Compare the NormQ, DESeq2median or DESeq2spike normalized data to the
RT-qPCR derived profile to determine which technique best fits the data.
4. Conclusion

NormQ offers a simple but still effective method to normalize
RNASeq data. It relies on scaling and normalizing the count data
based on the proportional distributions observed for a few marker
genes as assessed by the more sensitive RT-qPCR method. As a
result, it does not inherently assume that the majority of the genes
are not differentially expressed. Using this method, we were able to
correctly identify and profile more differentially expressed genes
within a simulated dataset and also correctly profile more genes
in our real RNASeq dataset, when compared to the commonly used
median-of-ratios method. This method should be particularly help-
ful in situations where there is either overexpression between con-
ditions or the presence of asymmetrical transcript distributions.
Given the way NormQ works, it should also be valid even when
the majority of genes are not differentially expressed as well.
5. Methods

5.1. Sample preparation for RNASeq

The workflow and experimentation for preparation of egg sam-
ples, transcript libraries, RNASeq sequencing and data post pro-
cessing for transcripts from X. laevis eggs has been described
previously [12]. Twenty eggs were embedded into a block of opti-
mal cutting temperature medium (OCT) and cut into 30-mm slices.
About 35 slices were prepared and sequentially pooled into 5 sec-
tions. In total, three biological replicates (each containing pool
from 20 eggs) were prepared for sequencing. Total RNA was iso-
lated using 500 ml of TRI Reagent (Sigma-Aldrich), followed with
LiCl precipitation to remove inhibiting substances (more details
about quality control are available in reference [12]). The RNASeq
libraries were prepared using GeneRead rRNA Depletion Kit (Qia-
gene) to remove rRNA and TruSeq RNA Sample Preparation v.2
kit (Illumina). Library sequencing was performed at BGI (Shenzen,
China) using HiSeq 2500 (Illumina), 50 bp pair-end. Ribosomal RNA
reads were filtered out from the data using Sortmerna (v. 2.1), low
quality reads were filtered out using Trimmomatic and final reads
were mapped to the reference genome using STAR (v. 2.4.2a) [20–
22]. A final count table was then generated using htseq-count [23].

A similar procedure was used for the processing of A. ruthenus
eggs. The individual mature unfertilized egg was embedded in
OCT and then cryosectioned into five sections (Sections A-E) (see
Fig. 1) along their animal-vegetal axis and stored at �80 �C. Total
RNA was isolated using 1 ml of TRI Reagent (Sigma, T9424), and
purified using LiCl precipitation. RNA samples were diluted in
20 ml of 1xTE buffer (Invitrogen, 12090–15). The concentration of
RNA was measured using the Nanodrop 2000 (Thermo Scientific),
and the quality assessed using a Fragment Analyzer (AATI, Stan-
dard Sensitivity RNA analysis kit, DNF-471). In total, three biolog-
ical replicates (three eggs) were prepared for sequencing. Libraries
for RNASeq were comprised of 200 ng of total RNA with the addi-
tion of 50x diluted RNA Spike I (TATAA, RS25SI) and 50,000�
diluted RNA Spike II (TATAA, RS25SII). Ribosomal RNAs were
depleted using Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat)
(Illumina, MRZH116) and sequencing libraries prepared using
SureSelect Strand-Specific RNA Library Prep for Illumina Multi-
plexed Sequencing (Agilent, G9691), beginning from Step 2 (frag-
mentation of RNA). The libraries were sequenced on a NextSeq
500 instrument in PE75 high-output mode.

Approximately 19 million raw sequencing reads per sample
were obtained. Adaptor sequences and low quality reads were fil-
tered using TrimmomaticPE (v. 0.36) with parameters, ‘‘CROP:70
HEADCROP:12 ILLUMINACLIP: TruSeq-PE3.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36” [20]. SortMeRNA
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(v. 2.1b) was used to remove remaining rRNA and mtRNA reads
[22]. A de novo transcriptome was created using Trinity (v. 2.3.2)
with default parameters and SS_lib_type specification as RF [24].
A genome guided de novo transcriptome was also created using
an in-lab sequenced draft genome of A. ruthenus. The reads were
first aligned using STAR (v. 2.5.2b) and then the genome guided
de novo transcriptome was generated using Trinity [21,24]. These
two transcriptomes were merged using EvidentialGene (v.
17mar10) and a count table generated using kallisto (v. 0.43.1)
[25,26]. The data was deposited in the National Center for Biotech-
nology Information’s Gene Expression Omnibus (GEO), accession
GSE104848 (X. laevis TOMOSeq) and GSE125819 (A. ruthenus
TOMOSeq).

5.2. RT-qPCR analysis

RT-qPCR analysis was performed on the X. laevis and A. ruthenus
models using the protocol described previously [12,14]. RT-qPCR
was carried out on selected marker genes with known localization
profiles in X. laevis or A. ruthenus that showed either extremely ani-
mal, animal, vegetal and extremely vegetal distribution profiles
after conventional DESeq2 differential analysis (Additional file 1:
Table S5) [12]. The RT-qPCR utilized four biological replicates and
was performed on a separate set of egg sections than those used
for the RNASeq. However, they were treated and sectioned exactly
as described for the RNASeq samples.

The reverse transcription was performed using SuperScriptTM III
Reverse transcriptase kit (Invitrogen) according to the manufac-
turer’s manual. 10 ng of RNA in 5 ml of nuclease free water was
mixed with 0.5 ml of oligo-dT and random hexamers (mixture
1:1, 50 mM each), 0.5 ml of dNTPs (10 mM each) and 0.5 ml of spike
(TATAA Universal RNA Spike, TATAA Biocenter) and incubated for
5 min at 75 �C, 20 s at 25 �C and cooled to 4 �C. In the next step,
2 ml of First strand synthesis buffer, 0.5 ml of DTT, 0.5 ml of Super-
Script III enzyme and 0.5 ml of RNaseOUT were added. The mixture
was incubated at 25 �C for 5 min, after which reverse transcription
was performed for 60 min at 50 �C and 15 min at 55 �C, followed
with enzyme inhibition for 15 min at 75 �C and then cooling at
4 �C. Then, the mixture was diluted with 40 ml of nuclease free
water and stored at �20 �C. The qPCR analysis was performed
using iQTM SYBR� Green Supermix (Bio-Rad). 2 ml of diluted cDNA
was mixed with primers (final concentration 500 nM), 5 ml of iQTM

SYBR� Green Supermix and nuclease free water to final volume of
10 ml. The qPCR was performed on the CFX384 cycler (Bio-Rad)
using a program of: initial denaturation: 95 �C, 2 min; 40 cycles:
95 �C for 5 s � 60 �C for 20 s � 72 �C for 20 s, followed by melting
curve analysis. The complete list of all primers used for qPCR is
available in Additional file 1: Table S6.

The normalized cycle for critical threshold detection was used
to find the proportion of transcripts in each section relative to
the total number of transcripts in the cell (Eq. (1)).

xi ¼ 2�Cqi

PE
i¼A2

�Cqi
ð1Þ

Cq = quantification cycle
i = section of the egg (A to E)
x = proportion of transcript that is present in section i relative to
the egg

5.3. NormQ analysis

To normalize the raw counts obtained from the TOMOSeq, the
size factor was calculated to normalize between the inter-section
(same sections) replicates and then between the intra-section (dif-
ferent sections) replicates (see Fig. 4). In the first step (herein
called NormQ1), the raw counts for the inter-section replicates
were normalized using DESeq2’s (v. 1.18.1/1.22.1) average-bulk
median-of-ratios method [6,27]. Each inter-section replicate
should follow true to DESeq2’s assumption that the majority of
the genes does not show differential expression.

The next step normalizes between the intra-sections to com-
pensate for read depth and library size differences, while scaling
the library to reflect the biologically observed proportion between
sections as measured with the RT-qPCR. The proportion of the
NormQ1 normalized counts for the marker genes within a given
section, relative to the whole egg, was then calculated (Eq. (2)).
Next, the relative difference between this proportion and the one
determined from the RT-qPCR data was calculated (Eq. (2). The
median of the relative proportions for all the assessed marker
genes was then determined per section for each replicate (Eq.
(2). This value represents the size factor fold change required to
normalize the data between sections. The median of these scaling
factors for members of the same section was then calculated (Eq.
(2)). The median was used instead of separate size factors for each
replicate, so that the library depth amongst inter-sample section
replicates would be consistent. The size factors to normalize
between inter-sections and intra-sections were then merged into
a single size factor and manually entered into DESeq2 for normal-
ization of all genes. The R script used to calculate the size factors
can be found in Additional file 3: NormQ_script and example asso-
ciated simulated dataset Additional file 4: simulated_dataset.

Step1 : zgi ¼ ys=w
s
i

Step2 : x
�s

i ¼ Median z1i ; z
2
i ; z

3
i . . . z

g
i

� �

Step3 : t
�
s ¼ Median x

�s

1; x
�s

2; x
�s

3 . . . x
�s

r

� � ð2Þ

y = proportion of marker gene z that is present in section s, rel-
ative to the egg as derived from the RT-qPCR data (shown in Eq.
(1)).
w = proportion of marker gene z that is present in section s of
replicate i, relative to the egg as derived from the RNASeq data.
z = ratio of marker gene g between y and w in section i.
x = median of z for all marker genes for a given section s and
replicate i.
t = median of x for all replicates r of a given section s. This rep-
resents the intra-section size factor, to normalize between sec-
tion s versus the other sections.

5.4. TomoSeq simulation

The R package, Polyester (v. 1.9.7) was used to produce simu-
lated RNASeq data modelled from the X. laevis transcriptome (Xen-
base Version: 9.2) [28,29]. The X. laevis NormQ normalized counts
for 13,877 genes was used to help model the expected fold change
(Additional file 1: Table S7). Simulations were done to produce
three biological replicates each consisting of five sections (Sections
A–E). The simulation also considered potential bias due to tran-
script length (meanmodel), fragmentation (bias = rnaf) and
sequencer error (error_model = illumina5) when generating the
data. RNA fragment lengths were selected from a normal distribu-
tion with a mean length of 250 bp. The simulation was non-strand
specific and produced paired-end reads each with a read length of
50 bp. The library size was varied for each sample, whereby the
counts for a replicate were multiplied by a scaling factor of either
0.05x, 0.06x, 0.07x or 0.08x (Additional file 1: Table S8). Twenty
genes were assigned as non-differentially expressed across all sec-
tions for use in control-based median-of-ratios normalization
(Additional file 1: Table S7). The first ten of these genes were
assigned fold changes equal to the mean distribution of the mRNA
expression and the other ten were assigned two times higher levels



1180 R. Naraine et al. / Computational and Structural Biotechnology Journal 18 (2020) 1173–1181
than the expected distribution (Additional file 1: Table S7). The
simulated reads were then pseudo-aligned to the X. laevis tran-
scriptome using kallisto (v. 0.44.0) and the count data imported
into DESeq2 (v. 1.18.1) using the R package tximport (v. 1.8.0)
[9,25]. The simulated counts were then normalized using NormQ,
bulk-gene median-of ratios method and control-based median-of
ratios method. The results of these normalization methods were
then compared to those from the expected gene counts. A maxi-
mum of ten genes for use as markers for NormQ normalization
were randomly selected from each localization category that were
also identifiable as differentially expressed by DESeq2median and
had a gene count greater than 100 in any given section (Additional
file 1: Table S5). These criteria resulted in ten genes each, from the
extremely animal, animal and vegetal localization categories, but
only four from the extremely vegetal category.
5.5. RNASeq data analysis

All RNASeq data were normalized using the standard DESeq2
average-bulk median-of-ratios method (herein called DESeq2me-

dian), the custom normalization technique as described above
(herein called NormQ), the first step of NormQ (herein called
NormQ1), no normalization (herein called DESeq2none), and the
control-based/spike-ins (herein called DESeq2spike) when available.
The true counts and distribution from the Simulated-TOMOSeq is
herein referred to as DESeq2expected. Differential analysis was per-
formed amongst the sections using DESeq2 default parameters, fol-
lowed by multiple hypothesis testing using ‘‘Benjamini &
Hochberg” correction (padj < 0.1). The performance of the
Simulated-TOMOSeq was assessed using the Area under the Recei-
ver Operating Characteristic (ROC) curve (AUC) using the R package
metaseqR (v. 1.24.0) [30].

Exploratory analysis was performed using both PCA plots from
the DESeq2 package and also degCheckFactors from the DEGreport
package (v. 1.20.0) [31]. PCA plots, for each normalization method,
were used to visually assess how well the top 5000 most variable
genes clustered together relative to the known biological parame-
ters. degCheckFactors, was used to determine how well the tech-
niques reduced the gene variance within a section relative to its
mean expression across replicates or sections [31]. A library that
has been normalized adequately, should show mRNA expression
ratios that approximate a normal distribution and also should typ-
ically not be skewed, unless there is some other confounding bio-
logical/technical factors [31].

The localization profiles of the genes were compared against the
expected profile from the Simulated-TOMOSeq or from the
expected profiles from the RT-qPCR. This was achieved by first
manually clustering the genes into particular localization profiles
using the criteria as defined in our previous study [12]. Genes were
placed into the localization categories: extremely animal, animal,
vegetal, extremely vegetal and unclassified. The proportion of
localization profile matches relative to the RT-qPCR or Simulated-
TOMOSeq profile was assessed for each normalization method.

In the Simulated-TOMOSeq, the proportion of true DEGs, DEGs
that were detected by all the normalization method, and all genes
(DEGs and non-DEGs) that contained count data after normaliza-
tion, were assessed for correct profiling. A two-tailed t-test using
unequal variances was used to assess for significant differences
between the matched localization profiles (relative to the RT-
qPCR/simulated data) of the marker genes or all simulated genes
between the different normalization techniques. Linear regression
analysis was used to assess the correlation between the relative
section proportions (zsr=

Pn
i¼Az

i
r; where z = counts from egg section

s of replicate r), for each replicate of each normalization method
against the equivalent data from the expected simulated data.
The outlier size factors during the second step of NormQ was
assessed to determine the probability of selecting a gene that con-
tributes to an outlying size factor. The effect of the number of
genes used for the calculation of the NormQ size factor was also
assessed using the Simulated-TOMOSeq data. Similarly, as
described above, the DESeq2median data was used to aid in the
selection of marker genes. A maximum of 30 genes were randomly
selected from each localization category. The exception was the
extreme vegetal group, where all four gene representatives were
used. Iteratively, one gene from each group was randomly removed
(without replacement) and the size factor recalculated. Addition-
ally, the effect of selecting all genes or all members from the same
localization profile was analyzed. The performance of each size fac-
tor was assessed using AUC-ROC of the obtained DEGs.

The NormQ method was also assessed using data from our pre-
viously published RT-qPCR derived gene distributions for the X.
laevis model, that was obtained in a similar manner as described
in our methodology (Additional file 1: Table S5) [16]. The RT-
qPCR localization profile for these genes were compared to the
localization profile for the same genes but as determined using
NormQ on our TOMOSeq dataset. The primers designed in this
publication were however based on an older X. laevis gene annota-
tion. Therefore, before using this secondary data, the primers from
this publication were assessed using Primer-BLAST, and all primers
that did not align 100% to their target gene, or were complemen-
tary to both homeologous forms of the gene, were removed from
the dataset [32]. Additionally, eleven extra X. laevis genes that were
not used for the NormQ normalization were assessed using RT-
qPCR, and their given distributions then compared to those from
the NormQ and DESeq2median normalization methods (Additional
file 1: Table S5).
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